Merge branch 'feat/reset-experiment-and-phase' into feat/visual-emotion-recognition
This commit is contained in:
@@ -1 +1,5 @@
|
||||
"""
|
||||
This package contains all agent implementations for the PepperPlus Control Backend.
|
||||
"""
|
||||
|
||||
from .base import BaseAgent as BaseAgent
|
||||
|
||||
@@ -1,2 +1,6 @@
|
||||
"""
|
||||
Agents responsible for controlling the robot's physical actions, such as speech and gestures.
|
||||
"""
|
||||
|
||||
from .robot_gesture_agent import RobotGestureAgent as RobotGestureAgent
|
||||
from .robot_speech_agent import RobotSpeechAgent as RobotSpeechAgent
|
||||
|
||||
@@ -1,8 +1,10 @@
|
||||
"""
|
||||
Agents and utilities for the BDI (Belief-Desire-Intention) reasoning system,
|
||||
implementing AgentSpeak(L) logic.
|
||||
"""
|
||||
|
||||
from control_backend.agents.bdi.bdi_core_agent import BDICoreAgent as BDICoreAgent
|
||||
|
||||
from .belief_collector_agent import (
|
||||
BDIBeliefCollectorAgent as BDIBeliefCollectorAgent,
|
||||
)
|
||||
from .text_belief_extractor_agent import (
|
||||
TextBeliefExtractorAgent as TextBeliefExtractorAgent,
|
||||
)
|
||||
|
||||
@@ -77,10 +77,10 @@ class AstTerm(AstExpression, ABC):
|
||||
return AstBinaryOp(self, BinaryOperatorType.NOT_EQUALS, _coalesce_expr(other))
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstAtom(AstTerm):
|
||||
"""
|
||||
Grounded expression in all lowercase.
|
||||
Represents a grounded atom in AgentSpeak (e.g., lowercase constants).
|
||||
"""
|
||||
|
||||
value: str
|
||||
@@ -89,10 +89,10 @@ class AstAtom(AstTerm):
|
||||
return self.value.lower()
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstVar(AstTerm):
|
||||
"""
|
||||
Ungrounded variable expression. First letter capitalized.
|
||||
Represents an ungrounded variable in AgentSpeak (e.g., capitalized names).
|
||||
"""
|
||||
|
||||
name: str
|
||||
@@ -101,24 +101,36 @@ class AstVar(AstTerm):
|
||||
return self.name.capitalize()
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstNumber(AstTerm):
|
||||
"""
|
||||
Represents a numeric constant in AgentSpeak.
|
||||
"""
|
||||
|
||||
value: int | float
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
return str(self.value)
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstString(AstTerm):
|
||||
"""
|
||||
Represents a string literal in AgentSpeak.
|
||||
"""
|
||||
|
||||
value: str
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
return f'"{self.value}"'
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstLiteral(AstTerm):
|
||||
"""
|
||||
Represents a literal (functor and terms) in AgentSpeak.
|
||||
"""
|
||||
|
||||
functor: str
|
||||
terms: list[AstTerm] = field(default_factory=list)
|
||||
|
||||
@@ -142,6 +154,10 @@ class BinaryOperatorType(StrEnum):
|
||||
|
||||
@dataclass
|
||||
class AstBinaryOp(AstExpression):
|
||||
"""
|
||||
Represents a binary logical or relational operation in AgentSpeak.
|
||||
"""
|
||||
|
||||
left: AstExpression
|
||||
operator: BinaryOperatorType
|
||||
right: AstExpression
|
||||
@@ -167,6 +183,10 @@ class AstBinaryOp(AstExpression):
|
||||
|
||||
@dataclass
|
||||
class AstLogicalExpression(AstExpression):
|
||||
"""
|
||||
Represents a logical expression, potentially negated, in AgentSpeak.
|
||||
"""
|
||||
|
||||
expression: AstExpression
|
||||
negated: bool = False
|
||||
|
||||
@@ -208,6 +228,10 @@ class AstStatement(AstNode):
|
||||
|
||||
@dataclass
|
||||
class AstRule(AstNode):
|
||||
"""
|
||||
Represents an inference rule in AgentSpeak. If there is no condition, it always holds.
|
||||
"""
|
||||
|
||||
result: AstExpression
|
||||
condition: AstExpression | None = None
|
||||
|
||||
@@ -231,6 +255,10 @@ class TriggerType(StrEnum):
|
||||
|
||||
@dataclass
|
||||
class AstPlan(AstNode):
|
||||
"""
|
||||
Represents a plan in AgentSpeak, consisting of a trigger, context, and body.
