Merge branch 'feat/visual-emotion-recognition' into demo
This commit is contained in:
@@ -7,6 +7,7 @@ requires-python = ">=3.13"
|
|||||||
dependencies = [
|
dependencies = [
|
||||||
"agentspeak>=0.2.2",
|
"agentspeak>=0.2.2",
|
||||||
"colorlog>=6.10.1",
|
"colorlog>=6.10.1",
|
||||||
|
"deepface>=0.0.96",
|
||||||
"fastapi[all]>=0.115.6",
|
"fastapi[all]>=0.115.6",
|
||||||
"mlx-whisper>=0.4.3 ; sys_platform == 'darwin'",
|
"mlx-whisper>=0.4.3 ; sys_platform == 'darwin'",
|
||||||
"numpy>=2.3.3",
|
"numpy>=2.3.3",
|
||||||
@@ -21,6 +22,7 @@ dependencies = [
|
|||||||
"silero-vad>=6.0.0",
|
"silero-vad>=6.0.0",
|
||||||
"sphinx>=7.3.7",
|
"sphinx>=7.3.7",
|
||||||
"sphinx-rtd-theme>=3.0.2",
|
"sphinx-rtd-theme>=3.0.2",
|
||||||
|
"tf-keras>=2.20.1",
|
||||||
"torch>=2.8.0",
|
"torch>=2.8.0",
|
||||||
"uvicorn>=0.37.0",
|
"uvicorn>=0.37.0",
|
||||||
]
|
]
|
||||||
|
|||||||
@@ -22,6 +22,7 @@ from control_backend.schemas.program import (
|
|||||||
BaseGoal,
|
BaseGoal,
|
||||||
BasicNorm,
|
BasicNorm,
|
||||||
ConditionalNorm,
|
ConditionalNorm,
|
||||||
|
EmotionBelief,
|
||||||
GestureAction,
|
GestureAction,
|
||||||
Goal,
|
Goal,
|
||||||
InferredBelief,
|
InferredBelief,
|
||||||
@@ -459,6 +460,10 @@ class AgentSpeakGenerator:
|
|||||||
@_astify.register
|
@_astify.register
|
||||||
def _(self, sb: SemanticBelief) -> AstExpression:
|
def _(self, sb: SemanticBelief) -> AstExpression:
|
||||||
return AstLiteral(self.slugify(sb))
|
return AstLiteral(self.slugify(sb))
|
||||||
|
|
||||||
|
@_astify.register
|
||||||
|
def _(self, eb: EmotionBelief) -> AstExpression:
|
||||||
|
return AstLiteral("emotion_detected", [AstAtom(eb.emotion)])
|
||||||
|
|
||||||
@_astify.register
|
@_astify.register
|
||||||
def _(self, ib: InferredBelief) -> AstExpression:
|
def _(self, ib: InferredBelief) -> AstExpression:
|
||||||
|
|||||||
@@ -8,6 +8,9 @@ from zmq.asyncio import Context
|
|||||||
|
|
||||||
from control_backend.agents import BaseAgent
|
from control_backend.agents import BaseAgent
|
||||||
from control_backend.agents.actuation.robot_gesture_agent import RobotGestureAgent
|
from control_backend.agents.actuation.robot_gesture_agent import RobotGestureAgent
|
||||||
|
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent import ( # noqa
|
||||||
|
VisualEmotionRecognitionAgent,
|
||||||
|
)
|
||||||
from control_backend.core.config import settings
|
from control_backend.core.config import settings
|
||||||
from control_backend.schemas.internal_message import InternalMessage
|
from control_backend.schemas.internal_message import InternalMessage
|
||||||
from control_backend.schemas.ri_message import PauseCommand
|
from control_backend.schemas.ri_message import PauseCommand
|
||||||
@@ -52,6 +55,7 @@ class RICommunicationAgent(BaseAgent):
|
|||||||
self.connected = False
|
self.connected = False
|
||||||
self.gesture_agent: RobotGestureAgent | None = None
|
self.gesture_agent: RobotGestureAgent | None = None
|
||||||
self.speech_agent: RobotSpeechAgent | None = None
|
self.speech_agent: RobotSpeechAgent | None = None
|
||||||
|
self.visual_emotion_recognition_agent: VisualEmotionRecognitionAgent | None = None
|
||||||
|
|
||||||
async def setup(self):
|
async def setup(self):
|
||||||
"""
|
"""
|
||||||
@@ -209,6 +213,14 @@ class RICommunicationAgent(BaseAgent):
|
|||||||
case "audio":
|
case "audio":
|
||||||
vad_agent = VADAgent(audio_in_address=addr, audio_in_bind=bind)
|
vad_agent = VADAgent(audio_in_address=addr, audio_in_bind=bind)
|
||||||
await vad_agent.start()
|
await vad_agent.start()
|
||||||
|
case "video":
|
||||||
|
visual_emotion_agent = VisualEmotionRecognitionAgent(
|
||||||
|
