feat: apply new agent naming standards
Expanding abbreviations to remove ambiguity, simplifying agent names to reduce repetition. ref: N25B-257
This commit is contained in:
4
src/control_backend/agents/perception/__init__.py
Normal file
4
src/control_backend/agents/perception/__init__.py
Normal file
@@ -0,0 +1,4 @@
|
||||
from .transcription_agent.transcription_agent import (
|
||||
TranscriptionAgent as TranscriptionAgent,
|
||||
)
|
||||
from .vad_agent import VADAgent as VADAgent
|
||||
@@ -0,0 +1,107 @@
|
||||
import abc
|
||||
import sys
|
||||
|
||||
if sys.platform == "darwin":
|
||||
import mlx.core as mx
|
||||
import mlx_whisper
|
||||
from mlx_whisper.transcribe import ModelHolder
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import whisper
|
||||
|
||||
|
||||
class SpeechRecognizer(abc.ABC):
|
||||
def __init__(self, limit_output_length=True):
|
||||
"""
|
||||
:param limit_output_length: When `True`, the length of the generated speech will be limited
|
||||
by the length of the input audio and some heuristics.
|
||||
"""
|
||||
self.limit_output_length = limit_output_length
|
||||
|
||||
@abc.abstractmethod
|
||||
def load_model(self): ...
|
||||
|
||||
@abc.abstractmethod
|
||||
def recognize_speech(self, audio: np.ndarray) -> str:
|
||||
"""
|
||||
Recognize speech from the given audio sample.
|
||||
|
||||
:param audio: A full utterance sample. Audio must be 16 kHz, mono, np.float32, values in the
|
||||
range [-1.0, 1.0].
|
||||
:return: Recognized speech.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def _estimate_max_tokens(audio: np.ndarray) -> int:
|
||||
"""
|
||||
Estimate the maximum length of a given audio sample in tokens. Assumes a maximum speaking
|
||||
rate of 450 words per minute (3x average), and assumes that 3 words is 4 tokens.
|
||||
|
||||
:param audio: The audio sample (16 kHz) to use for length estimation.
|
||||
:return: The estimated length of the transcribed audio in tokens.
|
||||
"""
|
||||
length_seconds = len(audio) / 16_000
|
||||
length_minutes = length_seconds / 60
|
||||
word_count = length_minutes * 450
|
||||
token_count = word_count / 3 * 4
|
||||
return int(token_count) + 10
|
||||
|
||||
def _get_decode_options(self, audio: np.ndarray) -> dict:
|
||||
"""
|
||||
:param audio: The audio sample (16 kHz) to use to determine options like max decode length.
|
||||
:return: A dict that can be used to construct `whisper.DecodingOptions`.
|
||||
"""
|
||||
options = {}
|
||||
if self.limit_output_length:
|
||||
options["sample_len"] = self._estimate_max_tokens(audio)
|
||||
return options
|
||||
|
||||
@staticmethod
|
||||
def best_type():
|
||||
"""Get the best type of SpeechRecognizer based on system capabilities."""
|
||||
if torch.mps.is_available():
|
||||
print("Choosing MLX Whisper model.")
|
||||
return MLXWhisperSpeechRecognizer()
|
||||
else:
|
||||
print("Choosing reference Whisper model.")
