fix: complete pipeline working
User interrupts still need to be tested. ref: N25B-429
This commit is contained in:
@@ -157,7 +157,7 @@ class AgentSpeakGenerator:
|
||||
|
||||
previous_goal = None
|
||||
for goal in phase.goals:
|
||||
self._process_goal(goal, phase, previous_goal)
|
||||
self._process_goal(goal, phase, previous_goal, main_goal=True)
|
||||
previous_goal = goal
|
||||
|
||||
for trigger in phase.triggers:
|
||||
@@ -192,6 +192,20 @@ class AgentSpeakGenerator:
|
||||
]
|
||||
)
|
||||
|
||||
# Notify outside world about transition
|
||||
body.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral(
|
||||
"notify_transition_phase",
|
||||
[
|
||||
AstString(str(from_phase.id)),
|
||||
AstString(str(to_phase.id) if to_phase else "end"),
|
||||
],
|
||||
),
|
||||
)
|
||||
)
|
||||
|
||||
self._asp.plans.append(
|
||||
AstPlan(TriggerType.ADDED_GOAL, AstLiteral("transition_phase"), context, body)
|
||||
)
|
||||
@@ -213,6 +227,11 @@ class AgentSpeakGenerator:
|
||||
def _add_default_loop(self, phase: Phase) -> None:
|
||||
actions = []
|
||||
|
||||
actions.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION, AstLiteral("notify_user_said", [AstVar("Message")])
|
||||
)
|
||||
)
|
||||
actions.append(AstStatement(StatementType.REMOVE_BELIEF, AstLiteral("responded_this_turn")))
|
||||
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("check_triggers")))
|
||||
|
||||
@@ -236,6 +255,7 @@ class AgentSpeakGenerator:
|
||||
phase: Phase,
|
||||
previous_goal: Goal | None = None,
|
||||
continues_response: bool = False,
|
||||
main_goal: bool = False,
|
||||
) -> None:
|
||||
context: list[AstExpression] = [self._astify(phase)]
|
||||
context.append(~self._astify(goal, achieved=True))
|
||||
@@ -245,6 +265,13 @@ class AgentSpeakGenerator:
|
||||
context.append(~AstLiteral("responded_this_turn"))
|
||||
|
||||
body = []
|
||||
if main_goal: # UI only needs to know about the main goals
|
||||
body.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral("notify_goal_start", [AstString(self.slugify(goal))]),
|
||||
)
|
||||
)
|
||||
|
||||
subgoals = []
|
||||
for step in goal.plan.steps:
|
||||
@@ -283,11 +310,23 @@ class AgentSpeakGenerator:
|
||||
body = []
|
||||
subgoals = []
|
||||
|
||||
body.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral("notify_trigger_start", [AstString(self.slugify(trigger))]),
|
||||
)
|
||||
)
|
||||
for step in trigger.plan.steps:
|
||||
body.append(self._step_to_statement(step))
|
||||
if isinstance(step, Goal):
|
||||
step.can_fail = False # triggers are continuous sequence
|
||||
subgoals.append(step)
|
||||
body.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral("notify_trigger_end", [AstString(self.slugify(trigger))]),
|
||||
)
|
||||
)
|
||||
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
@@ -298,6 +337,9 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
)
|
||||
|
||||
# Force trigger (from UI)
|
||||
self._asp.plans.append(AstPlan(TriggerType.ADDED_GOAL, self._astify(trigger), [], body))
|
||||
|
||||
for subgoal in subgoals:
|
||||
self._process_goal(subgoal, phase, continues_response=True)
|
||||
|
||||
@@ -332,13 +374,7 @@ class AgentSpeakGenerator:
|
||||
|
||||
@_astify.register
|
||||
def _(self, sb: SemanticBelief) -> AstExpression:
|
||||
return AstLiteral(self.get_semantic_belief_slug(sb))
|
||||
|
||||
@staticmethod
|
||||
def get_semantic_belief_slug(sb: SemanticBelief) -> str:
|
||||
# If you need a method like this for other types, make a public slugify singledispatch for
|
||||
# all types.
|
||||
return f"semantic_{AgentSpeakGenerator._slugify_str(sb.name)}"
|
||||
return AstLiteral(self.slugify(sb))
|
||||
|
||||
@_astify.register
|
||||
def _(self, ib: InferredBelief) -> AstExpression:
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import asyncio
|
||||
import copy
|
||||
import json
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
|
||||
@@ -13,7 +14,7 @@ from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.llm_prompt_message import LLMPromptMessage
|
||||
from control_backend.schemas.ri_message import SpeechCommand
|
||||
from control_backend.schemas.ri_message import GestureCommand, RIEndpoint, SpeechCommand
|
||||
|
||||
DELIMITER = ";\n" # TODO: temporary until we support lists in AgentSpeak
|
||||
|
||||
@@ -155,6 +156,17 @@ class BDICoreAgent(BaseAgent):
|
||||
body=cmd.model_dump_json(),
|
||||
)
|
||||
await self.send(out_msg)
|
||||
case settings.agent_settings.user_interrupt_name:
|
||||
content = msg.body
|
||||
self.logger.debug("Received user interruption: %s", content)
|
||||
|
||||
match msg.thread:
|
||||
case "force_phase_transition":
|
||||
self._set_goal("transition_phase")
|
||||
case "force_trigger":
|
||||
self._force_trigger(msg.body)
|
||||
case _:
|
||||
self.logger.warning("Received unknow user interruption: %s", msg)
|
||||
|
||||
def _apply_belief_changes(self, belief_changes: BeliefMessage):
|
||||
"""
|
||||
@@ -250,6 +262,37 @@ class BDICoreAgent(BaseAgent):
|
||||
|
||||
self.logger.debug(f"Removed {removed_count} beliefs.")
|
||||
|
||||
def _set_goal(self, name: str, args: Iterable[str] | None = None):
|
||||
args = args or []
|
||||
|
||||
if args:
|
||||
merged_args = DELIMITER.join(arg for arg in args)
|
||||
new_args = (agentspeak.Literal(merged_args),)
|
||||
term = agentspeak.Literal(name, new_args)
|
||||
else:
|
||||
term = agentspeak.Literal(name)
|
||||
|
||||
self.bdi_agent.call(
|
||||
agentspeak.Trigger.addition,
|
||||
agentspeak.GoalType.achievement,
|
||||
term,
|
||||
agentspeak.runtime.Intention(),
|
||||
)
|
||||
|
||||
self._wake_bdi_loop.set()
|
||||
|
||||
self.logger.debug(f"Set goal !{self.format_belief_string(name, args)}.")
|
||||
|
||||
def _force_trigger(self, name: str):
|
||||
self.bdi_agent.call(
|
||||
agentspeak.Trigger.addition,
|
||||
agentspeak.GoalType.achievement,
|
||||
agentspeak.Literal(name),
|
||||
agentspeak.runtime.Intention(),
|
||||
)
|
||||
|
||||
self.logger.info("Manually forced trigger %s.", name)
|
||||
|
||||
def _add_custom_actions(self) -> None:
|
||||
"""
|
||||
Add any custom actions here. Inside `@self.actions.add()`, the first argument is
|
||||
@@ -258,7 +301,7 @@ class BDICoreAgent(BaseAgent):
|
||||
"""
|
||||
|
||||
@self.actions.add(".reply", 2)
|
||||
def _reply(agent: "BDICoreAgent", term, intention):
|
||||
def _reply(agent, term, intention):
|
||||
"""
|
||||
Let the LLM generate a response to a user's utterance with the current norms and goals.
|
||||
"""
|
||||
@@ -291,7 +334,7 @@ class BDICoreAgent(BaseAgent):
|
||||
yield
|
||||
|
||||
@self.actions.add(".say", 1)
|
||||
def _say(agent: "BDICoreAgent", term, intention):
|
||||
def _say(agent, term, intention):
|
||||
"""
|
||||
Make the robot say the given text instantly.
|
||||
"""
|
||||
@@ -305,12 +348,21 @@ class BDICoreAgent(BaseAgent):
|
||||
sender=settings.agent_settings.bdi_core_name,
|
||||
body=speech_command.model_dump_json(),
|
||||
)
|
||||
# TODO: add to conversation history
|
||||
|
||||
self.add_behavior(self.send(speech_message))
|
||||
|
||||
chat_history_message = InternalMessage(
|
||||
to=settings.agent_settings.llm_name,
|
||||
thread="assistant_message",
|
||||
body=str(message_text),
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(chat_history_message))
|
||||
|
||||
yield
|
||||
|
||||
@self.actions.add(".gesture", 2)
|
||||
def _gesture(agent: "BDICoreAgent", term, intention):
|
||||
def _gesture(agent, term, intention):
|
||||
"""
|
||||
Make the robot perform the given gesture instantly.