settings.agent_settings.visual_emotion_recognition_name,
|
||||||
|
socket_address=addr,
|
||||||
|
bind=bind,
|
||||||
|
)
|
||||||
|
self.visual_emotion_recognition_agent = visual_emotion_agent
|
||||||
|
await visual_emotion_agent.start()
|
||||||
case _:
|
case _:
|
||||||
self.logger.warning("Unhandled negotiation id: %s", id)
|
self.logger.warning("Unhandled negotiation id: %s", id)
|
||||||
|
|
||||||
@@ -313,6 +325,9 @@ class RICommunicationAgent(BaseAgent):
|
|||||||
|
|
||||||
if self.speech_agent is not None:
|
if self.speech_agent is not None:
|
||||||
await self.speech_agent.stop()
|
await self.speech_agent.stop()
|
||||||
|
|
||||||
|
if self.visual_emotion_recognition_agent is not None:
|
||||||
|
await self.visual_emotion_recognition_agent.stop()
|
||||||
|
|
||||||
if self.pub_socket is not None:
|
if self.pub_socket is not None:
|
||||||
self.pub_socket.close()
|
self.pub_socket.close()
|
||||||
@@ -322,6 +337,7 @@ class RICommunicationAgent(BaseAgent):
|
|||||||
self.connected = True
|
self.connected = True
|
||||||
|
|
||||||
async def handle_message(self, msg: InternalMessage):
|
async def handle_message(self, msg: InternalMessage):
|
||||||
|
return
|
||||||
try:
|
try:
|
||||||
pause_command = PauseCommand.model_validate_json(msg.body)
|
pause_command = PauseCommand.model_validate_json(msg.body)
|
||||||
await self._req_socket.send_json(pause_command.model_dump())
|
await self._req_socket.send_json(pause_command.model_dump())
|
||||||
|
|||||||
@@ -0,0 +1,169 @@
|
|||||||
|
import json
|
||||||
|
import time
|
||||||
|
from collections import Counter, defaultdict
|
||||||
|
|
||||||
|
import cv2
|
||||||
|
import numpy as np
|
||||||
|
import zmq
|
||||||
|
import zmq.asyncio as azmq
|
||||||
|
from pydantic_core import ValidationError
|
||||||
|
import struct
|
||||||
|
|
||||||
|
from control_backend.agents import BaseAgent
|
||||||
|
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognizer import ( # noqa
|
||||||
|
DeepFaceEmotionRecognizer,
|
||||||
|
)
|
||||||
|
from control_backend.core.agent_system import InternalMessage
|
||||||
|
from control_backend.core.config import settings
|
||||||
|
from control_backend.schemas.belief_message import Belief
|
||||||
|
|
||||||
|
|
||||||
|
class VisualEmotionRecognitionAgent(BaseAgent):
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
name: str,
|
||||||
|
socket_address: str,
|
||||||
|
bind: bool = False,
|
||||||
|
timeout_ms: int = 1000,
|
||||||
|
window_duration: int = settings.behaviour_settings.visual_emotion_recognition_window_duration_s, # noqa
|
||||||
|
min_frames_required: int = settings.behaviour_settings.visual_emotion_recognition_min_frames_per_face, # noqa
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Initialize the Visual Emotion Recognition Agent.
|
||||||
|
|
||||||
|
:param name: Name of the agent
|
||||||
|
:param socket_address: Address of the socket to connect or bind to
|
||||||
|
:param bind: Whether to bind to the socket address (True) or connect (False)
|
||||||
|
:param timeout_ms: Timeout for socket receive operations in milliseconds
|
||||||
|
:param window_duration: Duration in seconds over which to aggregate emotions
|
||||||
|
:param min_frames_required: Minimum number of frames per face required to consider a face
|
||||||
|
valid
|
||||||
|
"""
|
||||||
|
super().__init__(name)
|
||||||
|
self.socket_address = socket_address
|
||||||
|
self.socket_bind = bind
|
||||||
|
self.timeout_ms = timeout_ms
|
||||||
|
self.window_duration = window_duration
|
||||||
|
self.min_frames_required = min_frames_required
|
||||||
|
|
||||||
|
async def setup(self):
|
||||||
|
"""
|
||||||
|
Initialize the agent resources.
