Merge branch 'feat/semantic-beliefs' into feat/extra-agentspeak-functionality
# Conflicts: # src/control_backend/agents/bdi/bdi_program_manager.py
This commit is contained in:
@@ -217,12 +217,15 @@ class BDICoreAgent(BaseAgent):
|
||||
|
||||
self.logger.debug(f"Added belief {self.format_belief_string(name, args)}")
|
||||
|
||||
def _remove_belief(self, name: str, args: Iterable[str]):
|
||||
def _remove_belief(self, name: str, args: Iterable[str] | None):
|
||||
"""
|
||||
Removes a specific belief (with arguments), if it exists.
|
||||
"""
|
||||
new_args = (agentspeak.Literal(arg) for arg in args)
|
||||
term = agentspeak.Literal(name, new_args)
|
||||
if args is None:
|
||||
term = agentspeak.Literal(name)
|
||||
else:
|
||||
new_args = (agentspeak.Literal(arg) for arg in args)
|
||||
term = agentspeak.Literal(name, new_args)
|
||||
|
||||
result = self.bdi_agent.call(
|
||||
agentspeak.Trigger.removal,
|
||||
@@ -499,8 +502,8 @@ class BDICoreAgent(BaseAgent):
|
||||
self.logger.info("Message sent to LLM agent: %s", text)
|
||||
|
||||
@staticmethod
|
||||
def format_belief_string(name: str, args: Iterable[str] = []):
|
||||
def format_belief_string(name: str, args: Iterable[str] | None = []):
|
||||
"""
|
||||
Given a belief's name and its args, return a string of the form "name(*args)"
|
||||
"""
|
||||
return f"{name}{'(' if args else ''}{','.join(args)}{')' if args else ''}"
|
||||
return f"{name}{'(' if args else ''}{','.join(args or [])}{')' if args else ''}"
|
||||
|
||||
@@ -8,9 +8,16 @@ from zmq.asyncio import Context
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_list import BeliefList
|
||||
from control_backend.schemas.belief_list import BeliefList, GoalList
|
||||
from control_backend.schemas.internal_message import InternalMessage
|
||||
from control_backend.schemas.program import Belief, ConditionalNorm, InferredBelief, Phase, Program
|
||||
from control_backend.schemas.program import (
|
||||
Belief,
|
||||
ConditionalNorm,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
Phase,
|
||||
Program,
|
||||
)
|
||||
|
||||
|
||||
class BDIProgramManager(BaseAgent):
|
||||
@@ -124,6 +131,46 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
await self.send(message)
|
||||
|
||||
@staticmethod
|
||||
def _extract_goals_from_program(program: Program) -> list[Goal]:
|
||||
"""
|
||||
Extract all goals from the program, including subgoals.
|
||||
|
||||
:param program: The program received from the API.
|
||||
:return: A list of Goal objects.
|
||||
"""
|
||||
goals: list[Goal] = []
|
||||
|
||||
def extract_goals_from_goal(goal_: Goal) -> list[Goal]:
|
||||
goals_: list[Goal] = [goal]
|
||||
for plan in goal_.plan:
|
||||
if isinstance(plan, Goal):
|
||||
goals_.extend(extract_goals_from_goal(plan))
|
||||
return goals_
|
||||
|
||||
for phase in program.phases:
|
||||
for goal in phase.goals:
|
||||
goals.extend(extract_goals_from_goal(goal))
|
||||
|
||||
return goals
|
||||
|
||||
async def _send_goals_to_semantic_belief_extractor(self, program: Program):
|
||||
"""
|
||||
Extract goals from the program and send them to the Semantic Belief Extractor Agent.
|
||||
|
||||
:param program: The program received from the API.
|
||||
"""
|
||||
goals = GoalList(goals=self._extract_goals_from_program(program))
|
||||
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=self.name,
|
||||
body=goals.model_dump_json(),
|
||||
thread="goals",
|
||||
)
|
||||
|
||||
await self.send(message)
|
||||
|
||||
async def _receive_programs(self):
|
||||
"""
|
||||
Continuous loop that receives program updates from the HTTP endpoint.
