Merge remote-tracking branch 'origin/feat/agentspeak-generation' into feat/semantic-beliefs

# Conflicts:
#	src/control_backend/schemas/program.py
This commit is contained in:
Twirre Meulenbelt
2025-12-23 17:36:39 +01:00
10 changed files with 1632 additions and 58 deletions

View File

@@ -15,6 +15,7 @@ dependencies = [
"pydantic>=2.12.0", "pydantic>=2.12.0",
"pydantic-settings>=2.11.0", "pydantic-settings>=2.11.0",
"python-json-logger>=4.0.0", "python-json-logger>=4.0.0",
"python-slugify>=8.0.4",
"pyyaml>=6.0.3", "pyyaml>=6.0.3",
"pyzmq>=27.1.0", "pyzmq>=27.1.0",
"silero-vad>=6.0.0", "silero-vad>=6.0.0",

View File

@@ -0,0 +1,203 @@
import typing
from dataclasses import dataclass, field
# --- Types ---
@dataclass
class BeliefLiteral:
"""
Represents a literal or atom.
Example: phase(1), user_said("hello"), ~started
"""
functor: str
args: list[str] = field(default_factory=list)
negated: bool = False
def __str__(self):
# In ASL, 'not' is usually for closed-world assumption (prolog style),
# '~' is for explicit negation in beliefs.
# For simplicity in behavior trees, we often use 'not' for conditions.
prefix = "not " if self.negated else ""
if not self.args:
return f"{prefix}{self.functor}"
# Clean args to ensure strings are quoted if they look like strings,
# but usually the converter handles the quoting of string literals.
args_str = ", ".join(self.args)
return f"{prefix}{self.functor}({args_str})"
@dataclass
class GoalLiteral:
name: str
def __str__(self):
return f"!{self.name}"
@dataclass
class ActionLiteral:
"""
Represents a step in a plan body.
Example: .say("Hello") or !achieve_goal
"""
code: str
def __str__(self):
return self.code
@dataclass
class BinaryOp:
"""
Represents logical operations.
Example: (A & B) | C
"""
left: "Expression | str"
operator: typing.Literal["&", "|"]
right: "Expression | str"
def __str__(self):
l_str = str(self.left)
r_str = str(self.right)
if isinstance(self.left, BinaryOp):
l_str = f"({l_str})"
if isinstance(self.right, BinaryOp):
r_str = f"({r_str})"
return f"{l_str} {self.operator} {r_str}"
Literal = BeliefLiteral | GoalLiteral | ActionLiteral
Expression = Literal | BinaryOp | str
@dataclass
class Rule:
"""
Represents an inference rule.
Example: head :- body.
"""
head: Expression
body: Expression | None = None
def __str__(self):
if not self.body:
return f"{self.head}."
return f"{self.head} :- {self.body}."
@dataclass
class PersistentRule:
"""
Represents an inference rule, where the inferred belief is persistent when formed.
"""
head: Expression
body: Expression
def __str__(self):
if not self.body:
raise Exception("Rule without body should not be persistent.")
lines = []
if isinstance(self.body, BinaryOp):
lines.append(f"+{self.body.left}")
if self.body.operator == "&":
lines.append(f" : {self.body.right}")
lines.append(f" <- +{self.head}.")
if self.body.operator == "|":
lines.append(f"+{self.body.right}")
lines.append(f" <- +{self.head}.")
return "\n".join(lines)
@dataclass
class Plan:
"""
Represents a plan.
Syntax: +trigger : context <- body.
"""
trigger: BeliefLiteral | GoalLiteral
context: list[Expression] = field(default_factory=list)
body: list[ActionLiteral] = field(default_factory=list)
def __str__(self):
# Indentation settings
INDENT = " "
ARROW = "\n <- "
COLON = "\n : "
# Build Header
header = f"+{self.trigger}"
if self.context:
ctx_str = f" &\n{INDENT}".join(str(c) for c in self.context)
header += f"{COLON}{ctx_str}"
# Case 1: Empty body
if not self.body:
return f"{header}."
# Case 2: Short body (optional optimization, keeping it uniform usually better)
header += ARROW
lines = []
# We start the first action on the same line or next line.
# Let's put it on the next line for readability if there are multiple.
if len(self.body) == 1:
return f"{header}{self.body[0]}."
# First item
lines.append(f"{header}{self.body[0]};")
# Middle items
for item in self.body[1:-1]:
lines.append(f"{INDENT}{item};")
# Last item
lines.append(f"{INDENT}{self.body[-1]}.")
return "\n".join(lines)
@dataclass
class AgentSpeakFile:
"""
Root element representing the entire generated file.
"""
initial_beliefs: list[Rule] = field(default_factory=list)
inference_rules: list[Rule | PersistentRule] = field(default_factory=list)
plans: list[Plan] = field(default_factory=list)
def __str__(self):
sections = []
if self.initial_beliefs:
sections.append("// --- Initial Beliefs & Facts ---")
sections.extend(str(rule) for rule in self.initial_beliefs)
sections.append("")
if self.inference_rules:
sections.append("// --- Inference Rules ---")
sections.extend(str(rule) for rule in self.inference_rules if isinstance(rule, Rule))
sections.append("")
sections.extend(
str(rule) for rule in self.inference_rules if isinstance(rule, PersistentRule)
)
sections.append("")
if self.plans:
sections.append("// --- Plans ---")
# Separate plans by a newline for readability
sections.extend(str(plan) + "\n" for plan in self.plans)
return "\n".join(sections)

