Merge remote-tracking branch 'origin/dev' into feat/belief-from-text
# Conflicts: # src/control_backend/main.py
This commit is contained in:
@@ -1,35 +1,71 @@
|
||||
import logging
|
||||
|
||||
import agentspeak
|
||||
from spade.behaviour import OneShotBehaviour
|
||||
from spade.message import Message
|
||||
from spade_bdi.bdi import BDIAgent
|
||||
|
||||
from control_backend.agents.bdi.behaviours.belief_setter import BeliefSetter
|
||||
from control_backend.agents.bdi.behaviours.belief_setter import BeliefSetterBehaviour
|
||||
from control_backend.agents.bdi.behaviours.receive_llm_resp_behaviour import (
|
||||
ReceiveLLMResponseBehaviour,
|
||||
)
|
||||
from control_backend.core.config import settings
|
||||
|
||||
|
||||
class BDICoreAgent(BDIAgent):
|
||||
"""
|
||||
This is the Brain agent that does the belief inference with AgentSpeak.
|
||||
This is the Brain agent that does the belief inference with AgentSpeak.
|
||||
This is a continous process that happens automatically in the background.
|
||||
This class contains all the actions that can be called from AgentSpeak plans.
|
||||
It has the BeliefSetter behaviour.
|
||||
It has the BeliefSetter behaviour and can aks and recieve requests from the LLM agent.
|
||||
"""
|
||||
logger = logging.getLogger("BDI Core")
|
||||
|
||||
async def setup(self):
|
||||
belief_setter = BeliefSetter()
|
||||
self.add_behaviour(belief_setter)
|
||||
logger = logging.getLogger("bdi_core_agent")
|
||||
|
||||
async def setup(self) -> None:
|
||||
"""
|
||||
Initializes belief behaviors and message routing.
|
||||
"""
|
||||
self.logger.info("BDICoreAgent setup started")
|
||||
|
||||
self.add_behaviour(BeliefSetterBehaviour())
|
||||
self.add_behaviour(ReceiveLLMResponseBehaviour())
|
||||
|
||||
await self._send_to_llm("Hi pepper, how are you?")
|
||||
# This is the example message currently sent to the llm at the start of the Program
|
||||
|
||||
self.logger.info("BDICoreAgent setup complete")
|
||||
|
||||
def add_custom_actions(self, actions) -> None:
|
||||
"""
|
||||
Registers custom AgentSpeak actions callable from plans.
|
||||
"""
|
||||
|
||||
def add_custom_actions(self, actions):
|
||||
@actions.add(".reply", 1)
|
||||
def _reply(agent, term, intention):
|
||||
message = agentspeak.grounded(term.args[0], intention.scope)
|
||||
self.logger.info(f"Replying to message: {message}")
|
||||
reply = self._send_to_llm(message)
|
||||
self.logger.info(f"Received reply: {reply}")
|
||||
def _reply(agent: "BDICoreAgent", term, intention):
|
||||
"""
|
||||
Sends text to the LLM (AgentSpeak action).
|
||||
Example: .reply("Hello LLM!")
|
||||
"""
|
||||
message_text = agentspeak.grounded(term.args[0], intention.scope)
|
||||
self.logger.info("Reply action sending: %s", message_text)
|
||||
|
||||
self._send_to_llm(message_text)
|
||||
yield
|
||||
|
||||
def _send_to_llm(self, message) -> str:
|
||||
"""TODO: implement"""
|
||||
return f"This is a reply to {message}"
|
||||
async def _send_to_llm(self, text: str):
|
||||
"""
|
||||
Sends a text query to the LLM Agent asynchronously.
|
||||
"""
|
||||
|
||||
class SendBehaviour(OneShotBehaviour):
|
||||
async def run(self) -> None:
|
||||
msg = Message(
|
||||
to= settings.agent_settings.llm_agent_name + '@' + settings.agent_settings.host,
|
||||
body= text
|
||||
)
|
||||
|
||||
await self.send(msg)
|
||||
self.agent.logger.debug("Message sent to LLM: %s", text)
|
||||
|
||||
self.add_behaviour(SendBehaviour())
|
||||
@@ -1,28 +1,28 @@
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
|
||||
from spade.agent import Message
|
||||
from spade.behaviour import CyclicBehaviour
|
||||
from spade_bdi.bdi import BDIAgent
|
||||
from spade_bdi.bdi import BDIAgent, BeliefNotInitiated
|
||||
|
||||
from control_backend.core.config import settings
|
||||
|
||||
class BeliefSetter(CyclicBehaviour):
|
||||
|
||||
class BeliefSetterBehaviour(CyclicBehaviour):
|
||||
"""
|
||||
This is the behaviour that the BDI agent runs.