|
||||
@@ -145,6 +192,7 @@ class BDIProgramManager(BaseAgent):
|
||||
await asyncio.gather(
|
||||
self._create_agentspeak_and_send_to_bdi(program),
|
||||
self._send_beliefs_to_semantic_belief_extractor(),
|
||||
self._send_goals_to_semantic_belief_extractor(program),
|
||||
)
|
||||
|
||||
async def setup(self):
|
||||
|
||||
@@ -101,7 +101,7 @@ class BDIBeliefCollectorAgent(BaseAgent):
|
||||
:return: A Belief object if the input is valid or None.
|
||||
"""
|
||||
try:
|
||||
return Belief(name=name, arguments=arguments, replace=name == "user_said")
|
||||
return Belief(name=name, arguments=arguments)
|
||||
except ValidationError:
|
||||
return None
|
||||
|
||||
|
||||
@@ -2,17 +2,45 @@ import asyncio
|
||||
import json
|
||||
|
||||
import httpx
|
||||
from pydantic import ValidationError
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from control_backend.agents.base import BaseAgent
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_list import BeliefList
|
||||
from control_backend.schemas.belief_list import BeliefList, GoalList
|
||||
from control_backend.schemas.belief_message import Belief as InternalBelief
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
|
||||
from control_backend.schemas.program import SemanticBelief
|
||||
from control_backend.schemas.program import Goal, SemanticBelief
|
||||
|
||||
type JSONLike = None | bool | int | float | str | list["JSONLike"] | dict[str, "JSONLike"]
|
||||
|
||||
|
||||
class BeliefState(BaseModel):
|
||||
true: set[InternalBelief] = set()
|
||||
false: set[InternalBelief] = set()
|
||||
|
||||
def difference(self, other: "BeliefState") -> "BeliefState":
|
||||
return BeliefState(
|
||||
true=self.true - other.true,
|
||||
false=self.false - other.false,
|
||||
)
|
||||
|
||||
def union(self, other: "BeliefState") -> "BeliefState":
|
||||
return BeliefState(
|
||||
true=self.true | other.true,
|
||||
false=self.false | other.false,
|
||||
)
|
||||
|
||||
def __sub__(self, other):
|
||||
return self.difference(other)
|
||||
|
||||
def __or__(self, other):
|
||||
return self.union(other)
|
||||
|
||||
def __bool__(self):
|
||||
return bool(self.true) or bool(self.false)
|
||||
|
||||
|
||||
class TextBeliefExtractorAgent(BaseAgent):
|
||||
@@ -27,12 +55,14 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
the message itself.
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, temperature: float = settings.llm_settings.code_temperature):
|
||||
def __init__(self, name: str):
|
||||
super().__init__(name)
|
||||
self.beliefs: dict[str, bool] = {}
|
||||
self.available_beliefs: list[SemanticBelief] = []
|
||||
self._llm = self.LLM(self, settings.llm_settings.n_parallel)
|
||||
self.belief_inferrer = SemanticBeliefInferrer(self._llm)
|
||||
self.goal_inferrer = GoalAchievementInferrer(self._llm)
|
||||
self._current_beliefs = BeliefState()
|
||||
self._current_goal_completions: dict[str, bool] = {}
|
||||
self.conversation = ChatHistory(messages=[])
|
||||
self.temperature = temperature
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
@@ -53,8 +83,9 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
case settings.agent_settings.transcription_name:
|
||||
self.logger.debug("Received text from transcriber: %s", msg.body)
|
||||
self._apply_conversation_message(ChatMessage(role="user", content=msg.body))
|
||||
await self._infer_new_beliefs()
|
||||
await self._user_said(msg.body)
|
||||
await self._infer_new_beliefs()
|
||||
await self._infer_goal_completions()
|
||||
case settings.agent_settings.llm_name:
|
||||
self.logger.debug("Received text from LLM: %s", msg.body)
|
||||
self._apply_conversation_message(ChatMessage(role="assistant", content=msg.body))
|
||||
@@ -76,10 +107,19 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
|
||||
def _handle_program_manager_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle a message from the program manager: extract available beliefs from it.
