refactor: remove SPADE dependencies
Did not look at tests yet, this is a very non-final commit. ref: N25B-300
This commit is contained in:
@@ -3,10 +3,9 @@ import asyncio
|
||||
import numpy as np
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
from spade.behaviour import CyclicBehaviour
|
||||
from spade.message import Message
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
|
||||
from .speech_recognizer import SpeechRecognizer
|
||||
@@ -19,53 +18,31 @@ class TranscriptionAgent(BaseAgent):
|
||||
"""
|
||||
|
||||
def __init__(self, audio_in_address: str):
|
||||
jid = settings.agent_settings.transcription_name + "@" + settings.agent_settings.host
|
||||
super().__init__(jid, settings.agent_settings.transcription_name)
|
||||
super().__init__(settings.agent_settings.transcription_name)
|
||||
|
||||
self.audio_in_address = audio_in_address
|
||||
self.audio_in_socket: azmq.Socket | None = None
|
||||
self.speech_recognizer = None
|
||||
self._concurrency = None
|
||||
|
||||
class TranscribingBehaviour(CyclicBehaviour):
|
||||
def __init__(self, audio_in_socket: azmq.Socket):
|
||||
super().__init__()
|
||||
max_concurrent_tasks = settings.behaviour_settings.transcription_max_concurrent_tasks
|
||||
self.audio_in_socket = audio_in_socket
|
||||
self.speech_recognizer = SpeechRecognizer.best_type()
|
||||
self._concurrency = asyncio.Semaphore(max_concurrent_tasks)
|
||||
async def setup(self):
|
||||
self.logger.info("Setting up %s", self.name)
|
||||
|
||||
def warmup(self):
|
||||
"""Load the transcription model into memory to speed up the first transcription."""
|
||||
self.speech_recognizer.load_model()
|
||||
self._connect_audio_in_socket()
|
||||
|
||||
async def _transcribe(self, audio: np.ndarray) -> str:
|
||||
async with self._concurrency:
|
||||
return await asyncio.to_thread(self.speech_recognizer.recognize_speech, audio)
|
||||
# Initialize recognizer and semaphore
|
||||
max_concurrent_tasks = settings.behaviour_settings.transcription_max_concurrent_tasks
|
||||
self._concurrency = asyncio.Semaphore(max_concurrent_tasks)
|
||||
self.speech_recognizer = SpeechRecognizer.best_type()
|
||||
self.speech_recognizer.load_model() # Warmup
|
||||
|
||||
async def _share_transcription(self, transcription: str):
|
||||
"""Share a transcription to the other agents that depend on it."""
|
||||
receiver_jids = [
|
||||
settings.agent_settings.text_belief_extractor_name
|
||||
+ "@"
|
||||
+ settings.agent_settings.host,
|
||||
] # Set message receivers here
|
||||
# Start background loop
|
||||
await self.add_background_task(self._transcribing_loop())
|
||||
|
||||
for receiver_jid in receiver_jids:
|
||||
message = Message(to=receiver_jid, body=transcription)
|
||||
await self.send(message)
|
||||
|
||||
async def run(self) -> None:
|
||||
audio = await self.audio_in_socket.recv()
|
||||
audio = np.frombuffer(audio, dtype=np.float32)
|
||||
speech = await self._transcribe(audio)
|
||||
if not speech:
|
||||
self.agent.logger.info("Nothing transcribed.")
|
||||
return
|
||||
|
||||
self.agent.logger.info("Transcribed speech: %s", speech)
|
||||
|
||||
await self._share_transcription(speech)
|
||||
self.logger.info("Finished setting up %s", self.name)
|
||||
|
||||
async def stop(self):
|
||||
assert self.audio_in_socket is not None
|
||||
self.audio_in_socket.close()
|
||||
self.audio_in_socket = None
|
||||
return await super().stop()
|
||||
@@ -75,13 +52,37 @@ class TranscriptionAgent(BaseAgent):
|
||||
self.audio_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
self.audio_in_socket.connect(self.audio_in_address)
|
||||
|
||||
async def setup(self):
|
||||
self.logger.info("Setting up %s", self.jid)
|
||||
async def _transcribe(self, audio: np.ndarray) -> str:
|
||||
assert self._concurrency is not None and self.speech_recognizer is not None
|
||||
async with self._concurrency:
|
||||
return await asyncio.to_thread(self.speech_recognizer.recognize_speech, audio)
|
||||
|
||||
self._connect_audio_in_socket()
|
||||
async def _share_transcription(self, transcription: str):
|
||||
"""Share a transcription to the other agents that depend on it."""
|
||||
receiver_names = [
|
||||
settings.agent_settings.text_belief_extractor_name,
|
||||
]
|
||||
|
||||
transcribing = self.TranscribingBehaviour(self.audio_in_socket)
|
||||
transcribing.warmup()
|
||||
self.add_behaviour(transcribing)
|
||||
for receiver_name in receiver_names:
|
||||
message = InternalMessage(
|
||||
to=receiver_name,
|
||||
sender=self.name,
|
||||
body=transcription,
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
self.logger.info("Finished setting up %s", self.jid)
|
||||
async def _transcribing_loop(self) -> None:
|
||||
while self._running:
|
||||
try:
|
||||
assert self.audio_in_socket is not None
|
||||
audio_data = await self.audio_in_socket.recv()
|
||||
audio = np.frombuffer(audio_data, dtype=np.float32)
|
||||
speech = await self._transcribe(audio)
|
||||
if not speech:
|
||||
self.logger.info("Nothing transcribed.")
|
||||
continue
|
||||
|
||||
self.logger.info("Transcribed speech: %s", speech)
|
||||
await self._share_transcription(speech)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in transcription loop: {e}")
|
||||
|
||||
Reference in New Issue
Block a user