View File

@@ -0,0 +1,425 @@
import asyncio
import time
from functools import singledispatchmethod
from slugify import slugify
from control_backend.agents.bdi import BDICoreAgent
from control_backend.agents.bdi.asl_ast import (
ActionLiteral,
AgentSpeakFile,
BeliefLiteral,
BinaryOp,
Expression,
GoalLiteral,
PersistentRule,
Plan,
Rule,
)
from control_backend.agents.bdi.bdi_program_manager import test_program
from control_backend.schemas.program import (
BasicBelief,
Belief,
ConditionalNorm,
GestureAction,
Goal,
InferredBelief,
KeywordBelief,
LLMAction,
LogicalOperator,
Phase,
Program,
ProgramElement,
SemanticBelief,
SpeechAction,
)
async def do_things():
res = input("Wanna generate")
if res == "y":
program = AgentSpeakGenerator().generate(test_program)
filename = f"{int(time.time())}.asl"
with open(filename, "w") as f:
f.write(program)
else:
# filename = "0test.asl"
filename = "1766062491.asl"
bdi_agent = BDICoreAgent("BDICoreAgent", filename)
flag = asyncio.Event()
await bdi_agent.start()
await flag.wait()
def do_other_things():
print(AgentSpeakGenerator().generate(test_program))
class AgentSpeakGenerator:
"""
Converts a Pydantic Program behavior model into an AgentSpeak(L) AST,
then renders it to a string.
"""
def generate(self, program: Program) -> str:
asl = AgentSpeakFile()
self._generate_startup(program, asl)
for i, phase in enumerate(program.phases):
next_phase = program.phases[i + 1] if i < len(program.phases) - 1 else None
self._generate_phase_flow(phase, next_phase, asl)
self._generate_norms(phase, asl)
self._generate_goals(phase, asl)
self._generate_triggers(phase, asl)
self._generate_fallbacks(program, asl)
return str(asl)
# --- Section: Startup & Phase Management ---
def _generate_startup(self, program: Program, asl: AgentSpeakFile):
if not program.phases:
return
# Initial belief: phase(start).
asl.initial_beliefs.append(Rule(head=BeliefLiteral("phase", ['"start"'])))
# Startup plan: +started : phase(start) <- -phase(start); +phase(first_id).
asl.plans.append(
Plan(
trigger=BeliefLiteral("started"),
context=[BeliefLiteral("phase", ['"start"'])],
body=[
ActionLiteral('-phase("start")'),
ActionLiteral(f'+phase("{program.phases[0].id}")'),
],
)
)
# Initial plans:
asl.plans.append(
Plan(
trigger=GoalLiteral("generate_response_with_goal(Goal)"),
context=[BeliefLiteral("user_said", ["Message"])],
body=[
ActionLiteral("+responded_this_turn"),
ActionLiteral(".findall(Norm, norm(Norm), Norms)"),
ActionLiteral(".reply_with_goal(Message, Norms, Goal)"),
],
)
)
def _generate_phase_flow(self, phase: Phase, next_phase: Phase | None, asl: AgentSpeakFile):
"""Generates the main loop listener and the transition logic for this phase."""
# +user_said(Message) : phase(ID) <- !goal1; !goal2; !transition_phase.
goal_actions = [ActionLiteral("-responded_this_turn")]
goal_actions += [
ActionLiteral(f"!check_{self._slugify_str(keyword)}")
for keyword in self._get_keyword_conditionals(phase)
]
goal_actions += [ActionLiteral(f"!{self._slugify(g)}") for g in phase.goals]
goal_actions.append(ActionLiteral("!transition_phase"))
asl.plans.append(
Plan(
trigger=BeliefLiteral("user_said", ["Message"]),
context=[BeliefLiteral("phase", [f'"{phase.id}"'])],
body=goal_actions,
)
)
# +!transition_phase : phase(ID) <- -phase(ID); +(NEXT_ID).
next_id = str(next_phase.id) if next_phase else "end"
transition_context = [BeliefLiteral("phase", [f'"{phase.id}"'])]
if phase.goals:
transition_context.append(BeliefLiteral(f"achieved_{self._slugify(phase.goals[-1])}"))
asl.plans.append(
Plan(
trigger=GoalLiteral("transition_phase"),
context=transition_context,
body=[
ActionLiteral(f'-phase("{phase.id}")'),
ActionLiteral(f'+phase("{next_id}")'),
ActionLiteral("user_said(Anything)"),
ActionLiteral("-+user_said(Anything)"),
],
)
)
def _get_keyword_conditionals(self, phase: Phase) -> list[str]:
res = []
for belief in self._extract_basic_beliefs_from_phase(phase):
if isinstance(belief, KeywordBelief):
res.append(belief.keyword)
return res
# --- Section: Norms & Beliefs ---
def _generate_norms(self, phase: Phase, asl: AgentSpeakFile):
for norm in phase.norms:
norm_slug = f'"{norm.norm}"'
head = BeliefLiteral("norm", [norm_slug])
# Base context is the phase
phase_lit = BeliefLiteral("phase", [f'"{phase.id}"'])
if isinstance(norm, ConditionalNorm):
self._ensure_belief_inference(norm.condition, asl)
condition_expr = self._belief_to_expr(norm.condition)
body = BinaryOp(phase_lit, "&", condition_expr)
else:
body = phase_lit
asl.inference_rules.append(Rule(head=head, body=body))
def _ensure_belief_inference(self, belief: Belief, asl: AgentSpeakFile):
"""
Recursively adds rules to infer beliefs.
Checks strictly to avoid duplicates if necessary,
though ASL engines often handle redefinition or we can use a set to track processed IDs.
"""
if isinstance(belief, KeywordBelief):
pass
# # Rule: keyword_said("word") :- user_said(M) & .substring("word", M, P) & P >= 0.
# kwd_slug = f'"{belief.keyword}"'
# head = BeliefLiteral("keyword_said", [kwd_slug])
#
# # Avoid duplicates
# if any(str(r.head) == str(head) for r in asl.inference_rules):
# return
#
# body = BinaryOp(
# BeliefLiteral("user_said", ["Message"]),
# "&",
# BinaryOp(f".substring({kwd_slug}, Message, Pos)", "&", "Pos >= 0"),
# )
#
# asl.inference_rules.append(Rule(head=head, body=body))
elif isinstance(belief, InferredBelief):
self._ensure_belief_inference(belief.left, asl)
self._ensure_belief_inference(belief.right, asl)
slug = self._slugify(belief)
head = BeliefLiteral(slug)
if any(str(r.head) == str(head) for r in asl.inference_rules):
return
op_char = "&" if belief.operator == LogicalOperator.AND else "|"