|
||||
"""
|
||||
@@ -323,13 +375,113 @@ class BDICoreAgent(BaseAgent):
|
||||
gesture_name,
|
||||
)
|
||||
|
||||
# gesture = Gesture(type=gesture_type, name=gesture_name)
|
||||
# gesture_message = InternalMessage(
|
||||
# to=settings.agent_settings.robot_gesture_name,
|
||||
# sender=settings.agent_settings.bdi_core_name,
|
||||
# body=gesture.model_dump_json(),
|
||||
# )
|
||||
# asyncio.create_task(agent.send(gesture_message))
|
||||
if str(gesture_type) == "single":
|
||||
endpoint = RIEndpoint.GESTURE_SINGLE
|
||||
elif str(gesture_type) == "tag":
|
||||
endpoint = RIEndpoint.GESTURE_TAG
|
||||
else:
|
||||
self.logger.warning("Gesture type %s could not be resolved.", gesture_type)
|
||||
endpoint = RIEndpoint.GESTURE_SINGLE
|
||||
|
||||
gesture_command = GestureCommand(endpoint=endpoint, data=gesture_name)
|
||||
gesture_message = InternalMessage(
|
||||
to=settings.agent_settings.robot_gesture_name,
|
||||
sender=settings.agent_settings.bdi_core_name,
|
||||
body=gesture_command.model_dump_json(),
|
||||
)
|
||||
self.add_behavior(self.send(gesture_message))
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_user_said", 1)
|
||||
def _notify_user_said(agent, term, intention):
|
||||
user_said = agentspeak.grounded(term.args[0], intention.scope)
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.llm_name, thread="user_message", body=str(user_said)
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_trigger_start", 1)
|
||||
def _notify_trigger_start(agent, term, intention):
|
||||
"""
|
||||
Notify the UI about the trigger we just started doing.
|
||||
"""
|
||||
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
|
||||
|
||||
self.logger.debug("Started trigger %s", trigger_name)
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
sender=self.name,
|
||||
thread="trigger_start",
|
||||
body=str(trigger_name),
|
||||
)
|
||||
|
||||
# TODO: check with Pim
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_trigger_end", 1)
|
||||
def _notify_trigger_end(agent, term, intention):
|
||||
"""
|
||||
Notify the UI about the trigger we just started doing.
|
||||
"""
|
||||
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
|
||||
|
||||
self.logger.debug("Finished trigger %s", trigger_name)
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
sender=self.name,
|
||||
thread="trigger_end",
|
||||
body=str(trigger_name),
|
||||
)
|
||||
|
||||
# TODO: check with Pim
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_goal_start", 1)
|
||||
def _notify_goal_start(agent, term, intention):
|
||||
"""
|
||||
Notify the UI about the goal we just started chasing.
|
||||
"""
|
||||
goal_name = agentspeak.grounded(term.args[0], intention.scope)
|
||||
|
||||
self.logger.debug("Started chasing goal %s", goal_name)
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
sender=self.name,
|
||||
thread="goal_start",
|
||||
body=str(goal_name),
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_transition_phase", 2)
|
||||
def _notify_transition_phase(agent, term, intention):
|
||||
"""
|
||||
Notify the BDI program manager about a phase transition.
|
||||
"""
|
||||
old = agentspeak.grounded(term.args[0], intention.scope)
|
||||
new = agentspeak.grounded(term.args[1], intention.scope)
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_program_manager_name,
|
||||
thread="transition_phase",
|
||||
body=json.dumps({"old": str(old), "new": str(new)}),
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
yield
|
||||
|
||||
async def _send_to_llm(self, text: str, norms: str, goals: str):
|
||||
@@ -341,6 +493,7 @@ class BDICoreAgent(BaseAgent):
|
||||
to=settings.agent_settings.llm_name,
|
||||
sender=self.name,
|
||||
body=prompt.model_dump_json(),
|
||||
thread="prompt_message",
|
||||
)
|
||||
await self.send(msg)
|
||||
self.logger.info("Message sent to LLM agent: %s", text)
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import asyncio
|
||||
import json
|
||||
|
||||
import zmq
|
||||
from pydantic import ValidationError
|
||||
@@ -9,7 +10,7 @@ from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_list import BeliefList
|
||||
from control_backend.schemas.internal_message import InternalMessage
|
||||
from control_backend.schemas.program import Belief, ConditionalNorm, InferredBelief, Program
|
||||
from control_backend.schemas.program import Belief, ConditionalNorm, InferredBelief, Phase, Program
|
||||
|
||||
|
||||
class BDIProgramManager(BaseAgent):
|
||||
@@ -24,20 +25,20 @@ class BDIProgramManager(BaseAgent):
|
||||
:ivar sub_socket: The ZMQ SUB socket used to receive program updates.