|
||||
Handle a message from the program manager: extract available beliefs and goals from it.
|
||||
|
||||
:param msg: The received message from the program manager.
|
||||
"""
|
||||
match msg.thread:
|
||||
case "beliefs":
|
||||
self._handle_beliefs_message(msg)
|
||||
case "goals":
|
||||
self._handle_goals_message(msg)
|
||||
case _:
|
||||
self.logger.warning("Received unexpected message from %s", msg.sender)
|
||||
|
||||
def _handle_beliefs_message(self, msg: InternalMessage):
|
||||
try:
|
||||
belief_list = BeliefList.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
@@ -88,10 +128,28 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
)
|
||||
return
|
||||
|
||||
self.available_beliefs = [b for b in belief_list.beliefs if isinstance(b, SemanticBelief)]
|
||||
available_beliefs = [b for b in belief_list.beliefs if isinstance(b, SemanticBelief)]
|
||||
self.belief_inferrer.available_beliefs = available_beliefs
|
||||
self.logger.debug(
|
||||
"Received %d beliefs from the program manager.",
|
||||
len(self.available_beliefs),
|
||||
"Received %d semantic beliefs from the program manager.",
|
||||
len(available_beliefs),
|
||||
)
|
||||
|
||||
def _handle_goals_message(self, msg: InternalMessage):
|
||||
try:
|
||||
goals_list = GoalList.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
self.logger.warning(
|
||||
"Received message from program manager but it is not a valid list of goals."
|
||||
)
|
||||
return
|
||||
|
||||
# Use only goals that can fail, as the others are always assumed to be completed
|
||||
available_goals = [g for g in goals_list.goals if g.can_fail]
|
||||
self.goal_inferrer.goals = available_goals
|
||||
self.logger.debug(
|
||||
"Received %d failable goals from the program manager.",
|
||||
len(available_goals),
|
||||
)
|
||||
|
||||
async def _user_said(self, text: str):
|
||||
@@ -111,109 +169,199 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
await self.send(belief_msg)
|
||||
|
||||
async def _infer_new_beliefs(self):
|
||||
"""
|
||||
Process conversation history to extract beliefs, semantically. Any changed beliefs are sent
|
||||
to the BDI core.
|
||||
"""
|
||||
# Return instantly if there are no beliefs to infer
|
||||
if not self.available_beliefs:
|
||||
conversation_beliefs = await self.belief_inferrer.infer_from_conversation(self.conversation)
|
||||
|
||||
new_beliefs = conversation_beliefs - self._current_beliefs
|
||||
if not new_beliefs:
|
||||
return
|
||||
|
||||
candidate_beliefs = await self._infer_turn()
|
||||
belief_changes = BeliefMessage()
|
||||
for belief_key, belief_value in candidate_beliefs.items():
|
||||
if belief_value is None:
|
||||
continue
|
||||
old_belief_value = self.beliefs.get(belief_key)
|
||||
if belief_value == old_belief_value:
|
||||
continue
|
||||
self._current_beliefs |= new_beliefs
|
||||
|
||||
self.beliefs[belief_key] = belief_value
|
||||
belief_changes = BeliefMessage(
|
||||
create=list(new_beliefs.true),
|
||||
delete=list(new_beliefs.false),
|
||||
)
|
||||
|
||||
belief = InternalBelief(name=belief_key, arguments=None)
|
||||
if belief_value:
|
||||
belief_changes.create.append(belief)
|
||||
else:
|
||||
belief_changes.delete.append(belief)
|
||||
|
||||
# Return if there were no changes in beliefs
|
||||
if not belief_changes.has_values():
|
||||
return
|
||||
|
||||
beliefs_message = InternalMessage(
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=belief_changes.model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