body = BinaryOp(
self._belief_to_expr(belief.left), op_char, self._belief_to_expr(belief.right)
)
asl.inference_rules.append(PersistentRule(head=head, body=body))
def _belief_to_expr(self, belief: Belief) -> Expression:
if isinstance(belief, KeywordBelief):
return BeliefLiteral("keyword_said", [f'"{belief.keyword}"'])
else:
return BeliefLiteral(self._slugify(belief))
# --- Section: Goals ---
def _generate_goals(self, phase: Phase, asl: AgentSpeakFile):
previous_goal: Goal | None = None
for goal in phase.goals:
self._generate_goal_plan_recursive(goal, str(phase.id), previous_goal, asl)
previous_goal = goal
def _generate_goal_plan_recursive(
self,
goal: Goal,
phase_id: str,
previous_goal: Goal | None,
asl: AgentSpeakFile,
responded_needed: bool = True,
can_fail: bool = True,
):
goal_slug = self._slugify(goal)
# phase(ID) & not responded_this_turn & not achieved_goal
context = [
BeliefLiteral("phase", [f'"{phase_id}"']),
]
if responded_needed:
context.append(BeliefLiteral("responded_this_turn", negated=True))
if can_fail:
context.append(BeliefLiteral(f"achieved_{goal_slug}", negated=True))
if previous_goal:
prev_slug = self._slugify(previous_goal)
context.append(BeliefLiteral(f"achieved_{prev_slug}"))
body_actions = []
sub_goals_to_process = []
for step in goal.plan.steps:
if isinstance(step, Goal):
sub_slug = self._slugify(step)
body_actions.append(ActionLiteral(f"!{sub_slug}"))
sub_goals_to_process.append(step)
elif isinstance(step, SpeechAction):
body_actions.append(ActionLiteral(f'.say("{step.text}")'))
elif isinstance(step, GestureAction):
body_actions.append(ActionLiteral(f'.gesture("{step.gesture}")'))
elif isinstance(step, LLMAction):
body_actions.append(ActionLiteral(f'!generate_response_with_goal("{step.goal}")'))
# Mark achievement
if not goal.can_fail:
body_actions.append(ActionLiteral(f"+achieved_{goal_slug}"))
asl.plans.append(Plan(trigger=GoalLiteral(goal_slug), context=context, body=body_actions))
asl.plans.append(
Plan(trigger=GoalLiteral(goal_slug), context=[], body=[ActionLiteral("true")])
)
prev_sub = None
for sub_goal in sub_goals_to_process:
self._generate_goal_plan_recursive(sub_goal, phase_id, prev_sub, asl)
prev_sub = sub_goal
# --- Section: Triggers ---
def _generate_triggers(self, phase: Phase, asl: AgentSpeakFile):
for keyword in self._get_keyword_conditionals(phase):
asl.plans.append(
Plan(
trigger=GoalLiteral(f"check_{self._slugify_str(keyword)}"),
context=[
ActionLiteral(
f'user_said(Message) & .substring("{keyword}", Message, Pos) & Pos >= 0'
)
],
body=[
ActionLiteral(f'+keyword_said("{keyword}")'),
ActionLiteral(f'-keyword_said("{keyword}")'),
],
)
)
asl.plans.append(
Plan(
trigger=GoalLiteral(f"check_{self._slugify_str(keyword)}"),
body=[ActionLiteral("true")],
)
)
for trigger in phase.triggers:
self._ensure_belief_inference(trigger.condition, asl)
trigger_belief_slug = self._belief_to_expr(trigger.condition)
body_actions = []
sub_goals = []
for step in trigger.plan.steps:
if isinstance(step, Goal):
sub_slug = self._slugify(step)
body_actions.append(ActionLiteral(f"!{sub_slug}"))
sub_goals.append(step)
elif isinstance(step, SpeechAction):
body_actions.append(ActionLiteral(f'.say("{step.text}")'))
elif isinstance(step, GestureAction):
body_actions.append(
ActionLiteral(f'.gesture("{step.gesture.type}", "{step.gesture.name}")')
)
elif isinstance(step, LLMAction):
body_actions.append(
ActionLiteral(f'!generate_response_with_goal("{step.goal}")')
)
asl.plans.append(
Plan(
trigger=BeliefLiteral(trigger_belief_slug),
context=[BeliefLiteral("phase", [f'"{phase.id}"'])],
body=body_actions,
)
)
# Recurse for triggered goals
prev_sub = None
for sub_goal in sub_goals:
self._generate_goal_plan_recursive(
sub_goal, str(phase.id), prev_sub, asl, False, False
)
prev_sub = sub_goal
# --- Section: Fallbacks ---
def _generate_fallbacks(self, program: Program, asl: AgentSpeakFile):
asl.plans.append(
Plan(trigger=GoalLiteral("transition_phase"), context=[], body=[ActionLiteral("true")])
)
# --- Helpers ---
@singledispatchmethod
def _slugify(self, element: ProgramElement) -> str:
if element.name:
raise NotImplementedError("Cannot slugify this element.")
return self._slugify_str(element.name)
@_slugify.register
def _(self, goal: Goal) -> str:
if goal.name:
return self._slugify_str(goal.name)
return f"goal_{goal.id.hex}"
@_slugify.register
def _(self, kwb: KeywordBelief) -> str:
return f"keyword_said({kwb.keyword})"
@_slugify.register
def _(self, sb: SemanticBelief) -> str:
return self._slugify_str(sb.description)
@_slugify.register
def _(self, ib: InferredBelief) -> str:
return self._slugify_str(ib.name)
def _slugify_str(self, text: str) -> str:
return slugify(text, separator="_", stopwords=["a", "an", "the", "we", "you", "I"])
def _extract_basic_beliefs_from_program(self, program: Program) -> list[BasicBelief]:
beliefs = []
for phase in program.phases:
beliefs.extend(self._extract_basic_beliefs_from_phase(phase))
return beliefs
def _extract_basic_beliefs_from_phase(self, phase: Phase) -> list[BasicBelief]:
beliefs = []
for norm in phase.norms:
if isinstance(norm, ConditionalNorm):
beliefs += self._extract_basic_beliefs_from_belief(norm.condition)
for trigger in phase.triggers:
beliefs += self._extract_basic_beliefs_from_belief(trigger.condition)
return beliefs
def _extract_basic_beliefs_from_belief(self, belief: Belief) -> list[BasicBelief]:
if isinstance(belief, InferredBelief):
return self._extract_basic_beliefs_from_belief(
belief.left
) + self._extract_basic_beliefs_from_belief(belief.right)
return [belief]
if __name__ == "__main__":
asyncio.run(do_things())
# do_other_things()y

