docs: add docs to CB

Pretty much every class and method should have documentation now.

ref: N25B-295
This commit is contained in:
2025-11-24 21:58:22 +01:00
parent 54502e441c
commit 129d3c4420
26 changed files with 757 additions and 80 deletions

View File

@@ -16,9 +16,17 @@ from .llm_instructions import LLMInstructions
class LLMAgent(BaseAgent):
"""
Agent responsible for processing user text input and querying a locally
hosted LLM for text generation. Receives messages from the BDI Core Agent
and responds with processed LLM output.
LLM Agent.
This agent is responsible for processing user text input and querying a locally
hosted LLM for text generation. It acts as the conversational brain of the system.
It receives :class:`~control_backend.schemas.llm_prompt_message.LLMPromptMessage`
payloads from the BDI Core Agent, constructs a conversation history, queries the
LLM via HTTP, and streams the response back to the BDI agent in natural chunks
(e.g., sentence by sentence).
:ivar history: A list of dictionaries representing the conversation history (Role/Content).
"""
def __init__(self, name: str):
@@ -29,6 +37,14 @@ class LLMAgent(BaseAgent):
self.logger.info("Setting up %s.", self.name)
async def handle_message(self, msg: InternalMessage):
"""
Handle incoming messages.
Expects messages from :attr:`settings.agent_settings.bdi_core_name` containing
an :class:`LLMPromptMessage` in the body.
:param msg: The received internal message.
"""
if msg.sender == settings.agent_settings.bdi_core_name:
self.logger.debug("Processing message from BDI core.")
try:
@@ -40,6 +56,14 @@ class LLMAgent(BaseAgent):
self.logger.debug("Message ignored (not from BDI core.")
async def _process_bdi_message(self, message: LLMPromptMessage):
"""
Orchestrate the LLM query and response streaming.
Iterates over the chunks yielded by :meth:`_query_llm` and forwards them
individually to the BDI agent via :meth:`_send_reply`.
:param message: The parsed prompt message containing text, norms, and goals.
"""
async for chunk in self._query_llm(message.text, message.norms, message.goals):
await self._send_reply(chunk)
self.logger.debug(
@@ -48,7 +72,9 @@ class LLMAgent(BaseAgent):
async def _send_reply(self, msg: str):
"""
Sends a response message back to the BDI Core Agent.
Sends a response message (chunk) back to the BDI Core Agent.
:param msg: The text content of the chunk.
"""
reply = InternalMessage(
to=settings.agent_settings.bdi_core_name,
@@ -61,13 +87,18 @@ class LLMAgent(BaseAgent):
self, prompt: str, norms: list[str], goals: list[str]
) -> AsyncGenerator[str]:
"""
Sends a chat completion request to the local LLM service and streams the response by
yielding fragments separated by punctuation like.
Send a chat completion request to the local LLM service and stream the response.
It constructs the full prompt using
:class:`~control_backend.agents.llm.llm_instructions.LLMInstructions`.
It streams the response from the LLM and buffers tokens until a natural break (punctuation)
is reached, then yields the chunk. This ensures that the robot speaks in complete phrases
rather than individual tokens.
:param prompt: Input text prompt to pass to the LLM.
:param norms: Norms the LLM should hold itself to.
:param goals: Goals the LLM should achieve.
:yield: Fragments of the LLM-generated content.
:yield: Fragments of the LLM-generated content (e.g., sentences/phrases).
"""
self.history.append(
{
@@ -85,7 +116,7 @@ class LLMAgent(BaseAgent):
*self.history,
]
message_id = str(uuid.uuid4())
message_id = str(uuid.uuid4()) # noqa
try:
full_message = ""
@@ -127,7 +158,13 @@ class LLMAgent(BaseAgent):
yield "Error processing the request."
async def _stream_query_llm(self, messages) -> AsyncGenerator[str]:
"""Raises httpx.HTTPError when the API gives an error."""
"""
Perform the raw HTTP streaming request to the LLM API.
:param messages: The list of message dictionaries (role/content).
:yield: Raw text tokens (deltas) from the SSE stream.
:raises httpx.HTTPError: If the API returns a non-200 status.
"""
async with httpx.AsyncClient(timeout=None) as client:
async with client.stream(
"POST",