await self.send(beliefs_message)
|
||||
await self.send(message)
|
||||
|
||||
@staticmethod
|
||||
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
|
||||
k, m = divmod(len(items), n)
|
||||
return [items[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)]
|
||||
async def _infer_goal_completions(self):
|
||||
goal_completions = await self.goal_inferrer.infer_from_conversation(self.conversation)
|
||||
|
||||
async def _infer_turn(self) -> dict:
|
||||
new_achieved = [
|
||||
InternalBelief(name=goal, arguments=None)
|
||||
for goal, achieved in goal_completions.items()
|
||||
if achieved and self._current_goal_completions.get(goal) != achieved
|
||||
]
|
||||
new_not_achieved = [
|
||||
InternalBelief(name=goal, arguments=None)
|
||||
for goal, achieved in goal_completions.items()
|
||||
if not achieved and self._current_goal_completions.get(goal) != achieved
|
||||
]
|
||||
for goal, achieved in goal_completions.items():
|
||||
self._current_goal_completions[goal] = achieved
|
||||
|
||||
if not new_achieved and not new_not_achieved:
|
||||
return
|
||||
|
||||
belief_changes = BeliefMessage(
|
||||
create=new_achieved,
|
||||
delete=new_not_achieved,
|
||||
)
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=belief_changes.model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
class LLM:
|
||||
"""
|
||||
Process the stored conversation history to extract semantic beliefs. Returns a list of
|
||||
beliefs that have been set to ``True``, ``False`` or ``None``.
|
||||
|
||||
:return: A dict mapping belief names to a value ``True``, ``False`` or ``None``.
|
||||
Class that handles sending structured generation requests to an LLM.
|
||||
"""
|
||||
|
||||
def __init__(self, agent: "TextBeliefExtractorAgent", n_parallel: int):
|
||||
self._agent = agent
|
||||
self._semaphore = asyncio.Semaphore(n_parallel)
|
||||
|
||||
async def query(self, prompt: str, schema: dict, tries: int = 3) -> JSONLike | None:
|
||||
"""
|
||||
Query the LLM with the given prompt and schema, return an instance of a dict conforming
|
||||
to this schema. Try ``tries`` times, or return None.
|
||||
|
||||
:param prompt: Prompt to be queried.
|
||||
:param schema: Schema to be queried.
|
||||
:param tries: Number of times to try to query the LLM.
|
||||
:return: An instance of a dict conforming to this schema, or None if failed.
|
||||
"""
|
||||
try_count = 0
|
||||
while try_count < tries:
|
||||
try_count += 1
|
||||
|
||||
try:
|
||||
return await self._query_llm(prompt, schema)
|
||||
except (httpx.HTTPError, json.JSONDecodeError, KeyError) as e:
|
||||
if try_count < tries:
|
||||
continue
|
||||
self._agent.logger.exception(
|
||||
"Failed to get LLM response after %d tries.",
|
||||
try_count,
|
||||
exc_info=e,
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
async def _query_llm(self, prompt: str, schema: dict) -> JSONLike:
|
||||
"""
|
||||
Query an LLM with the given prompt and schema, return an instance of a dict conforming
|
||||
to that schema.
|
||||
|
||||
:param prompt: The prompt to be queried.
|
||||
:param schema: Schema to use during response.
|
||||
:return: A dict conforming to this schema.
|
||||
:raises httpx.HTTPStatusError: If the LLM server responded with an error.
|
||||
:raises json.JSONDecodeError: If the LLM response was not valid JSON. May happen if the
|
||||
response was cut off early due to length limitations.
|
||||
:raises KeyError: If the LLM server responded with no error, but the response was
|
||||
invalid.