|
||||
return OpenAIWhisperSpeechRecognizer()
|
||||
|
||||
|
||||
class MLXWhisperSpeechRecognizer(SpeechRecognizer):
|
||||
def __init__(self, limit_output_length=True):
|
||||
super().__init__(limit_output_length)
|
||||
self.was_loaded = False
|
||||
self.model_name = "mlx-community/whisper-small.en-mlx"
|
||||
|
||||
def load_model(self):
|
||||
if self.was_loaded:
|
||||
return
|
||||
# There appears to be no dedicated mechanism to preload a model, but this `get_model` does
|
||||
# store it in memory for later usage
|
||||
ModelHolder.get_model(self.model_name, mx.float16)
|
||||
self.was_loaded = True
|
||||
|
||||
def recognize_speech(self, audio: np.ndarray) -> str:
|
||||
self.load_model()
|
||||
return mlx_whisper.transcribe(
|
||||
audio,
|
||||
path_or_hf_repo=self.model_name,
|
||||
**self._get_decode_options(audio),
|
||||
)["text"].strip()
|
||||
|
||||
|
||||
class OpenAIWhisperSpeechRecognizer(SpeechRecognizer):
|
||||
def __init__(self, limit_output_length=True):
|
||||
super().__init__(limit_output_length)
|
||||
self.model = None
|
||||
|
||||
def load_model(self):
|
||||
if self.model is not None:
|
||||
return
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
self.model = whisper.load_model("small.en", device=device)
|
||||
|
||||
def recognize_speech(self, audio: np.ndarray) -> str:
|
||||
self.load_model()
|
||||
return whisper.transcribe(self.model, audio, **self._get_decode_options(audio))["text"]
|
||||
@@ -0,0 +1,86 @@
|
||||
import asyncio
|
||||
|
||||
import numpy as np
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
from spade.behaviour import CyclicBehaviour
|
||||
from spade.message import Message
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.core.config import settings
|
||||
|
||||
from .speech_recognizer import SpeechRecognizer
|
||||
|
||||
|
||||
class TranscriptionAgent(BaseAgent):
|
||||
"""
|
||||
An agent which listens to audio fragments with voice, transcribes them, and sends the
|
||||
transcription to other agents.
|
||||
"""
|
||||
|
||||
def __init__(self, audio_in_address: str):
|
||||
jid = settings.agent_settings.transcription_name + "@" + settings.agent_settings.host
|
||||
super().__init__(jid, settings.agent_settings.transcription_name)
|
||||
|
||||
self.audio_in_address = audio_in_address
|
||||
self.audio_in_socket: azmq.Socket | None = None
|
||||
|
||||
class TranscribingBehaviour(CyclicBehaviour):
|
||||
def __init__(self, audio_in_socket: azmq.Socket):
|
||||
super().__init__()
|
||||
self.audio_in_socket = audio_in_socket
|
||||
self.speech_recognizer = SpeechRecognizer.best_type()
|
||||
self._concurrency = asyncio.Semaphore(3)
|
||||
|
||||
def warmup(self):
|
||||
"""Load the transcription model into memory to speed up the first transcription."""
|
||||
self.speech_recognizer.load_model()
|
||||
|
||||
async def _transcribe(self, audio: np.ndarray) -> str:
|
||||
async with self._concurrency:
|
||||
return await asyncio.to_thread(self.speech_recognizer.recognize_speech, audio)
|
||||
|
||||
async def _share_transcription(self, transcription: str):
|
||||
"""Share a transcription to the other agents that depend on it."""
|
||||
receiver_jids = [
|
||||
settings.agent_settings.texbdi_text_belief_agent_name
|
||||
+ "@"
|
||||
+ settings.agent_settings.host,
|
||||
] # Set message receivers here
|
||||
|
||||
for receiver_jid in receiver_jids:
|
||||
message = Message(to=receiver_jid, body=transcription)
|
||||
await self.send(message)
|
||||
|
||||
async def run(self) -> None:
|
||||
audio = await self.audio_in_socket.recv()
|
||||
audio = np.frombuffer(audio, dtype=np.float32)
|
||||
speech = await self._transcribe(audio)
|
||||
if not speech:
|
||||
self.agent.logger.info("Nothing transcribed.")