|
||||
This behaviour waits for incoming message and processes it based on sender.
|
||||
Currently, t only waits for messages containing beliefs from Belief Collector and adds these to its KB.
|
||||
This is the behaviour that the BDI agent runs. This behaviour waits for incoming
|
||||
message and processes it based on sender.
|
||||
"""
|
||||
|
||||
agent: BDIAgent
|
||||
logger = logging.getLogger("BDI/Belief Setter")
|
||||
|
||||
|
||||
async def run(self):
|
||||
msg = await self.receive(timeout=0.1)
|
||||
if msg:
|
||||
self.logger.info(f"Received message {msg.body}")
|
||||
self._process_message(msg)
|
||||
await asyncio.sleep(1)
|
||||
|
||||
|
||||
def _process_message(self, message: Message):
|
||||
sender = message.sender.node # removes host from jid and converts to str
|
||||
@@ -33,28 +33,38 @@ class BeliefSetter(CyclicBehaviour):
|
||||
self.logger.debug("Processing message from belief collector.")
|
||||
self._process_belief_message(message)
|
||||
case _:
|
||||
self.logger.debug("Not the belief agent, discarding message")
|
||||
pass
|
||||
|
||||
def _process_belief_message(self, message: Message):
|
||||
if not message.body: return
|
||||
if not message.body:
|
||||
return
|
||||
|
||||
match message.thread:
|
||||
case "beliefs":
|
||||
try:
|
||||
beliefs: dict[str, list[list[str]]] = json.loads(message.body)
|
||||
beliefs: dict[str, list[str]] = json.loads(message.body)
|
||||
self._set_beliefs(beliefs)
|
||||
except json.JSONDecodeError as e:
|
||||
self.logger.error("Could not decode beliefs into JSON format: %s", e)
|
||||
case _:
|
||||
pass
|
||||
|
||||
|
||||
def _set_beliefs(self, beliefs: dict[str, list[list[str]]]):
|
||||
def _set_beliefs(self, beliefs: dict[str, list[str]]):
|
||||
"""Remove previous values for beliefs and update them with the provided values."""
|
||||
if self.agent.bdi is None:
|
||||
self.logger.warning("Cannot set beliefs, since agent's BDI is not yet initialized.")
|
||||
return
|
||||
|
||||
for belief, arguments_list in beliefs.items():
|
||||
for arguments in arguments_list:
|
||||
self.agent.bdi.set_belief(belief, *arguments)
|
||||
self.logger.info("Set belief %s with arguments %s", belief, arguments)
|
||||
# Set new beliefs (outdated beliefs are automatically removed)
|
||||
for belief, arguments in beliefs.items():
|
||||
self.agent.bdi.set_belief(belief, *arguments)
|
||||
|
||||
# Special case: if there's a new user message, flag that we haven't responded yet
|
||||
if belief == "user_said":
|
||||
try:
|
||||
self.agent.bdi.remove_belief("responded")
|
||||
except BeliefNotInitiated:
|
||||
pass
|
||||
|
||||
self.logger.info("Set belief %s with arguments %s", belief, arguments)
|
||||
|
||||
@@ -0,0 +1,26 @@
|
||||
import logging
|
||||
|
||||
from spade.behaviour import CyclicBehaviour
|
||||
|
||||
from control_backend.core.config import settings
|
||||
|
||||
|
||||
class ReceiveLLMResponseBehaviour(CyclicBehaviour):
|
||||
"""
|
||||
Adds behavior to receive responses from the LLM Agent.
|
||||
"""
|
||||
logger = logging.getLogger("BDI/LLM Reciever")
|
||||
async def run(self):
|
||||
msg = await self.receive(timeout=2)
|
||||
if not msg:
|
||||
return
|
||||
|
||||
sender = msg.sender.node
|
||||
match sender:
|
||||
case settings.agent_settings.llm_agent_name:
|
||||
content = msg.body
|
||||
self.logger.info("Received LLM response: %s", content)
|
||||
#Here the BDI can pass the message back as a response
|
||||
case _:
|
||||
self.logger.debug("Not from the llm, discarding message")
|
||||
pass
|
||||
Reference in New Issue
Block a user