|
||||
"""
|
||||
async with self._semaphore:
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
settings.llm_settings.local_llm_url,
|
||||
json={
|
||||
"model": settings.llm_settings.local_llm_model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"response_format": {
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": "Beliefs",
|
||||
"strict": True,
|
||||
"schema": schema,
|
||||
},
|
||||
},
|
||||
"reasoning_effort": "low",
|
||||
"temperature": settings.llm_settings.code_temperature,
|
||||
"stream": False,
|
||||
},
|
||||
timeout=30.0,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
response_json = response.json()
|
||||
json_message = response_json["choices"][0]["message"]["content"]
|
||||
return json.loads(json_message)
|
||||
|
||||
|
||||
class SemanticBeliefInferrer:
|
||||
"""
|
||||
Class that handles only prompting an LLM for semantic beliefs.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm: "TextBeliefExtractorAgent.LLM",
|
||||
available_beliefs: list[SemanticBelief] | None = None,
|
||||
):
|
||||
self._llm = llm
|
||||
self.available_beliefs: list[SemanticBelief] = available_beliefs or []
|
||||
|
||||
async def infer_from_conversation(self, conversation: ChatHistory) -> BeliefState:
|
||||
"""
|
||||
Process conversation history to extract beliefs, semantically. The result is an object that
|
||||
describes all beliefs that hold or don't hold based on the full conversation.
|
||||
|
||||
:param conversation: The conversation history to be processed.
|
||||
:return: An object that describes beliefs.
|
||||
"""
|
||||
# Return instantly if there are no beliefs to infer
|
||||
if not self.available_beliefs:
|
||||
return BeliefState()
|
||||
|
||||
n_parallel = max(1, min(settings.llm_settings.n_parallel - 1, len(self.available_beliefs)))
|
||||
all_beliefs = await asyncio.gather(
|
||||
all_beliefs: list[dict[str, bool | None] | None] = await asyncio.gather(
|
||||
*[
|
||||
self._infer_beliefs(self.conversation, beliefs)
|
||||
self._infer_beliefs(conversation, beliefs)
|
||||
for beliefs in self._split_into_chunks(self.available_beliefs, n_parallel)
|
||||
]
|
||||
)
|
||||
retval = {}
|
||||
retval = BeliefState()
|
||||
for beliefs in all_beliefs:
|
||||
if beliefs is None:
|
||||
continue
|
||||
retval.update(beliefs)
|
||||
for belief_name, belief_holds in beliefs.items():
|
||||
if belief_holds is None:
|
||||
continue
|
||||
belief = InternalBelief(name=belief_name, arguments=None)
|
||||
if belief_holds:
|
||||
retval.true.add(belief)
|
||||
else:
|
||||
retval.false.add(belief)
|
||||
return retval
|
||||
|
||||
@staticmethod
|
||||
def _create_belief_schema(belief: SemanticBelief) -> tuple[str, dict]:
|
||||
return AgentSpeakGenerator.slugify(belief), {
|
||||
"type": ["boolean", "null"],
|
||||
"description": belief.description,
|
||||
}
|
||||
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
|
||||
"""
|
||||
Split a list into ``n`` chunks, making each chunk approximately ``len(items) / n`` long.
|
||||
|
||||
@staticmethod
|
||||
def _create_beliefs_schema(beliefs: list[SemanticBelief]) -> dict:
|
||||
belief_schemas = [
|
||||
TextBeliefExtractorAgent._create_belief_schema(belief) for belief in beliefs
|
||||
]
|
||||
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": dict(belief_schemas),
|
||||
"required": [name for name, _ in belief_schemas],
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _format_message(message: ChatMessage):
|
||||
return f"{message.role.upper()}:\n{message.content}"
|
||||
|
||||
@staticmethod
|
||||
def _format_conversation(conversation: ChatHistory):
|
||||
return "\n\n".join(
|
||||
[TextBeliefExtractorAgent._format_message(message) for message in conversation.messages]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _format_beliefs(beliefs: list[SemanticBelief]):
|
||||
return "\n".join(
|
||||
[f"- {AgentSpeakGenerator.slugify(belief)}: {belief.description}" for belief in beliefs]
|
||||
)
|
||||
:param items: The list of items to split.
|
||||
:param n: The number of desired chunks.
|
||||
:return: A list of chunks each approximately ``len(items) / n`` long.