|
||||||
|
1. Initializes the :class:`VisualEmotionRecognizer`.
|
||||||
|
2. Connects to the video input ZMQ socket.
|
||||||
|
3. Starts the background emotion recognition loop.
|
||||||
|
"""
|
||||||
|
self.logger.info("Setting up %s.", self.name)
|
||||||
|
|
||||||
|
self.emotion_recognizer = DeepFaceEmotionRecognizer()
|
||||||
|
|
||||||
|
self.video_in_socket = azmq.Context.instance().socket(zmq.SUB)
|
||||||
|
|
||||||
|
if self.socket_bind:
|
||||||
|
self.video_in_socket.bind(self.socket_address)
|
||||||
|
else:
|
||||||
|
self.video_in_socket.connect(self.socket_address)
|
||||||
|
|
||||||
|
self.video_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||||
|
self.video_in_socket.setsockopt(zmq.RCVTIMEO, self.timeout_ms)
|
||||||
|
self.video_in_socket.setsockopt(zmq.CONFLATE, 1)
|
||||||
|
|
||||||
|
self.add_behavior(self.emotion_update_loop())
|
||||||
|
|
||||||
|
async def emotion_update_loop(self):
|
||||||
|
"""
|
||||||
|
Background loop to receive video frames, recognize emotions, and update beliefs.
|
||||||
|
1. Receives video frames from the ZMQ socket.
|
||||||
|
2. Uses the :class:`VisualEmotionRecognizer` to detect emotions.
|
||||||
|
3. Aggregates emotions over a time window.
|
||||||
|
4. Sends updates to the BDI Core Agent about detected emotions.
|
||||||
|
"""
|
||||||
|
# Next time to process the window and update emotions
|
||||||
|
next_window_time = time.time() + self.window_duration
|
||||||
|
|
||||||
|
# Tracks counts of detected emotions per face index
|
||||||
|
face_stats = defaultdict(Counter)
|
||||||
|
|
||||||
|
prev_dominant_emotions = set()
|
||||||
|
|
||||||
|
while self._running:
|
||||||
|
try:
|
||||||
|
frame_bytes = await self.video_in_socket.recv()
|
||||||
|
|
||||||
|
# Convert bytes to a numpy buffer
|
||||||
|
nparr = np.frombuffer(frame_bytes, np.uint8)
|
||||||
|
|
||||||
|
# Decode image into the generic Numpy Array DeepFace expects
|
||||||
|
frame_image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||||
|
|
||||||
|
if frame_image is None:
|
||||||
|
# Could not decode image, skip this frame
|
||||||
|
self.logger.warning("Received invalid video frame, skipping.")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Get the dominant emotion from each face
|
||||||
|
current_emotions = self.emotion_recognizer.sorted_dominant_emotions(frame_image)
|
||||||
|
# Update emotion counts for each detected face
|
||||||
|
for i, emotion in enumerate(current_emotions):
|
||||||
|
face_stats[i][emotion] += 1
|
||||||
|
|
||||||
|
# If window duration has passed, process the collected stats
|
||||||
|
if time.time() >= next_window_time:
|
||||||
|
window_dominant_emotions = set()
|
||||||
|
# Determine dominant emotion for each face in the window
|
||||||
|
for _, counter in face_stats.items():
|
||||||
|
total_detections = sum(counter.values())
|
||||||
|
|
||||||
|
if total_detections >= self.min_frames_required:
|
||||||
|
dominant_emotion = counter.most_common(1)[0][0]
|
||||||
|
window_dominant_emotions.add(dominant_emotion)
|
||||||
|
|
||||||
|
await self.update_emotions(prev_dominant_emotions, window_dominant_emotions)
|
||||||
|
prev_dominant_emotions = window_dominant_emotions
|
||||||
|
face_stats.clear()
|
||||||
|
next_window_time = time.time() + self.window_duration
|
||||||
|
|
||||||
|
except zmq.Again:
|
||||||
|
self.logger.warning("No video frame received within timeout.")