View File

@@ -0,0 +1,272 @@
from __future__ import annotations
from abc import ABC, abstractmethod
from dataclasses import dataclass, field
from enum import StrEnum
class AstNode(ABC):
"""
Abstract base class for all elements of an AgentSpeak program.
"""
@abstractmethod
def _to_agentspeak(self) -> str:
"""
Generates the AgentSpeak code string.
"""
pass
def __str__(self) -> str:
return self._to_agentspeak()
class AstExpression(AstNode, ABC):
"""
Intermediate class for anything that can be used in a logical expression.
"""
def __and__(self, other: ExprCoalescible) -> AstBinaryOp:
return AstBinaryOp(self, BinaryOperatorType.AND, _coalesce_expr(other))
def __or__(self, other: ExprCoalescible) -> AstBinaryOp:
return AstBinaryOp(self, BinaryOperatorType.OR, _coalesce_expr(other))
def __invert__(self) -> AstLogicalExpression:
if isinstance(self, AstLogicalExpression):
self.negated = not self.negated
return self
return AstLogicalExpression(self, negated=True)
type ExprCoalescible = AstExpression | str | int | float
def _coalesce_expr(value: ExprCoalescible) -> AstExpression:
if isinstance(value, AstExpression):
return value
if isinstance(value, str):
return AstString(value)
if isinstance(value, (int, float)):
return AstNumber(value)
raise TypeError(f"Cannot coalesce type {type(value)} into an AstTerm.")
@dataclass
class AstTerm(AstExpression, ABC):
"""
Base class for terms appearing inside literals.
"""
def __ge__(self, other: ExprCoalescible) -> AstBinaryOp:
return AstBinaryOp(self, BinaryOperatorType.GREATER_EQUALS, _coalesce_expr(other))
def __gt__(self, other: ExprCoalescible) -> AstBinaryOp:
return AstBinaryOp(self, BinaryOperatorType.GREATER_THAN, _coalesce_expr(other))
def __le__(self, other: ExprCoalescible) -> AstBinaryOp:
return AstBinaryOp(self, BinaryOperatorType.LESS_EQUALS, _coalesce_expr(other))
def __lt__(self, other: ExprCoalescible) -> AstBinaryOp:
return AstBinaryOp(self, BinaryOperatorType.LESS_THAN, _coalesce_expr(other))
def __eq__(self, other: ExprCoalescible) -> AstBinaryOp:
return AstBinaryOp(self, BinaryOperatorType.EQUALS, _coalesce_expr(other))
def __ne__(self, other: ExprCoalescible) -> AstBinaryOp:
return AstBinaryOp(self, BinaryOperatorType.NOT_EQUALS, _coalesce_expr(other))
@dataclass
class AstAtom(AstTerm):
"""
Grounded expression in all lowercase.
"""
value: str
def _to_agentspeak(self) -> str:
return self.value.lower()
@dataclass
class AstVar(AstTerm):
"""
Ungrounded variable expression. First letter capitalized.
"""
name: str
def _to_agentspeak(self) -> str:
return self.name.capitalize()
@dataclass
class AstNumber(AstTerm):
value: int | float
def _to_agentspeak(self) -> str:
return str(self.value)
@dataclass
class AstString(AstTerm):
value: str
def _to_agentspeak(self) -> str:
return f'"{self.value}"'
@dataclass
class AstLiteral(AstTerm):
functor: str
terms: list[AstTerm] = field(default_factory=list)
def _to_agentspeak(self) -> str:
if not self.terms:
return self.functor
args = ", ".join(map(str, self.terms))
return f"{self.functor}({args})"
class BinaryOperatorType(StrEnum):
AND = "&"
OR = "|"
GREATER_THAN = ">"
LESS_THAN = "<"
EQUALS = "=="
NOT_EQUALS = "\\=="
GREATER_EQUALS = ">="
LESS_EQUALS = "<="
@dataclass
class AstBinaryOp(AstExpression):
left: AstExpression
operator: BinaryOperatorType
right: AstExpression
def __post_init__(self):
self.left = _as_logical(self.left)
self.right = _as_logical(self.right)
def _to_agentspeak(self) -> str:
l_str = str(self.left)
r_str = str(self.right)
assert isinstance(self.left, AstLogicalExpression)
assert isinstance(self.right, AstLogicalExpression)
if isinstance(self.left.expression, AstBinaryOp) or self.left.negated:
l_str = f"({l_str})"
if isinstance(self.right.expression, AstBinaryOp) or self.right.negated:
r_str = f"({r_str})"
return f"{l_str} {self.operator.value} {r_str}"
@dataclass
class AstLogicalExpression(AstExpression):
expression: AstExpression
negated: bool = False
def _to_agentspeak(self) -> str:
expr_str = str(self.expression)
if isinstance(self.expression, AstBinaryOp) and self.negated:
expr_str = f"({expr_str})"
return f"{'not ' if self.negated else ''}{expr_str}"
def _as_logical(expr: AstExpression) -> AstLogicalExpression:
if isinstance(expr, AstLogicalExpression):
return expr
return AstLogicalExpression(expr)
class StatementType(StrEnum):
EMPTY = ""
DO_ACTION = "."
ACHIEVE_GOAL = "!"
# TEST_GOAL = "?" # TODO
ADD_BELIEF = "+"
REMOVE_BELIEF = "-"
@dataclass
class AstStatement(AstNode):
"""
A statement that can appear inside a plan.
"""
type: StatementType
expression: AstExpression
def _to_agentspeak(self) -> str:
return f"{self.type.value}{self.expression}"
@dataclass
class AstRule(AstNode):
result: AstExpression
condition: AstExpression | None = None
def __post_init__(self):
if self.condition is not None:
self.condition = _as_logical(self.condition)
def _to_agentspeak(self) -> str:
if not self.condition:
return f"{self.result}."
return f"{self.result} :- {self.condition}."
class TriggerType(StrEnum):
ADDED_BELIEF = "+"
# REMOVED_BELIEF = "-" # TODO
# MODIFIED_BELIEF = "^" # TODO
ADDED_GOAL = "+!"
# REMOVED_GOAL = "-!" # TODO
@dataclass
class AstPlan(AstNode):
type: TriggerType
trigger_literal: AstExpression
context: list[AstExpression]
body: list[AstStatement]
def _to_agentspeak(self) -> str:
assert isinstance(self.trigger_literal, AstLiteral)
indent = " " * 6
colon = " : "
arrow = " <- "
lines = []
lines.append(f"{self.type.value}{self.trigger_literal}")
if self.context:
lines.append(colon + f" &\n{indent}".join(str(c) for c in self.context))
if self.body:
lines.append(arrow + f";\n{indent}".join(str(s) for s in self.body) + ".")
lines.append("")
return "\n".join(lines)
@dataclass
class AstProgram(AstNode):
rules: list[AstRule] = field(default_factory=list)
plans: list[AstPlan] = field(default_factory=list)
def _to_agentspeak(self) -> str:
lines = []
lines.extend(map(str, self.rules))
lines.extend(["", ""])
lines.extend(map(str, self.plans))
return "\n".join(lines)

