feat: support history, norms and goals for LLM

ref: N25B-299
This commit is contained in:
Twirre Meulenbelt
2025-11-24 17:58:44 +01:00
parent f2a67637c6
commit 8ea8d4a8d4
5 changed files with 91 additions and 31 deletions

View File

@@ -12,8 +12,11 @@ from control_backend.agents.base import BaseAgent
from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.belief_message import Belief, BeliefMessage
from control_backend.schemas.llm_prompt_message import LLMPromptMessage
from control_backend.schemas.ri_message import SpeechCommand
DELIMITER = ";\n" # TODO: temporary until we support lists in AgentSpeak
class BDICoreAgent(BaseAgent):
bdi_agent: agentspeak.runtime.Agent
@@ -112,7 +115,9 @@ class BDICoreAgent(BaseAgent):
self._add_belief(belief.name, belief.arguments)
def _add_belief(self, name: str, args: Iterable[str] = []):
new_args = (agentspeak.Literal(arg) for arg in args)
# new_args = (agentspeak.Literal(arg) for arg in args) # TODO: Eventually support multiple
merged_args = DELIMITER.join(arg for arg in args)
new_args = (agentspeak.Literal(merged_args),)
term = agentspeak.Literal(name, new_args)
self.bdi_agent.call(
@@ -178,21 +183,37 @@ class BDICoreAgent(BaseAgent):
the function expects (which will be located in `term.args`).
"""
@self.actions.add(".reply", 1)
def _reply(agent, term, intention):
@self.actions.add(".reply", 3)
def _reply(agent: "BDICoreAgent", term, intention):
"""
Sends text to the LLM.
Sends text to the LLM (AgentSpeak action).
Example: .reply("Hello LLM!", "Some norm", "Some goal")
"""
message_text = agentspeak.grounded(term.args[0], intention.scope)
norms = agentspeak.grounded(term.args[1], intention.scope)
goals = agentspeak.grounded(term.args[2], intention.scope)
asyncio.create_task(self._send_to_llm(str(message_text)))
self.logger.debug("Norms: %s", norms)
self.logger.debug("Goals: %s", goals)
self.logger.debug("User text: %s", message_text)
asyncio.create_task(self._send_to_llm(str(message_text), str(norms), str(goals)))
yield
async def _send_to_llm(self, text: str):
async def _send_to_llm(self, text: str, norms: str = None, goals: str = None):
"""
Sends a text query to the LLM agent asynchronously.
"""
msg = InternalMessage(to=settings.agent_settings.llm_name, sender=self.name, body=text)
prompt = LLMPromptMessage(
text=text,
norms=norms.split("\n") if norms else [],
goals=goals.split("\n") if norms else [],
)
msg = InternalMessage(
to=settings.agent_settings.llm_name,
sender=self.name,
body=prompt.model_dump_json(),
)
await self.send(msg)
self.logger.info("Message sent to LLM agent: %s", text)

View File

@@ -1,3 +1,6 @@
+user_said(Message) <-
norms("").
goals("").
+user_said(Message) : norms(Norms) & goals(Goals) <-
-user_said(Message);
.reply(Message).
.reply(Message, Norms, Goals).