|
||||||
|
|
||||||
|
|
||||||
|
async def update_emotions(self, prev_emotions: set[str], emotions: set[str]):
|
||||||
|
"""
|
||||||
|
Compare emotions from previous window and current emotions,
|
||||||
|
send updates to BDI Core Agent.
|
||||||
|
"""
|
||||||
|
emotions_to_remove = prev_emotions - emotions
|
||||||
|
emotions_to_add = emotions - prev_emotions
|
||||||
|
|
||||||
|
if not emotions_to_add and not emotions_to_remove:
|
||||||
|
return
|
||||||
|
|
||||||
|
emotion_beliefs_remove = []
|
||||||
|
for emotion in emotions_to_remove:
|
||||||
|
self.logger.info(f"Emotion '{emotion}' has disappeared.")
|
||||||
|
try:
|
||||||
|
emotion_beliefs_remove.append(
|
||||||
|
Belief(name="emotion_detected", arguments=[emotion], remove=True)
|
||||||
|
)
|
||||||
|
except ValidationError:
|
||||||
|
self.logger.warning("Invalid belief for emotion removal: %s", emotion)
|
||||||
|
|
||||||
|
emotion_beliefs_add = []
|
||||||
|
for emotion in emotions_to_add:
|
||||||
|
self.logger.info(f"New emotion detected: '{emotion}'")
|
||||||
|
try:
|
||||||
|
emotion_beliefs_add.append(Belief(name="emotion_detected", arguments=[emotion]))
|
||||||
|
except ValidationError:
|
||||||
|
self.logger.warning("Invalid belief for new emotion: %s", emotion)
|
||||||
|
|
||||||
|
beliefs_list_add = [b.model_dump() for b in emotion_beliefs_add]
|
||||||
|
beliefs_list_remove = [b.model_dump() for b in emotion_beliefs_remove]
|
||||||
|
payload = {"create": beliefs_list_add, "delete": beliefs_list_remove}
|
||||||
|
|
||||||
|
message = InternalMessage(
|
||||||
|
to=settings.agent_settings.bdi_core_name,
|
||||||
|
sender=self.name,
|
||||||
|
body=json.dumps(payload),
|
||||||
|
thread="beliefs",
|
||||||
|
)
|
||||||
|
await self.send(message)
|
||||||
@@ -0,0 +1,55 @@
|
|||||||
|
import abc
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
from deepface import DeepFace
|
||||||
|
|
||||||
|
|
||||||
|
class VisualEmotionRecognizer(abc.ABC):
|
||||||
|
@abc.abstractmethod
|
||||||
|
def load_model(self):
|
||||||
|
"""Load the visual emotion recognition model into memory."""
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abc.abstractmethod
|
||||||
|
def sorted_dominant_emotions(self, image) -> list[str]:
|
||||||
|
"""
|
||||||
|
Recognize dominant emotions from faces in the given image.
|
||||||
|
Emotions can be one of ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'].
|
||||||
|
To minimize false positives, consider filtering faces with low confidence.
|
||||||
|
|
||||||
|
:param image: The input image for emotion recognition.
|
||||||
|
:return: List of dominant emotion detected for each face in the image,
|
||||||
|
sorted per face.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
class DeepFaceEmotionRecognizer(VisualEmotionRecognizer):
|
||||||
|
"""
|
||||||
|
DeepFace-based implementation of VisualEmotionRecognizer.
|
||||||
|
DeepFape has proven to be quite a pessimistic model, so expect sad, fear and neutral
|
||||||
|
emotions to be over-represented.
|
||||||
|
"""
|
||||||
|
def __init__(self):
|
||||||
|
self.load_model()
|
||||||
|
|
||||||
|
def load_model(self):
|
||||||
|
print("Loading Deepface Emotion Model...")
|
||||||
|
dummy_img = np.zeros((224, 224, 3), dtype=np.uint8)
|
||||||
|
# analyze does not take a model as an argument, calling it once on a dummy image to load
|
||||||
|
# the model
|
||||||
|
DeepFace.analyze(dummy_img, actions=['emotion'], enforce_detection=False)
|
||||||
|
print("Deepface Emotion Model loaded.")