|
||||
"""
|
||||
|
||||
type: TriggerType
|
||||
trigger_literal: AstExpression
|
||||
context: list[AstExpression]
|
||||
@@ -260,6 +288,10 @@ class AstPlan(AstNode):
|
||||
|
||||
@dataclass
|
||||
class AstProgram(AstNode):
|
||||
"""
|
||||
Represents a full AgentSpeak program, consisting of rules and plans.
|
||||
"""
|
||||
|
||||
rules: list[AstRule] = field(default_factory=list)
|
||||
plans: list[AstPlan] = field(default_factory=list)
|
||||
|
||||
|
||||
@@ -40,9 +40,23 @@ from control_backend.schemas.program import (
|
||||
|
||||
|
||||
class AgentSpeakGenerator:
|
||||
"""
|
||||
Generator class that translates a high-level :class:`~control_backend.schemas.program.Program`
|
||||
into AgentSpeak(L) source code.
|
||||
|
||||
It handles the conversion of phases, norms, goals, and triggers into AgentSpeak rules and plans,
|
||||
ensuring the robot follows the defined behavioral logic.
|
||||
"""
|
||||
|
||||
_asp: AstProgram
|
||||
|
||||
def generate(self, program: Program) -> str:
|
||||
"""
|
||||
Translates a Program object into an AgentSpeak source string.
|
||||
|
||||
:param program: The behavior program to translate.
|
||||
:return: The generated AgentSpeak code as a string.
|
||||
"""
|
||||
self._asp = AstProgram()
|
||||
|
||||
if program.phases:
|
||||
@@ -424,6 +438,16 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
)
|
||||
|
||||
# Force phase transition fallback
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("force_transition_phase"),
|
||||
[],
|
||||
[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
|
||||
)
|
||||
)
|
||||
|
||||
@singledispatchmethod
|
||||
def _astify(self, element: ProgramElement) -> AstExpression:
|
||||
raise NotImplementedError(f"Cannot convert element {element} to an AgentSpeak expression.")
|
||||
|
||||
@@ -167,7 +167,7 @@ class BDICoreAgent(BaseAgent):
|
||||
case "force_next_phase":
|
||||
self._force_next_phase()
|
||||
case _:
|
||||
self.logger.warning("Received unknow user interruption: %s", msg)
|
||||
self.logger.warning("Received unknown user interruption: %s", msg)
|
||||
|
||||
def _apply_belief_changes(self, belief_changes: BeliefMessage):
|
||||
"""
|
||||
|
||||
@@ -1,152 +0,0 @@
|
||||
import json
|
||||
|
||||
from pydantic import ValidationError
|
||||
|
||||
from control_backend.agents.base import BaseAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
|
||||
|
||||
class BDIBeliefCollectorAgent(BaseAgent):
|
||||
"""
|
||||
BDI Belief Collector Agent.
|
||||
|
||||
This agent acts as a central aggregator for beliefs derived from various sources (e.g., text,
|
||||
emotion, vision). It receives raw extracted data from other agents,
|
||||
normalizes them into valid :class:`Belief` objects, and forwards them as a unified packet to the
|
||||
BDI Core Agent.
|
||||
|
||||
It serves as a funnel to ensure the BDI agent receives a consistent stream of beliefs.
|
||||
"""
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent.
|
||||
"""
|
||||
self.logger.info("Setting up %s", self.name)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming messages from other extractor agents.
|
||||
|
||||
Routes the message to specific handlers based on the 'type' field in the JSON body.
|
||||
Supported types:
|
||||
- ``belief_extraction_text``: Handled by :meth:`_handle_belief_text`
|
||||
- ``emotion_extraction_text``: Handled by :meth:`_handle_emo_text`
|
||||
|
||||
:param msg: The received internal message.
|
||||
"""
|
||||
sender_node = msg.sender
|
||||
|
||||
# Parse JSON payload
|
||||
try:
|
||||
payload = json.loads(msg.body)
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"BeliefCollector: failed to parse JSON from %s. Body=%r Error=%s",
|
||||
sender_node,
|
||||
msg.body,
|
||||
e,
|
||||
)
|
||||
return
|
||||
|
||||
msg_type = payload.get("type")
|
||||
|
||||
# Prefer explicit 'type' field
|
||||
if msg_type == "belief_extraction_text":
|
||||
self.logger.debug("Message routed to _handle_belief_text (sender=%s)", sender_node)
|
||||
await self._handle_belief_text(payload, sender_node)
|
||||
# This is not implemented yet, but we keep the structure for future use
|
||||
elif msg_type == "emotion_extraction_text":
|
||||
self.logger.debug("Message routed to _handle_emo_text (sender=%s)", sender_node)
|
||||
await self._handle_emo_text(payload, sender_node)
|
||||
else:
|
||||
self.logger.warning(
|
||||
"Unrecognized message (sender=%s, type=%r). Ignoring.", sender_node, msg_type
|
||||
)
|
||||
|
||||
async def _handle_belief_text(self, payload: dict, origin: str):
|
||||
"""
|
||||
Process text-based belief extraction payloads.