|
||||
return
|
||||
|
||||
self.agent.logger.info("Transcribed speech: %s", speech)
|
||||
|
||||
await self._share_transcription(speech)
|
||||
|
||||
async def stop(self):
|
||||
self.audio_in_socket.close()
|
||||
self.audio_in_socket = None
|
||||
return await super().stop()
|
||||
|
||||
def _connect_audio_in_socket(self):
|
||||
self.audio_in_socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
self.audio_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
self.audio_in_socket.connect(self.audio_in_address)
|
||||
|
||||
async def setup(self):
|
||||
self.logger.info("Setting up %s", self.jid)
|
||||
|
||||
self._connect_audio_in_socket()
|
||||
|
||||
transcribing = self.TranscribingBehaviour(self.audio_in_socket)
|
||||
transcribing.warmup()
|
||||
self.add_behaviour(transcribing)
|
||||
|
||||
self.logger.info("Finished setting up %s", self.jid)
|
||||
172
src/control_backend/agents/perception/vad_agent.py
Normal file
172
src/control_backend/agents/perception/vad_agent.py
Normal file
@@ -0,0 +1,172 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
from spade.behaviour import CyclicBehaviour
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.core.config import settings
|
||||
|
||||
from .transcription_agent.transcription_agent import TranscriptionAgent
|
||||
|
||||
|
||||
class SocketPoller[T]:
|
||||
"""
|
||||
Convenience class for polling a socket for data with a timeout, persisting a zmq.Poller for
|
||||
multiple usages.
|
||||
"""
|
||||
|
||||
def __init__(self, socket: azmq.Socket, timeout_ms: int = 100):
|
||||
"""
|
||||
:param socket: The socket to poll and get data from.
|
||||
:param timeout_ms: A timeout in milliseconds to wait for data.
|
||||
"""
|
||||
self.socket = socket
|
||||
self.poller = zmq.Poller()
|
||||
self.poller.register(self.socket, zmq.POLLIN)
|
||||
self.timeout_ms = timeout_ms
|
||||
|
||||
async def poll(self, timeout_ms: int | None = None) -> T | None:
|
||||
"""
|
||||
Get data from the socket, or None if the timeout is reached.
|
||||
|
||||
:param timeout_ms: If given, the timeout. Otherwise, `self.timeout_ms` is used.
|
||||
:return: Data from the socket or None.
|
||||
"""
|
||||
timeout_ms = timeout_ms or self.timeout_ms
|
||||
socks = dict(self.poller.poll(timeout_ms))
|
||||
if socks.get(self.socket) == zmq.POLLIN:
|
||||
return await self.socket.recv()
|
||||
return None
|
||||
|
||||
|
||||
class StreamingBehaviour(CyclicBehaviour):
|
||||
def __init__(self, audio_in_socket: azmq.Socket, audio_out_socket: azmq.Socket):
|
||||
super().__init__()
|
||||
self.audio_in_poller = SocketPoller[bytes](audio_in_socket)
|
||||
self.model, _ = torch.hub.load(
|
||||
repo_or_dir="snakers4/silero-vad", model="silero_vad", force_reload=False
|
||||
)
|
||||
self.audio_out_socket = audio_out_socket
|
||||
|
||||
self.audio_buffer = np.array([], dtype=np.float32)
|
||||
self.i_since_speech = 100 # Used to allow small pauses in speech
|
||||
self._ready = False
|
||||
|
||||
async def reset(self):
|
||||
"""Clears the ZeroMQ queue and tells this behavior to start."""
|
||||
discarded = 0
|
||||
while await self.audio_in_poller.poll(1) is not None:
|
||||
discarded += 1
|
||||
self.agent.logger.info(f"Discarded {discarded} audio packets before starting.")
|
||||
self._ready = True
|
||||
|
||||
async def run(self) -> None:
|
||||
if not self._ready:
|
||||
return
|
||||
|
||||
data = await self.audio_in_poller.poll()
|
||||
if data is None:
|
||||
if len(self.audio_buffer) > 0:
|
||||
self.agent.logger.debug(
|
||||
"No audio data received. Discarding buffer until new data arrives."
|
||||
)
|
||||
self.audio_buffer = np.array([], dtype=np.float32)
|
||||
self.i_since_speech = 100
|
||||
return
|
||||
|
||||
# copy otherwise Torch will be sad that it's immutable
|
||||
chunk = np.frombuffer(data, dtype=np.float32).copy()
|
||||
prob = self.model(torch.from_numpy(chunk), 16000).item()
|
||||
|
||||
if prob > 0.5:
|
||||
if self.i_since_speech > 3:
|
||||
self.agent.logger.debug("Speech started.")