View File

@@ -89,9 +89,9 @@ class BDICoreAgent(BaseAgent):
the agent has deferred intentions (deadlines). the agent has deferred intentions (deadlines).
""" """
while self._running: while self._running:
await ( # await (
self._wake_bdi_loop.wait() # self._wake_bdi_loop.wait()
) # gets set whenever there's an update to the belief base # ) # gets set whenever there's an update to the belief base
# Agent knows when it's expected to have to do its next thing # Agent knows when it's expected to have to do its next thing
maybe_more_work = True maybe_more_work = True
@@ -160,7 +160,7 @@ class BDICoreAgent(BaseAgent):
self._remove_all_with_name(belief.name) self._remove_all_with_name(belief.name)
self._add_belief(belief.name, belief.arguments) self._add_belief(belief.name, belief.arguments)
def _add_belief(self, name: str, args: Iterable[str] = []): def _add_belief(self, name: str, args: list[str] = None):
""" """
Add a single belief to the BDI agent. Add a single belief to the BDI agent.
@@ -168,9 +168,13 @@ class BDICoreAgent(BaseAgent):
:param args: Arguments for the belief. :param args: Arguments for the belief.
""" """
# new_args = (agentspeak.Literal(arg) for arg in args) # TODO: Eventually support multiple # new_args = (agentspeak.Literal(arg) for arg in args) # TODO: Eventually support multiple
merged_args = DELIMITER.join(arg for arg in args) args = args or []
new_args = (agentspeak.Literal(merged_args),) if args:
term = agentspeak.Literal(name, new_args) merged_args = DELIMITER.join(arg for arg in args)
new_args = (agentspeak.Literal(merged_args),)
term = agentspeak.Literal(name, new_args)
else:
term = agentspeak.Literal(name)
self.bdi_agent.call( self.bdi_agent.call(
agentspeak.Trigger.addition, agentspeak.Trigger.addition,
@@ -238,8 +242,7 @@ class BDICoreAgent(BaseAgent):
@self.actions.add(".reply", 3) @self.actions.add(".reply", 3)
def _reply(agent: "BDICoreAgent", term, intention): def _reply(agent: "BDICoreAgent", term, intention):
""" """
Sends text to the LLM (AgentSpeak action). Let the LLM generate a response to a user's utterance with the current norms and goals.
Example: .reply("Hello LLM!", "Some norm", "Some goal")
""" """
message_text = agentspeak.grounded(term.args[0], intention.scope) message_text = agentspeak.grounded(term.args[0], intention.scope)
norms = agentspeak.grounded(term.args[1], intention.scope) norms = agentspeak.grounded(term.args[1], intention.scope)
@@ -252,15 +255,71 @@ class BDICoreAgent(BaseAgent):
asyncio.create_task(self._send_to_llm(str(message_text), str(norms), str(goals))) asyncio.create_task(self._send_to_llm(str(message_text), str(norms), str(goals)))
yield yield
async def _send_to_llm(self, text: str, norms: str = None, goals: str = None): @self.actions.add(".reply_with_goal", 3)
def _reply_with_goal(agent: "BDICoreAgent", term, intention):
"""
Let the LLM generate a response to a user's utterance with the current norms and a
specific goal.
"""
message_text = agentspeak.grounded(term.args[0], intention.scope)
norms = agentspeak.grounded(term.args[1], intention.scope)
goal = agentspeak.grounded(term.args[2], intention.scope)
self.logger.debug(
'"reply_with_goal" action called with message=%s, norms=%s, goal=%s',
message_text,
norms,
goal,
)
# asyncio.create_task(self._send_to_llm(str(message_text), norms, str(goal)))
yield
@self.actions.add(".say", 1)
def _say(agent: "BDICoreAgent", term, intention):
"""
Make the robot say the given text instantly.
"""
message_text = agentspeak.grounded(term.args[0], intention.scope)
self.logger.debug('"say" action called with text=%s', message_text)
# speech_command = SpeechCommand(data=message_text)
# speech_message = InternalMessage(
# to=settings.agent_settings.robot_speech_name,
# sender=settings.agent_settings.bdi_core_name,
# body=speech_command.model_dump_json(),
# )
# asyncio.create_task(agent.send(speech_message))
yield
@self.actions.add(".gesture", 2)
def _gesture(agent: "BDICoreAgent", term, intention):
"""
Make the robot perform the given gesture instantly.
"""
gesture_type = agentspeak.grounded(term.args[0], intention.scope)
gesture_name = agentspeak.grounded(term.args[1], intention.scope)
self.logger.debug(
'"gesture" action called with type=%s, name=%s',
gesture_type,
gesture_name,
)
# gesture = Gesture(type=gesture_type, name=gesture_name)
# gesture_message = InternalMessage(
# to=settings.agent_settings.robot_gesture_name,
# sender=settings.agent_settings.bdi_core_name,
# body=gesture.model_dump_json(),
# )
# asyncio.create_task(agent.send(gesture_message))
yield
async def _send_to_llm(self, text: str, norms: str, goals: str):
""" """
Sends a text query to the LLM agent asynchronously. Sends a text query to the LLM agent asynchronously.
""" """
prompt = LLMPromptMessage( prompt = LLMPromptMessage(text=text, norms=norms.split("\n"), goals=goals.split("\n"))
text=text,
norms=norms.split("\n") if norms else [],
goals=goals.split("\n") if norms else [],
)
msg = InternalMessage( msg = InternalMessage(
to=settings.agent_settings.llm_name, to=settings.agent_settings.llm_name,
sender=self.name, sender=self.name,