|
||||
|
||||
Expected payload format::
|
||||
|
||||
{
|
||||
"type": "belief_extraction_text",
|
||||
"beliefs": {
|
||||
"user_said": ["Can you help me?"],
|
||||
"intention": ["ask_help"]
|
||||
}
|
||||
}
|
||||
|
||||
Validates and converts the dictionary items into :class:`Belief` objects.
|
||||
|
||||
:param payload: The dictionary payload containing belief data.
|
||||
:param origin: The name of the sender agent.
|
||||
"""
|
||||
beliefs = payload.get("beliefs", {})
|
||||
|
||||
if not beliefs:
|
||||
self.logger.debug("Received empty beliefs set.")
|
||||
return
|
||||
|
||||
def try_create_belief(name, arguments) -> Belief | None:
|
||||
"""
|
||||
Create a belief object from name and arguments, or return None silently if the input is
|
||||
not correct.
|
||||
|
||||
:param name: The name of the belief.
|
||||
:param arguments: The arguments of the belief.
|
||||
:return: A Belief object if the input is valid or None.
|
||||
"""
|
||||
try:
|
||||
return Belief(name=name, arguments=arguments)
|
||||
except ValidationError:
|
||||
return None
|
||||
|
||||
beliefs = [
|
||||
belief
|
||||
for name, arguments in beliefs.items()
|
||||
if (belief := try_create_belief(name, arguments)) is not None
|
||||
]
|
||||
|
||||
self.logger.debug("Forwarding %d beliefs.", len(beliefs))
|
||||
for belief in beliefs:
|
||||
for argument in belief.arguments:
|
||||
self.logger.debug(" - %s %s", belief.name, argument)
|
||||
|
||||
await self._send_beliefs_to_bdi(beliefs, origin=origin)
|
||||
|
||||
async def _handle_emo_text(self, payload: dict, origin: str):
|
||||
"""
|
||||
Process emotion extraction payloads.
|
||||
|
||||
**TODO**: Implement this method once emotion recognition is integrated.
|
||||
|
||||
:param payload: The dictionary payload containing emotion data.
|
||||
:param origin: The name of the sender agent.
|
||||
"""
|
||||
pass
|
||||
|
||||
async def _send_beliefs_to_bdi(self, beliefs: list[Belief], origin: str | None = None):
|
||||
"""
|
||||
Send a list of aggregated beliefs to the BDI Core Agent.
|
||||
|
||||
Wraps the beliefs in a :class:`BeliefMessage` and sends it via the 'beliefs' thread.
|
||||
|
||||
:param beliefs: The list of Belief objects to send.
|
||||
:param origin: (Optional) The original source of the beliefs (unused currently).
|
||||
"""
|
||||
if not beliefs:
|
||||
return
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=BeliefMessage(create=beliefs).model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
|
||||
await self.send(msg)
|
||||
self.logger.info("Sent %d belief(s) to BDI core.", len(beliefs))
|
||||
@@ -18,6 +18,12 @@ type JSONLike = None | bool | int | float | str | list["JSONLike"] | dict[str, "
|
||||
|
||||
|
||||
class BeliefState(BaseModel):
|
||||
"""
|
||||
Represents the state of inferred semantic beliefs.
|
||||
|
||||
Maintains sets of beliefs that are currently considered true or false.
|
||||
"""
|
||||
|
||||
true: set[InternalBelief] = set()
|
||||
false: set[InternalBelief] = set()
|
||||
|
||||
@@ -338,7 +344,7 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
|
||||
class SemanticBeliefInferrer:
|
||||
"""
|
||||
Class that handles only prompting an LLM for semantic beliefs.
|
||||
Infers semantic beliefs from conversation history using an LLM.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -464,6 +470,10 @@ Respond with a JSON similar to the following, but with the property names as giv
|
||||
|
||||
|
||||
class GoalAchievementInferrer(SemanticBeliefInferrer):
|
||||
"""
|
||||
Infers whether specific conversational goals have been achieved using an LLM.