|
||||||
|
|
||||||
|
def sorted_dominant_emotions(self, image) -> list[str]:
|
||||||
|
analysis = DeepFace.analyze(image,
|
||||||
|
actions=['emotion'],
|
||||||
|
enforce_detection=False
|
||||||
|
)
|
||||||
|
|
||||||
|
# Sort faces by x coordinate to maintain left-to-right order
|
||||||
|
analysis.sort(key=lambda face: face['region']['x'])
|
||||||
|
|
||||||
|
analysis = [face for face in analysis if face['face_confidence'] >= 0.90]
|
||||||
|
|
||||||
|
dominant_emotions = [face['dominant_emotion'] for face in analysis]
|
||||||
|
return dominant_emotions
|
||||||
@@ -50,6 +50,7 @@ class AgentSettings(BaseModel):
|
|||||||
# agent names
|
# agent names
|
||||||
bdi_core_name: str = "bdi_core_agent"
|
bdi_core_name: str = "bdi_core_agent"
|
||||||
bdi_program_manager_name: str = "bdi_program_manager_agent"
|
bdi_program_manager_name: str = "bdi_program_manager_agent"
|
||||||
|
visual_emotion_recognition_name: str = "visual_emotion_recognition_agent"
|
||||||
text_belief_extractor_name: str = "text_belief_extractor_agent"
|
text_belief_extractor_name: str = "text_belief_extractor_agent"
|
||||||
vad_name: str = "vad_agent"
|
vad_name: str = "vad_agent"
|
||||||
llm_name: str = "llm_agent"
|
llm_name: str = "llm_agent"
|
||||||
@@ -77,6 +78,10 @@ class BehaviourSettings(BaseModel):
|
|||||||
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
|
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
|
||||||
:ivar transcription_token_buffer: Buffer for transcription tokens.
|
:ivar transcription_token_buffer: Buffer for transcription tokens.
|
||||||
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
|
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
|
||||||
|
:ivar visual_emotion_recognition_window_duration_s: Duration in seconds over which to aggregate
|
||||||
|
emotions and update emotion beliefs.
|
||||||
|
:ivar visual_emotion_recognition_min_frames_per_face: Minimum number of frames per face required
|
||||||
|
to consider a face valid.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||||
@@ -100,6 +105,9 @@ class BehaviourSettings(BaseModel):
|
|||||||
# Text belief extractor settings
|
# Text belief extractor settings
|
||||||
conversation_history_length_limit: int = 10
|
conversation_history_length_limit: int = 10
|
||||||
|
|
||||||
|
# Visual Emotion Recognition settings
|
||||||
|
visual_emotion_recognition_window_duration_s: int = 5
|
||||||
|
visual_emotion_recognition_min_frames_per_face: int = 3
|
||||||
|
|
||||||
class LLMSettings(BaseModel):
|
class LLMSettings(BaseModel):
|
||||||
"""
|
"""
|
||||||
|
|||||||
@@ -28,8 +28,8 @@ class LogicalOperator(Enum):
|
|||||||
OR = "OR"
|
OR = "OR"
|
||||||
|
|
||||||
|
|
||||||
type Belief = KeywordBelief | SemanticBelief | InferredBelief
|
type Belief = KeywordBelief | SemanticBelief | InferredBelief | EmotionBelief
|
||||||
type BasicBelief = KeywordBelief | SemanticBelief
|
type BasicBelief = KeywordBelief | SemanticBelief | EmotionBelief
|
||||||
|
|
||||||
|
|
||||||
class KeywordBelief(ProgramElement):
|
class KeywordBelief(ProgramElement):
|
||||||
@@ -69,6 +69,15 @@ class InferredBelief(ProgramElement):
|
|||||||
left: Belief
|
left: Belief
|
||||||
right: Belief
|
right: Belief
|
||||||
|
|
||||||
|
class EmotionBelief(ProgramElement):
|
||||||
|
"""
|
||||||
|
Represents a belief that is set when a certain emotion is detected.
|
||||||
|
|
||||||
|
:ivar emotion: The emotion on which this belief gets set.
|
||||||
|
"""
|
||||||
|
|
||||||
|
name: str = ""
|
||||||
|
emotion: str
|
||||||
|
|
||||||
class Norm(ProgramElement):
|
class Norm(ProgramElement):
|
||||||
"""
|
"""
|
||||||
@@ -226,3 +235,9 @@ class Program(BaseModel):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
phases: list[Phase]
|
phases: list[Phase]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
input = input("Enter program JSON: ")
|
||||||
|
program = Program.model_validate_json(input)
|
||||||
|
print(program)
|
||||||
Reference in New Issue
Block a user