View File

@@ -1,12 +1,598 @@
import uuid
from collections.abc import Iterable
import zmq import zmq
from pydantic import ValidationError from pydantic import ValidationError
from slugify import slugify
from zmq.asyncio import Context from zmq.asyncio import Context
from control_backend.agents import BaseAgent from control_backend.agents import BaseAgent
from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings from control_backend.core.config import settings
from control_backend.schemas.belief_message import Belief, BeliefMessage from control_backend.schemas.program import (
from control_backend.schemas.program import Program Action,
BasicBelief,
BasicNorm,
Belief,
ConditionalNorm,
GestureAction,
Goal,
InferredBelief,
KeywordBelief,
LLMAction,
LogicalOperator,
Phase,
Plan,
Program,
ProgramElement,
SemanticBelief,
SpeechAction,
Trigger,
)
test_program = Program(
phases=[
Phase(
norms=[
BasicNorm(norm="Talk like a pirate", id=uuid.uuid4()),
ConditionalNorm(
condition=InferredBelief(
left=KeywordBelief(keyword="Arr", id=uuid.uuid4()),
right=SemanticBelief(
description="testing", name="semantic belief", id=uuid.uuid4()
),
operator=LogicalOperator.OR,
name="Talking to a pirate",
id=uuid.uuid4(),
),
norm="Use nautical terms",
id=uuid.uuid4(),
),
ConditionalNorm(
condition=SemanticBelief(
description="We are talking to a child",
name="talking to child",
id=uuid.uuid4(),
),
norm="Do not use cuss words",
id=uuid.uuid4(),
),
],
triggers=[
Trigger(
condition=InferredBelief(
left=KeywordBelief(keyword="key", id=uuid.uuid4()),
right=InferredBelief(
left=KeywordBelief(keyword="key2", id=uuid.uuid4()),
right=SemanticBelief(
description="Decode this", name="semantic belief 2", id=uuid.uuid4()
),
operator=LogicalOperator.OR,
name="test trigger inferred inner",
id=uuid.uuid4(),
),
operator=LogicalOperator.OR,
name="test trigger inferred outer",
id=uuid.uuid4(),
),
plan=Plan(
steps=[
SpeechAction(text="Testing trigger", id=uuid.uuid4()),
Goal(
name="Testing trigger",
plan=Plan(
steps=[LLMAction(goal="Do something", id=uuid.uuid4())],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
)
],
goals=[
Goal(
name="Determine user age",
plan=Plan(
steps=[LLMAction(goal="Determine the age of the user.", id=uuid.uuid4())],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
Goal(
name="Find the user's name",
plan=Plan(
steps=[
Goal(
name="Greet the user",
plan=Plan(
steps=[LLMAction(goal="Greet the user.", id=uuid.uuid4())],
id=uuid.uuid4(),
),
can_fail=False,
id=uuid.uuid4(),
),
Goal(
name="Ask for name",
plan=Plan(
steps=[
LLMAction(goal="Obtain the user's name.", id=uuid.uuid4())
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
Goal(
name="Tell a joke",
plan=Plan(
steps=[LLMAction(goal="Tell a joke.", id=uuid.uuid4())], id=uuid.uuid4()
),
id=uuid.uuid4(),
),
],
id=uuid.uuid4(),
),
Phase(
id=uuid.uuid4(),
norms=[
BasicNorm(norm="Use very gentle speech.", id=uuid.uuid4()),
ConditionalNorm(
condition=SemanticBelief(
description="We are talking to a child",
name="talking to child",
id=uuid.uuid4(),
),
norm="Do not use cuss words",
id=uuid.uuid4(),
),
],
triggers=[
Trigger(
condition=InferredBelief(
left=KeywordBelief(keyword="help", id=uuid.uuid4()),
right=SemanticBelief(
description="User is stuck", name="stuck", id=uuid.uuid4()
),
operator=LogicalOperator.OR,
name="help_or_stuck",
id=uuid.uuid4(),
),
plan=Plan(
steps=[
Goal(
name="Unblock user",
plan=Plan(
steps=[
LLMAction(
goal="Provide a step-by-step path to "
"resolve the user's issue.",
id=uuid.uuid4(),
)
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
],
goals=[
Goal(
name="Clarify intent",
plan=Plan(
steps=[
LLMAction(
goal="Ask 1-2 targeted questions to clarify the "
"user's intent, then proceed.",
id=uuid.uuid4(),
)
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
Goal(
name="Provide solution",
plan=Plan(
steps=[
LLMAction(
goal="Deliver a solution to complete the user's goal.",
id=uuid.uuid4(),
)
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
Goal(
name="Summarize next steps",
plan=Plan(
steps=[
LLMAction(
goal="Summarize what the user should do next.", id=uuid.uuid4()
)
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
],
),
]
)
def do_things():
print(AgentSpeakGenerator().generate(test_program))
class AgentSpeakGenerator:
"""
Converts Pydantic representation of behavior programs into AgentSpeak(L) code string.
"""
arrow_prefix = f"{' ' * 2}<-{' ' * 2}"
colon_prefix = f"{' ' * 2}:{' ' * 3}"
indent_prefix = " " * 6
def generate(self, program: Program) -> str:
lines = []
lines.append("")
lines += self._generate_initial_beliefs(program)
lines += self._generate_basic_flow(program)
lines += self._generate_phase_transitions(program)
lines += self._generate_norms(program)
lines += self._generate_belief_inference(program)
lines += self._generate_goals(program)
lines += self._generate_triggers(program)
return "\n".join(lines)
def _generate_initial_beliefs(self, program: Program) -> Iterable[str]:
yield "// --- Initial beliefs and agent startup ---"
yield "phase(start)."
yield ""
yield "+started"
yield f"{self.colon_prefix}phase(start)"
yield f"{self.arrow_prefix}phase({program.phases[0].id if program.phases else 'end'})."
yield from ["", ""]
def _generate_basic_flow(self, program: Program) -> Iterable[str]:
yield "// --- Basic flow ---"
for phase in program.phases:
yield from self._generate_basic_flow_per_phase(phase)
yield from ["", ""]
def _generate_basic_flow_per_phase(self, phase: Phase) -> Iterable[str]:
yield "+user_said(Message)"
yield f"{self.colon_prefix}phase({phase.id})"
goals = phase.goals
if goals:
yield f"{self.arrow_prefix}{self._slugify(goals[0], include_prefix=True)}"
for goal in goals[1:]:
yield f"{self.indent_prefix}{self._slugify(goal, include_prefix=True)}"
yield f"{self.indent_prefix if goals else self.arrow_prefix}!transition_phase."
def _generate_phase_transitions(self, program: Program) -> Iterable[str]:
yield "// --- Phase transitions ---"
if len(program.phases) == 0:
yield from ["", ""]
return
# TODO: remove outdated things
for i in range(-1, len(program.phases)):
predecessor = program.phases[i] if i >= 0 else None
successor = program.phases[i + 1] if i < len(program.phases) - 1 else None
yield from self._generate_phase_transition(predecessor, successor)
yield from self._generate_phase_transition(None, None) # to avoid failing plan
yield from ["", ""]
def _generate_phase_transition(
self, phase: Phase | None = None, next_phase: Phase | None = None
) -> Iterable[str]:
yield "+!transition_phase"
if phase is None and next_phase is None: # base case true to avoid failing plan
yield f"{self.arrow_prefix}true."
return
yield f"{self.colon_prefix}phase({phase.id if phase else 'start'})"
yield f"{self.arrow_prefix}-+phase({next_phase.id if next_phase else 'end'})."
def _generate_norms(self, program: Program) -> Iterable[str]:
yield "// --- Norms ---"
for phase in program.phases:
for norm in phase.norms:
if type(norm) is BasicNorm:
yield f"{self._slugify(norm)} :- phase({phase.id})."
if type(norm) is ConditionalNorm:
yield (
f"{self._slugify(norm)} :- phase({phase.id}) & "
f"{self._slugify(norm.condition)}."
)
yield from ["", ""]
def _generate_belief_inference(self, program: Program) -> Iterable[str]:
yield "// --- Belief inference rules ---"
for phase in program.phases:
for norm in phase.norms:
if not isinstance(norm, ConditionalNorm):
continue
yield from self._belief_inference_recursive(norm.condition)
for trigger in phase.triggers:
yield from self._belief_inference_recursive(trigger.condition)
yield from ["", ""]
def _belief_inference_recursive(self, belief: Belief) -> Iterable[str]:
if type(belief) is KeywordBelief:
yield (
f"{self._slugify(belief)} :- user_said(Message) & "
f'.substring(Message, "{belief.keyword}", Pos) & Pos >= 0.'
)
if type(belief) is InferredBelief:
yield (
f"{self._slugify(belief)} :- {self._slugify(belief.left)} "
f"{'&' if belief.operator == LogicalOperator.AND else '|'} "
f"{self._slugify(belief.right)}."
)
yield from self._belief_inference_recursive(belief.left)
yield from self._belief_inference_recursive(belief.right)
def _generate_goals(self, program: Program) -> Iterable[str]:
yield "// --- Goals ---"
for phase in program.phases:
previous_goal: Goal | None = None
for goal in phase.goals:
yield from self._generate_goal_plan_recursive(goal, phase, previous_goal)
previous_goal = goal
yield from ["", ""]
def _generate_goal_plan_recursive(
self, goal: Goal, phase: Phase, previous_goal: Goal | None = None
) -> Iterable[str]:
yield f"+{self._slugify(goal, include_prefix=True)}"