|
||||
"""
|
||||
|
||||
def __init__(self, llm: TextBeliefExtractorAgent.LLM):
|
||||
super().__init__(llm)
|
||||
self.goals: set[BaseGoal] = set()
|
||||
|
||||
@@ -1 +1,5 @@
|
||||
"""
|
||||
Agents responsible for external communication and service discovery.
|
||||
"""
|
||||
|
||||
from .ri_communication_agent import RICommunicationAgent as RICommunicationAgent
|
||||
|
||||
@@ -334,7 +334,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
try:
|
||||
pause_command = PauseCommand.model_validate_json(msg.body)
|
||||
self._req_socket.send_json(pause_command.model_dump())
|
||||
self.logger.debug(self._req_socket.recv_json())
|
||||
await self._req_socket.send_json(pause_command.model_dump())
|
||||
self.logger.debug(await self._req_socket.recv_json())
|
||||
except ValidationError:
|
||||
self.logger.warning("Incorrect message format for PauseCommand.")
|
||||
|
||||
@@ -1 +1,5 @@
|
||||
"""
|
||||
Agents that interface with Large Language Models for natural language processing and generation.
|
||||
"""
|
||||
|
||||
from .llm_agent import LLMAgent as LLMAgent
|
||||
|
||||
@@ -1,3 +1,8 @@
|
||||
"""
|
||||
Agents responsible for processing sensory input, such as audio transcription and voice activity
|
||||
detection.
|
||||
"""
|
||||
|
||||
from .transcription_agent.transcription_agent import (
|
||||
TranscriptionAgent as TranscriptionAgent,
|
||||
)
|
||||
|
||||
@@ -74,7 +74,7 @@ class TranscriptionAgent(BaseAgent):
|
||||
|
||||
def _connect_audio_in_socket(self):
|
||||
"""
|
||||
Helper to connect the ZMQ SUB socket for audio input.
|
||||
Connects the ZMQ SUB socket for receiving audio data.
|
||||
"""
|
||||
self.audio_in_socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
self.audio_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
|
||||
@@ -26,7 +26,7 @@ class UserInterruptAgent(BaseAgent):
|
||||
|
||||
- Send a prioritized message to the `RobotSpeechAgent`
|
||||
- Send a prioritized gesture to the `RobotGestureAgent`
|
||||
- Send a belief override to the `BDIProgramManager`in order to activate a
|
||||
- Send a belief override to the `BDI Core` in order to activate a
|
||||
trigger/conditional norm or complete a goal.
|
||||
|
||||
Prioritized actions clear the current RI queue before inserting the new item,
|
||||
@@ -50,10 +50,8 @@ class UserInterruptAgent(BaseAgent):
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent.
|
||||
|
||||
Connects the internal ZMQ SUB socket and subscribes to the 'button_pressed' topic.
|
||||
Starts the background behavior to receive the user interrupts.
|
||||
Initialize the agent by setting up ZMQ sockets for receiving button events and
|
||||
publishing updates.
|
||||
"""
|
||||
context = Context.instance()
|
||||
|
||||
@@ -68,17 +66,15 @@ class UserInterruptAgent(BaseAgent):
|
||||
|
||||
async def _receive_button_event(self):
|
||||
"""
|
||||
The behaviour of the UserInterruptAgent.
|
||||
Continuous loop that receives button_pressed events from the button_pressed HTTP endpoint.
|
||||
These events contain a type and a context.
|
||||
Main loop to receive and process button press events from the UI.
|
||||
|
||||
These are the different types and contexts:
|
||||
- type: "speech", context: string that the robot has to say.
|
||||
- type: "gesture", context: single gesture name that the robot has to perform.
|
||||
- type: "override", context: belief_id that overrides the goal/trigger/conditional norm.
|
||||
- type: "pause", context: boolean indicating whether to pause
|
||||
- type: "reset_phase", context: None, indicates to the BDI Core to
|
||||
- type: "reset_experiment", context: None, indicates to the BDI Core to
|
||||
Handles different event types:
|
||||
- `speech`: Triggers immediate robot speech.
|
||||
- `gesture`: Triggers an immediate robot gesture.
|
||||
- `override`: Forces a belief, trigger, or goal completion in the BDI core.
|
||||
- `override_unachieve`: Removes a belief from the BDI core.
|
||||
- `pause`: Toggles the system's pause state.
|
||||
- `next_phase` / `reset_phase`: Controls experiment flow.