|
||||
self.audio_buffer = np.append(self.audio_buffer, chunk)
|
||||
self.i_since_speech = 0
|
||||
return
|
||||
self.i_since_speech += 1
|
||||
|
||||
# prob < 0.5, so speech maybe ended. Wait a bit more before to be more certain
|
||||
if self.i_since_speech <= 3:
|
||||
self.audio_buffer = np.append(self.audio_buffer, chunk)
|
||||
return
|
||||
|
||||
# Speech probably ended. Make sure we have a usable amount of data.
|
||||
if len(self.audio_buffer) >= 3 * len(chunk):
|
||||
self.agent.logger.debug("Speech ended.")
|
||||
await self.audio_out_socket.send(self.audio_buffer[: -2 * len(chunk)].tobytes())
|
||||
|
||||
# At this point, we know that the speech has ended.
|
||||
# Prepend the last chunk that had no speech, for a more fluent boundary
|
||||
self.audio_buffer = chunk
|
||||
|
||||
|
||||
class VADAgent(BaseAgent):
|
||||
"""
|
||||
An agent which listens to an audio stream, does Voice Activity Detection (VAD), and sends
|
||||
fragments with detected speech to other agents over ZeroMQ.
|
||||
"""
|
||||
|
||||
def __init__(self, audio_in_address: str, audio_in_bind: bool):
|
||||
jid = settings.agent_settings.vad_name + "@" + settings.agent_settings.host
|
||||
super().__init__(jid, settings.agent_settings.vad_name)
|
||||
|
||||
self.audio_in_address = audio_in_address
|
||||
self.audio_in_bind = audio_in_bind
|
||||
|
||||
self.audio_in_socket: azmq.Socket | None = None
|
||||
self.audio_out_socket: azmq.Socket | None = None
|
||||
|
||||
self.streaming_behaviour: StreamingBehaviour | None = None
|
||||
|
||||
async def stop(self):
|
||||
"""
|
||||
Stop listening to audio, stop publishing audio, close sockets.
|
||||
"""
|
||||
if self.audio_in_socket is not None:
|
||||
self.audio_in_socket.close()
|
||||
self.audio_in_socket = None
|
||||
if self.audio_out_socket is not None:
|
||||
self.audio_out_socket.close()
|
||||
self.audio_out_socket = None
|
||||
return await super().stop()
|
||||
|
||||
def _connect_audio_in_socket(self):
|
||||
self.audio_in_socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
self.audio_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
if self.audio_in_bind:
|
||||
self.audio_in_socket.bind(self.audio_in_address)
|
||||
else:
|
||||
self.audio_in_socket.connect(self.audio_in_address)
|
||||
self.audio_in_poller = SocketPoller[bytes](self.audio_in_socket)
|
||||
|
||||
def _connect_audio_out_socket(self) -> int | None:
|
||||
"""Returns the port bound, or None if binding failed."""
|
||||
try:
|
||||
self.audio_out_socket = azmq.Context.instance().socket(zmq.PUB)
|
||||
return self.audio_out_socket.bind_to_random_port("tcp://*", max_tries=100)
|
||||
except zmq.ZMQBindError:
|
||||
self.logger.error("Failed to bind an audio output socket after 100 tries.")
|
||||
self.audio_out_socket = None
|
||||
return None
|
||||
|
||||
async def setup(self):
|
||||
self.logger.info("Setting up %s", self.jid)
|
||||
|
||||
self._connect_audio_in_socket()
|
||||
|
||||
audio_out_port = self._connect_audio_out_socket()
|
||||
if audio_out_port is None:
|
||||
await self.stop()
|
||||
return
|
||||
audio_out_address = f"tcp://localhost:{audio_out_port}"
|
||||
|
||||
self.streaming_behaviour = StreamingBehaviour(self.audio_in_socket, self.audio_out_socket)
|
||||
self.add_behaviour(self.streaming_behaviour)
|
||||
|
||||
# Start agents dependent on the output audio fragments here
|
||||
transcriber = TranscriptionAgent(audio_out_address)
|
||||
await transcriber.start()
|
||||
|
||||
self.logger.info("Finished setting up %s", self.jid)
|
||||
Reference in New Issue
Block a user