# Context
yield f"{self.colon_prefix}phase({phase.id}) &"
yield f"{self.indent_prefix}not responded_this_turn &"
yield f"{self.indent_prefix}not achieved_{self._slugify(goal)} &"
if previous_goal:
yield f"{self.indent_prefix}achieved_{self._slugify(previous_goal)}"
else:
yield f"{self.indent_prefix}true"
extra_goals_to_generate = []
steps = goal.plan.steps
if len(steps) == 0:
yield f"{self.arrow_prefix}true."
return
first_step = steps[0]
yield (
f"{self.arrow_prefix}{self._slugify(first_step, include_prefix=True)}"
f"{'.' if len(steps) == 1 and goal.can_fail else ';'}"
)
if isinstance(first_step, Goal):
extra_goals_to_generate.append(first_step)
for step in steps[1:-1]:
yield f"{self.indent_prefix}{self._slugify(step, include_prefix=True)};"
if isinstance(step, Goal):
extra_goals_to_generate.append(step)
if len(steps) > 1:
last_step = steps[-1]
yield (
f"{self.indent_prefix}{self._slugify(last_step, include_prefix=True)}"
f"{'.' if goal.can_fail else ';'}"
)
if isinstance(last_step, Goal):
extra_goals_to_generate.append(last_step)
if not goal.can_fail:
yield f"{self.indent_prefix}+achieved_{self._slugify(goal)}."
yield f"+{self._slugify(goal, include_prefix=True)}"
yield f"{self.arrow_prefix}true."
yield ""
extra_previous_goal: Goal | None = None
for extra_goal in extra_goals_to_generate:
yield from self._generate_goal_plan_recursive(extra_goal, phase, extra_previous_goal)
extra_previous_goal = extra_goal
def _generate_triggers(self, program: Program) -> Iterable[str]:
yield "// --- Triggers ---"
for phase in program.phases:
for trigger in phase.triggers:
yield from self._generate_trigger_plan(trigger, phase)
yield from ["", ""]
def _generate_trigger_plan(self, trigger: Trigger, phase: Phase) -> Iterable[str]:
belief_name = self._slugify(trigger.condition)
yield f"+{belief_name}"
yield f"{self.colon_prefix}phase({phase.id})"
extra_goals_to_generate = []
steps = trigger.plan.steps
if len(steps) == 0:
yield f"{self.arrow_prefix}true."
return
first_step = steps[0]
yield (
f"{self.arrow_prefix}{self._slugify(first_step, include_prefix=True)}"
f"{'.' if len(steps) == 1 else ';'}"
)
if isinstance(first_step, Goal):
extra_goals_to_generate.append(first_step)
for step in steps[1:-1]:
yield f"{self.indent_prefix}{self._slugify(step, include_prefix=True)};"
if isinstance(step, Goal):
extra_goals_to_generate.append(step)
if len(steps) > 1:
last_step = steps[-1]
yield f"{self.indent_prefix}{self._slugify(last_step, include_prefix=True)}."
if isinstance(last_step, Goal):
extra_goals_to_generate.append(last_step)
yield ""
extra_previous_goal: Goal | None = None
for extra_goal in extra_goals_to_generate:
yield from self._generate_trigger_plan_recursive(extra_goal, phase, extra_previous_goal)
extra_previous_goal = extra_goal
def _generate_trigger_plan_recursive(
self, goal: Goal, phase: Phase, previous_goal: Goal | None = None
) -> Iterable[str]:
yield f"+{self._slugify(goal, include_prefix=True)}"
extra_goals_to_generate = []
steps = goal.plan.steps
if len(steps) == 0:
yield f"{self.arrow_prefix}true."
return
first_step = steps[0]
yield (
f"{self.arrow_prefix}{self._slugify(first_step, include_prefix=True)}"
f"{'.' if len(steps) == 1 and goal.can_fail else ';'}"
)
if isinstance(first_step, Goal):
extra_goals_to_generate.append(first_step)
for step in steps[1:-1]:
yield f"{self.indent_prefix}{self._slugify(step, include_prefix=True)};"
if isinstance(step, Goal):
extra_goals_to_generate.append(step)
if len(steps) > 1:
last_step = steps[-1]
yield (
f"{self.indent_prefix}{self._slugify(last_step, include_prefix=True)}"
f"{'.' if goal.can_fail else ';'}"
)
if isinstance(last_step, Goal):
extra_goals_to_generate.append(last_step)
if not goal.can_fail:
yield f"{self.indent_prefix}+achieved_{self._slugify(goal)}."
yield f"+{self._slugify(goal, include_prefix=True)}"
yield f"{self.arrow_prefix}true."
yield ""
extra_previous_goal: Goal | None = None
for extra_goal in extra_goals_to_generate:
yield from self._generate_goal_plan_recursive(extra_goal, phase, extra_previous_goal)
extra_previous_goal = extra_goal
def _slugify(self, element: ProgramElement, include_prefix: bool = False) -> str:
def base_slugify_call(text: str):
return slugify(text, separator="_", stopwords=["a", "the"])
if type(element) is KeywordBelief:
return f'keyword_said("{element.keyword}")'
if type(element) is SemanticBelief:
name = element.name
return f"semantic_{base_slugify_call(name if name else element.description)}"
if isinstance(element, BasicNorm):
return f'norm("{element.norm}")'
if isinstance(element, Goal):
return f"{'!' if include_prefix else ''}{base_slugify_call(element.name)}"
if isinstance(element, SpeechAction):
return f'.say("{element.text}")'
if isinstance(element, GestureAction):
return f'.gesture("{element.gesture}")'
if isinstance(element, LLMAction):
return f'!generate_response_with_goal("{element.goal}")'
if isinstance(element, Action.__value__):
raise NotImplementedError(
"Have not implemented an ASL string representation for this action."
)
if element.name == "":
raise ValueError("Name must be initialized for this type of ProgramElement.")
return base_slugify_call(element.name)
def _extract_basic_beliefs_from_program(self, program: Program) -> list[BasicBelief]:
beliefs = []
for phase in program.phases:
for norm in phase.norms:
if isinstance(norm, ConditionalNorm):
beliefs += self._extract_basic_beliefs_from_belief(norm.condition)
for trigger in phase.triggers:
beliefs += self._extract_basic_beliefs_from_belief(trigger.condition)
return beliefs
def _extract_basic_beliefs_from_belief(self, belief: Belief) -> list[BasicBelief]:
if isinstance(belief, InferredBelief):
return self._extract_basic_beliefs_from_belief(
belief.left
) + self._extract_basic_beliefs_from_belief(belief.right)
return [belief]
class BDIProgramManager(BaseAgent): class BDIProgramManager(BaseAgent):
@@ -25,40 +611,40 @@ class BDIProgramManager(BaseAgent):
super().__init__(**kwargs) super().__init__(**kwargs)
self.sub_socket = None self.sub_socket = None
async def _send_to_bdi(self, program: Program): # async def _send_to_bdi(self, program: Program):
""" # """
Convert a received program into BDI beliefs and send them to the BDI Core Agent. # Convert a received program into BDI beliefs and send them to the BDI Core Agent.
#
Currently, it takes the **first phase** of the program and extracts: # Currently, it takes the **first phase** of the program and extracts:
- **Norms**: Constraints or rules the agent must follow. # - **Norms**: Constraints or rules the agent must follow.
- **Goals**: Objectives the agent must achieve. # - **Goals**: Objectives the agent must achieve.
#
These are sent as a ``BeliefMessage`` with ``replace=True``, meaning they will # These are sent as a ``BeliefMessage`` with ``replace=True``, meaning they will
overwrite any existing norms/goals of the same name in the BDI agent. # overwrite any existing norms/goals of the same name in the BDI agent.
#
:param program: The program object received from the API. # :param program: The program object received from the API.
""" # """
first_phase = program.phases[0] # first_phase = program.phases[0]
norms_belief = Belief( # norms_belief = Belief(
name="norms", # name="norms",
arguments=[norm.norm for norm in first_phase.norms], # arguments=[norm.norm for norm in first_phase.norms],
replace=True, # replace=True,
) # )
goals_belief = Belief( # goals_belief = Belief(
name="goals", # name="goals",
arguments=[goal.description for goal in first_phase.goals], # arguments=[goal.description for goal in first_phase.goals],
replace=True, # replace=True,
) # )
program_beliefs = BeliefMessage(beliefs=[norms_belief, goals_belief]) # program_beliefs = BeliefMessage(beliefs=[norms_belief, goals_belief])
#
message = InternalMessage( # message = InternalMessage(
to=settings.agent_settings.bdi_core_name, # to=settings.agent_settings.bdi_core_name,
sender=self.name, # sender=self.name,
body=program_beliefs.model_dump_json(), # body=program_beliefs.model_dump_json(),
thread="beliefs", # thread="beliefs",
) # )
await self.send(message) # await self.send(message)
self.logger.debug("Sent new norms and goals to the BDI agent.") # self.logger.debug("Sent new norms and goals to the BDI agent.")
async def _receive_programs(self): async def _receive_programs(self):
""" """
@@ -92,3 +678,7 @@ class BDIProgramManager(BaseAgent):
self.sub_socket.subscribe("program") self.sub_socket.subscribe("program")
self.add_behavior(self._receive_programs()) self.add_behavior(self._receive_programs())
if __name__ == "__main__":
do_things()