|
||||
"""
|
||||
|
||||
_program: Program
|
||||
_phase: Phase | None
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.sub_socket = None
|
||||
|
||||
def _initialize_internal_state(self, program: Program):
|
||||
self._program = program
|
||||
self._phase = program.phases[0] # start in first phase
|
||||
|
||||
async def _create_agentspeak_and_send_to_bdi(self, program: Program):
|
||||
"""
|
||||
Convert a received program into BDI beliefs and send them to the BDI Core Agent.
|
||||
|
||||
Currently, it takes the **first phase** of the program and extracts:
|
||||
- **Norms**: Constraints or rules the agent must follow.
|
||||
- **Goals**: Objectives the agent must achieve.
|
||||
|
||||
These are sent as a ``BeliefMessage`` with ``replace=True``, meaning they will
|
||||
overwrite any existing norms/goals of the same name in the BDI agent.
|
||||
Convert a received program into an AgentSpeak file and send it to the BDI Core Agent.
|
||||
|
||||
:param program: The program object received from the API.
|
||||
"""
|
||||
@@ -59,17 +60,44 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
await self.send(msg)
|
||||
|
||||
@staticmethod
|
||||
def _extract_beliefs_from_program(program: Program) -> list[Belief]:
|
||||
def handle_message(self, msg: InternalMessage):
|
||||
match msg.thread:
|
||||
case "transition_phase":
|
||||
phases = json.loads(msg.body)
|
||||
|
||||
self._transition_phase(phases["old"], phases["new"])
|
||||
|
||||
def _transition_phase(self, old: str, new: str):
|
||||
assert old == str(self._phase.id)
|
||||
|
||||
if new == "end":
|
||||
self._phase = None
|
||||
return
|
||||
|
||||
for phase in self._program.phases:
|
||||
if str(phase.id) == new:
|
||||
self._phase = phase
|
||||
|
||||
self._send_beliefs_to_semantic_belief_extractor()
|
||||
|
||||
# Notify user interaction agent
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
thread="transition_phase",
|
||||
body=str(self._phase.id),
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
def _extract_current_beliefs(self) -> list[Belief]:
|
||||
beliefs: list[Belief] = []
|
||||
|
||||
for phase in program.phases:
|
||||
for norm in phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
beliefs += BDIProgramManager._extract_beliefs_from_belief(norm.condition)
|
||||
for norm in self._phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
beliefs += self._extract_beliefs_from_belief(norm.condition)
|
||||
|
||||
for trigger in phase.triggers:
|
||||
beliefs += BDIProgramManager._extract_beliefs_from_belief(trigger.condition)
|
||||
for trigger in self._phase.triggers:
|
||||
beliefs += self._extract_beliefs_from_belief(trigger.condition)
|
||||
|
||||
return beliefs
|
||||
|
||||
@@ -81,13 +109,11 @@ class BDIProgramManager(BaseAgent):
|
||||
) + BDIProgramManager._extract_beliefs_from_belief(belief.right)
|
||||
return [belief]
|
||||
|
||||
async def _send_beliefs_to_semantic_belief_extractor(self, program: Program):
|
||||
async def _send_beliefs_to_semantic_belief_extractor(self):
|
||||
"""
|
||||
Extract beliefs from the program and send them to the Semantic Belief Extractor Agent.
|
||||
|
||||
:param program: The program received from the API.
|
||||
"""
|
||||
beliefs = BeliefList(beliefs=self._extract_beliefs_from_program(program))
|
||||
beliefs = BeliefList(beliefs=self._extract_current_beliefs())
|
||||
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
@@ -111,12 +137,14 @@ class BDIProgramManager(BaseAgent):
|
||||
try:
|
||||
program = Program.model_validate_json(body)
|
||||
except ValidationError:
|
||||
self.logger.exception("Received an invalid program.")
|
||||
self.logger.warning("Received an invalid program.")
|
||||
continue
|
||||
|
||||
self._initialize_internal_state(program)
|
||||
|
||||
await asyncio.gather(
|
||||
self._create_agentspeak_and_send_to_bdi(program),
|
||||
self._send_beliefs_to_semantic_belief_extractor(program),
|
||||
self._send_beliefs_to_semantic_belief_extractor(),
|
||||
)
|
||||
|
||||
async def setup(self):
|
||||
|
||||
Reference in New Issue
Block a user