|
||||
"""
|
||||
k, m = divmod(len(items), n)
|
||||
return [items[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)]
|
||||
|
||||
async def _infer_beliefs(
|
||||
self,
|
||||
conversation: ChatHistory,
|
||||
beliefs: list[SemanticBelief],
|
||||
) -> dict | None:
|
||||
) -> dict[str, bool | None] | None:
|
||||
"""
|
||||
Infer given beliefs based on the given conversation.
|
||||
:param conversation: The conversation to infer beliefs from.
|
||||
@@ -240,70 +388,79 @@ Respond with a JSON similar to the following, but with the property names as giv
|
||||
|
||||
schema = self._create_beliefs_schema(beliefs)
|
||||
|
||||
return await self._retry_query_llm(prompt, schema)
|
||||
return await self._llm.query(prompt, schema)
|
||||
|
||||
async def _retry_query_llm(self, prompt: str, schema: dict, tries: int = 3) -> dict | None:
|
||||
@staticmethod
|
||||
def _create_belief_schema(belief: SemanticBelief) -> tuple[str, dict]:
|
||||
return AgentSpeakGenerator.slugify(belief), {
|
||||
"type": ["boolean", "null"],
|
||||
"description": belief.description,
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _create_beliefs_schema(beliefs: list[SemanticBelief]) -> dict:
|
||||
belief_schemas = [
|
||||
SemanticBeliefInferrer._create_belief_schema(belief) for belief in beliefs
|
||||
]
|
||||
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": dict(belief_schemas),
|
||||
"required": [name for name, _ in belief_schemas],
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _format_message(message: ChatMessage):
|
||||
return f"{message.role.upper()}:\n{message.content}"
|
||||
|
||||
@staticmethod
|
||||
def _format_conversation(conversation: ChatHistory):
|
||||
return "\n\n".join(
|
||||
[SemanticBeliefInferrer._format_message(message) for message in conversation.messages]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _format_beliefs(beliefs: list[SemanticBelief]):
|
||||
return "\n".join(
|
||||
[f"- {AgentSpeakGenerator.slugify(belief)}: {belief.description}" for belief in beliefs]
|
||||
)
|
||||
|
||||
|
||||
class GoalAchievementInferrer(SemanticBeliefInferrer):
|
||||
def __init__(self, llm: TextBeliefExtractorAgent.LLM):
|
||||
super().__init__(llm)
|
||||
self.goals = []
|
||||
|
||||
async def infer_from_conversation(self, conversation: ChatHistory) -> dict[str, bool]:
|
||||
"""
|
||||
Query the LLM with the given prompt and schema, return an instance of a dict conforming
|
||||
to this schema. Try ``tries`` times, or return None.
|
||||
Determine which goals have been achieved based on the given conversation.
|
||||
|
||||
:param prompt: Prompt to be queried.
|
||||
:param schema: Schema to be queried.
|
||||
:return: An instance of a dict conforming to this schema, or None if failed.
|
||||
:param conversation: The conversation to infer goal completion from.
|
||||
:return: A mapping of goals and a boolean whether they have been achieved.
|
||||
"""
|
||||
try_count = 0
|
||||
while try_count < tries:
|
||||
try_count += 1
|
||||
if not self.goals:
|
||||
return {}
|
||||
|
||||
try:
|
||||
return await self._query_llm(prompt, schema)
|
||||
except (httpx.HTTPError, json.JSONDecodeError, KeyError) as e:
|
||||
if try_count < tries:
|
||||
continue
|
||||
self.logger.exception(
|
||||
"Failed to get LLM response after %d tries.",
|
||||
try_count,
|
||||
exc_info=e,
|
||||
)
|
||||
goals_achieved = await asyncio.gather(
|
||||
*[self._infer_goal(conversation, g) for g in self.goals]
|
||||
)
|
||||
return {
|
||||
f"achieved_{AgentSpeakGenerator.slugify(goal)}": achieved
|
||||
for goal, achieved in zip(self.goals, goals_achieved, strict=True)
|
||||
}
|
||||
|
||||
return None
|
||||
async def _infer_goal(self, conversation: ChatHistory, goal: Goal) -> bool:
|
||||
prompt = f"""{self._format_conversation(conversation)}
|
||||
|
||||
async def _query_llm(self, prompt: str, schema: dict) -> dict:
|
||||
"""
|
||||
Query an LLM with the given prompt and schema, return an instance of a dict conforming to
|
||||
that schema.