View File

View File

View File

@@ -64,10 +64,13 @@ class InferredBelief(ProgramElement):
right: Belief right: Belief
type Norm = BasicNorm | ConditionalNorm class Norm(ProgramElement):
name: str = ""
norm: str
critical: bool = False
class BasicNorm(ProgramElement): class BasicNorm(Norm):
""" """
Represents a behavioral norm. Represents a behavioral norm.
@@ -75,12 +78,10 @@ class BasicNorm(ProgramElement):
:ivar critical: When true, this norm should absolutely not be violated (checked separately). :ivar critical: When true, this norm should absolutely not be violated (checked separately).
""" """
name: str = "" pass
norm: str
critical: bool = False
class ConditionalNorm(BasicNorm): class ConditionalNorm(Norm):
""" """
Represents a norm that is only active when a condition is met (i.e., a certain belief holds). Represents a norm that is only active when a condition is met (i.e., a certain belief holds).

23
uv.lock generated
View File

@@ -997,6 +997,7 @@ dependencies = [
{ name = "pydantic" }, { name = "pydantic" },
{ name = "pydantic-settings" }, { name = "pydantic-settings" },
{ name = "python-json-logger" }, { name = "python-json-logger" },
{ name = "python-slugify" },
{ name = "pyyaml" }, { name = "pyyaml" },
{ name = "pyzmq" }, { name = "pyzmq" },
{ name = "silero-vad" }, { name = "silero-vad" },
@@ -1046,6 +1047,7 @@ requires-dist = [
{ name = "pydantic", specifier = ">=2.12.0" }, { name = "pydantic", specifier = ">=2.12.0" },
{ name = "pydantic-settings", specifier = ">=2.11.0" }, { name = "pydantic-settings", specifier = ">=2.11.0" },
{ name = "python-json-logger", specifier = ">=4.0.0" }, { name = "python-json-logger", specifier = ">=4.0.0" },
{ name = "python-slugify", specifier = ">=8.0.4" },
{ name = "pyyaml", specifier = ">=6.0.3" }, { name = "pyyaml", specifier = ">=6.0.3" },
{ name = "pyzmq", specifier = ">=27.1.0" }, { name = "pyzmq", specifier = ">=27.1.0" },
{ name = "silero-vad", specifier = ">=6.0.0" }, { name = "silero-vad", specifier = ">=6.0.0" },
@@ -1341,6 +1343,18 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/45/58/38b5afbc1a800eeea951b9285d3912613f2603bdf897a4ab0f4bd7f405fc/python_multipart-0.0.20-py3-none-any.whl", hash = "sha256:8a62d3a8335e06589fe01f2a3e178cdcc632f3fbe0d492ad9ee0ec35aab1f104", size = 24546, upload-time = "2024-12-16T19:45:44.423Z" }, { url = "https://files.pythonhosted.org/packages/45/58/38b5afbc1a800eeea951b9285d3912613f2603bdf897a4ab0f4bd7f405fc/python_multipart-0.0.20-py3-none-any.whl", hash = "sha256:8a62d3a8335e06589fe01f2a3e178cdcc632f3fbe0d492ad9ee0ec35aab1f104", size = 24546, upload-time = "2024-12-16T19:45:44.423Z" },
] ]
[[package]]
name = "python-slugify"
version = "8.0.4"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "text-unidecode" },
]
sdist = { url = "https://files.pythonhosted.org/packages/87/c7/5e1547c44e31da50a460df93af11a535ace568ef89d7a811069ead340c4a/python-slugify-8.0.4.tar.gz", hash = "sha256:59202371d1d05b54a9e7720c5e038f928f45daaffe41dd10822f3907b937c856", size = 10921, upload-time = "2024-02-08T18:32:45.488Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a4/62/02da182e544a51a5c3ccf4b03ab79df279f9c60c5e82d5e8bec7ca26ac11/python_slugify-8.0.4-py2.py3-none-any.whl", hash = "sha256:276540b79961052b66b7d116620b36518847f52d5fd9e3a70164fc8c50faa6b8", size = 10051, upload-time = "2024-02-08T18:32:43.911Z" },
]
[[package]] [[package]]
name = "pyyaml" name = "pyyaml"
version = "6.0.3" version = "6.0.3"
@@ -1864,6 +1878,15 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl", hash = "sha256:e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5", size = 6299353, upload-time = "2025-04-27T18:04:59.103Z" }, { url = "https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl", hash = "sha256:e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5", size = 6299353, upload-time = "2025-04-27T18:04:59.103Z" },
] ]
[[package]]
name = "text-unidecode"
version = "1.3"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/ab/e2/e9a00f0ccb71718418230718b3d900e71a5d16e701a3dae079a21e9cd8f8/text-unidecode-1.3.tar.gz", hash = "sha256:bad6603bb14d279193107714b288be206cac565dfa49aa5b105294dd5c4aab93", size = 76885, upload-time = "2019-08-30T21:36:45.405Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/a6/a5/c0b6468d3824fe3fde30dbb5e1f687b291608f9473681bbf7dabbf5a87d7/text_unidecode-1.3-py2.py3-none-any.whl", hash = "sha256:1311f10e8b895935241623731c2ba64f4c455287888b18189350b67134a822e8", size = 78154, upload-time = "2019-08-30T21:37:03.543Z" },
]
[[package]] [[package]]
name = "tiktoken" name = "tiktoken"
version = "0.12.0" version = "0.12.0"