style: apply ruff check and format

Made sure all ruff checks pass and formatted all files.

ref: N25B-224
This commit is contained in:
2025-11-02 19:45:01 +01:00
parent 657c300bc7
commit 48c9746417
25 changed files with 199 additions and 143 deletions

View File

@@ -58,11 +58,11 @@ class BDICoreAgent(BDIAgent):
class SendBehaviour(OneShotBehaviour):
async def run(self) -> None:
msg = Message(
to= settings.agent_settings.llm_agent_name + '@' + settings.agent_settings.host,
body= text
to=settings.agent_settings.llm_agent_name + "@" + settings.agent_settings.host,
body=text,
)
await self.send(msg)
self.agent.logger.info("Message sent to LLM: %s", text)
self.add_behaviour(SendBehaviour())
self.add_behaviour(SendBehaviour())

View File

@@ -3,7 +3,7 @@ import logging
from spade.agent import Message
from spade.behaviour import CyclicBehaviour
from spade_bdi.bdi import BDIAgent, BeliefNotInitiated
from spade_bdi.bdi import BDIAgent
from control_backend.core.config import settings
@@ -23,7 +23,6 @@ class BeliefSetterBehaviour(CyclicBehaviour):
self.logger.info(f"Received message {msg.body}")
self._process_message(msg)
def _process_message(self, message: Message):
sender = message.sender.node # removes host from jid and converts to str
self.logger.debug("Sender: %s", sender)
@@ -61,6 +60,7 @@ class BeliefSetterBehaviour(CyclicBehaviour):
self.agent.bdi.set_belief(belief, *arguments)
# Special case: if there's a new user message, flag that we haven't responded yet
if belief == "user_said": self.agent.bdi.set_belief("new_message")
if belief == "user_said":
self.agent.bdi.set_belief("new_message")
self.logger.info("Set belief %s with arguments %s", belief, arguments)

View File

@@ -9,18 +9,20 @@ class ReceiveLLMResponseBehaviour(CyclicBehaviour):
"""
Adds behavior to receive responses from the LLM Agent.
"""
logger = logging.getLogger("BDI/LLM Reciever")
async def run(self):
msg = await self.receive(timeout=2)
if not msg:
return
sender = msg.sender.node
sender = msg.sender.node
match sender:
case settings.agent_settings.llm_agent_name:
content = msg.body
self.logger.info("Received LLM response: %s", content)
#Here the BDI can pass the message back as a response
# Here the BDI can pass the message back as a response
case _:
self.logger.debug("Not from the llm, discarding message")
pass
pass

View File

@@ -13,28 +13,30 @@ class BeliefFromText(CyclicBehaviour):
# TODO: LLM prompt nog hardcoded
llm_instruction_prompt = """
You are an information extraction assistent for a BDI agent. Your task is to extract values from a user's text to bind a list of ungrounded beliefs. Rules:
You will receive a JSON object with "beliefs" (a list of ungrounded AgentSpeak beliefs) and "text" (user's transcript).
You are an information extraction assistent for a BDI agent. Your task is to extract values \
from a user's text to bind a list of ungrounded beliefs. Rules:
You will receive a JSON object with "beliefs" (a list of ungrounded AgentSpeak beliefs) \
and "text" (user's transcript).
Analyze the text to find values that sematically match the variables (X,Y,Z) in the beliefs.
A single piece of text might contain multiple instances that match a belief.
Respond ONLY with a single JSON object.
The JSON object's keys should be the belief functors (e.g., "weather").
The value for each key must be a list of lists.
Each inner list must contain the extracted arguments (as strings) for one instance of that belief.
CRITICAL: If no information in the text matches a belief, DO NOT include that key in your response.
Each inner list must contain the extracted arguments (as strings) for one instance \
of that belief.
CRITICAL: If no information in the text matches a belief, DO NOT include that key \
in your response.
"""
# on_start agent receives message containing the beliefs to look out for and sets up the LLM with instruction prompt
#async def on_start(self):
# on_start agent receives message containing the beliefs to look out for and
# sets up the LLM with instruction prompt
# async def on_start(self):
# msg = await self.receive(timeout=0.1)
# self.beliefs = dict uit message
# send instruction prompt to LLM
beliefs: dict[str, list[str]]
beliefs = {
"mood": ["X"],
"car": ["Y"]
}
beliefs = {"mood": ["X"], "car": ["Y"]}
async def run(self):
msg = await self.receive(timeout=0.1)
@@ -58,8 +60,8 @@ class BeliefFromText(CyclicBehaviour):
prompt = text_prompt + beliefs_prompt
self.logger.info(prompt)
#prompt_msg = Message(to="LLMAgent@whatever")
#response = self.send(prompt_msg)
# prompt_msg = Message(to="LLMAgent@whatever")
# response = self.send(prompt_msg)
# Mock response; response is beliefs in JSON format, it parses do dict[str,list[list[str]]]
response = '{"mood": [["happy"]]}'
@@ -67,8 +69,9 @@ class BeliefFromText(CyclicBehaviour):
try:
json.loads(response)
belief_message = Message(
to=settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host,
body=response)
to=settings.agent_settings.bdi_core_agent_name + "@" + settings.agent_settings.host,
body=response,
)
belief_message.thread = "beliefs"
await self.send(belief_message)
@@ -85,9 +88,12 @@ class BeliefFromText(CyclicBehaviour):
"""
belief = {"beliefs": {"user_said": [txt]}, "type": "belief_extraction_text"}
payload = json.dumps(belief)
belief_msg = Message(to=settings.agent_settings.belief_collector_agent_name
+ '@' + settings.agent_settings.host,
body=payload)
belief_msg = Message(
to=settings.agent_settings.belief_collector_agent_name
+ "@"
+ settings.agent_settings.host,
body=payload,
)
belief_msg.thread = "beliefs"
await self.send(belief_msg)

View File

@@ -6,4 +6,4 @@ from control_backend.agents.bdi.behaviours.text_belief_extractor import BeliefFr
class TBeliefExtractor(Agent):
async def setup(self):
self.b = BeliefFromText()
self.add_behaviour(self.b)
self.add_behaviour(self.b)