|
||||
Given the above conversation, what has the following goal been achieved?
|
||||
|
||||
:param prompt: The prompt to be queried.
|
||||
:param schema: Schema to use during response.
|
||||
:return: A dict conforming to this schema.
|
||||
:raises httpx.HTTPStatusError: If the LLM server responded with an error.
|
||||
:raises json.JSONDecodeError: If the LLM response was not valid JSON. May happen if the
|
||||
response was cut off early due to length limitations.
|
||||
:raises KeyError: If the LLM server responded with no error, but the response was invalid.
|
||||
"""
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
settings.llm_settings.local_llm_url,
|
||||
json={
|
||||
"model": settings.llm_settings.local_llm_model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"response_format": {
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": "Beliefs",
|
||||
"strict": True,
|
||||
"schema": schema,
|
||||
},
|
||||
},
|
||||
"reasoning_effort": "low",
|
||||
"temperature": self.temperature,
|
||||
"stream": False,
|
||||
},
|
||||
timeout=None,
|
||||
)
|
||||
response.raise_for_status()
|
||||
The name of the goal: {goal.name}
|
||||
Description of the goal: {goal.description}
|
||||
|
||||
response_json = response.json()
|
||||
json_message = response_json["choices"][0]["message"]["content"]
|
||||
beliefs = json.loads(json_message)
|
||||
return beliefs
|
||||
Answer with literally only `true` or `false` (without backticks)."""
|
||||
|
||||
schema = {
|
||||
"type": "boolean",
|
||||
}
|
||||
|
||||
return await self._llm.query(prompt, schema)
|
||||
|
||||
@@ -193,7 +193,16 @@ class BaseAgent(ABC):
|
||||
|
||||
:param coro: The coroutine to execute as a task.
|
||||
"""
|
||||
task = asyncio.create_task(coro)
|
||||
|
||||
async def try_coro(coro_: Coroutine):
|
||||
try:
|
||||
await coro_
|
||||
except asyncio.CancelledError:
|
||||
self.logger.debug("A behavior was canceled successfully: %s", coro_)
|
||||
except Exception:
|
||||
self.logger.warning("An exception occurred in a behavior.", exc_info=True)
|
||||
|
||||
task = asyncio.create_task(try_coro(coro))
|
||||
self._tasks.add(task)
|
||||
task.add_done_callback(self._tasks.discard)
|
||||
return task
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
from control_backend.schemas.program import Belief as ProgramBelief
|
||||
from control_backend.schemas.program import Goal
|
||||
|
||||
|
||||
class BeliefList(BaseModel):
|
||||
@@ -12,3 +13,7 @@ class BeliefList(BaseModel):
|
||||
"""
|
||||
|
||||
beliefs: list[ProgramBelief]
|
||||
|
||||
|
||||
class GoalList(BaseModel):
|
||||
goals: list[Goal]
|
||||
|
||||
@@ -13,6 +13,9 @@ class Belief(BaseModel):
|
||||
name: str
|
||||
arguments: list[str] | None
|
||||
|
||||
# To make it hashable
|
||||
model_config = {"frozen": True}
|
||||
|
||||
|
||||
class BeliefMessage(BaseModel):
|
||||
"""
|
||||
|
||||
@@ -117,7 +117,7 @@ class Goal(ProgramElement):
|
||||
:ivar can_fail: Whether we can fail to achieve the goal after executing the plan.
|
||||
"""
|
||||
|
||||
description: str
|
||||
description: str = ""
|
||||
plan: Plan
|
||||
can_fail: bool = True
|
||||
|
||||
|
||||
Reference in New Issue
Block a user