|
||||
"""
|
||||
while True:
|
||||
topic, body = await self.sub_socket.recv_multipart()
|
||||
@@ -93,71 +89,88 @@ class UserInterruptAgent(BaseAgent):
|
||||
|
||||
self.logger.debug("Received event type %s", event_type)
|
||||
|
||||
if event_type == "speech":
|
||||
await self._send_to_speech_agent(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (speech) with context '%s' to RobotSpeechAgent.",
|
||||
event_context,
|
||||
)
|
||||
elif event_type == "gesture":
|
||||
await self._send_to_gesture_agent(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (gesture) with context '%s' to RobotGestureAgent.",
|
||||
event_context,
|
||||
)
|
||||
elif event_type == "override":
|
||||
ui_id = str(event_context)
|
||||
if asl_trigger := self._trigger_map.get(ui_id):
|
||||
await self._send_to_bdi("force_trigger", asl_trigger)
|
||||
match event_type:
|
||||
case "speech":
|
||||
await self._send_to_speech_agent(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDI Core.",
|
||||
"Forwarded button press (speech) with context '%s' to RobotSpeechAgent.",
|
||||
event_context,
|
||||
)
|
||||
elif asl_cond_norm := self._cond_norm_map.get(ui_id):
|
||||
await self._send_to_bdi("force_norm", asl_cond_norm)
|
||||
case "gesture":
|
||||
await self._send_to_gesture_agent(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDIProgramManager.",
|
||||
"Forwarded button press (gesture) with context '%s' to RobotGestureAgent.",
|
||||
event_context,
|
||||
)
|
||||
elif asl_goal := self._goal_map.get(ui_id):
|
||||
await self._send_to_bdi_belief(asl_goal)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDI Core.",
|
||||
case "override":
|
||||
ui_id = str(event_context)
|
||||
if asl_trigger := self._trigger_map.get(ui_id):
|
||||
await self._send_to_bdi("force_trigger", asl_trigger)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDI Core.",
|
||||
event_context,
|
||||
)
|
||||
elif asl_cond_norm := self._cond_norm_map.get(ui_id):
|
||||
await self._send_to_bdi_belief(asl_cond_norm, "cond_norm")
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDI Core.",
|
||||
event_context,
|
||||
)
|
||||
elif asl_goal := self._goal_map.get(ui_id):
|
||||
await self._send_to_bdi_belief(asl_goal, "goal")
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDI Core.",
|
||||
event_context,
|
||||
)
|
||||
# Send achieve_goal to program manager to update semantic belief extractor
|
||||
goal_achieve_msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_program_manager_name,
|
||||
thread="achieve_goal",
|
||||
body=ui_id,
|
||||
)
|
||||
|
||||
await self.send(goal_achieve_msg)
|
||||
else:
|
||||
self.logger.warning("Could not determine which element to override.")
|
||||
case "override_unachieve":
|
||||
ui_id = str(event_context)
|
||||
if asl_cond_norm := self._cond_norm_map.get(ui_id):
|
||||
await self._send_to_bdi_belief(asl_cond_norm, "cond_norm", True)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override_unachieve)"
|
||||
"with context '%s' to BDI Core.",
|
||||
event_context,
|
||||
)
|
||||
else:
|
||||
self.logger.warning(
|
||||
"Could not determine which conditional norm to unachieve."
|
||||
)
|
||||
|
||||
case "pause":
|
||||
self.logger.debug(
|
||||
"Received pause/resume button press with context '%s'.", event_context
|
||||
)
|
||||
await self._send_pause_command(event_context)
|
||||
if event_context:
|
||||
self.logger.info("Sent pause command.")
|
||||
else:
|
||||
self.logger.info("Sent resume command.")
|
||||
|
||||
case "next_phase" | "reset_phase":
|
||||
await self._send_experiment_control_to_bdi_core(event_type)
|
||||
case _:
|
||||
self.logger.warning(
|
||||
"Received button press with unknown type '%s' (context: '%s').",
|
||||
event_type,
|
||||
event_context,
|
||||
)
|
||||
|
||||
goal_achieve_msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_program_manager_name,
|
||||
thread="achieve_goal",
|
||||
body=ui_id,
|
||||
)
|
||||
|
||||
await self.send(goal_achieve_msg)
|
||||
else:
|
||||
self.logger.warning("Could not determine which element to override.")
|
||||
|
||||
elif event_type == "pause":
|
||||
self.logger.debug(
|
||||
"Received pause/resume button press with context '%s'.", event_context
|
||||
)
|
||||
await self._send_pause_command(event_context)
|
||||
if event_context:
|
||||
self.logger.info("Sent pause command.")
|
||||
else:
|
||||
self.logger.info("Sent resume command.")
|
||||
|
||||
elif event_type in ["next_phase", "reset_phase", "reset_experiment"]:
|
||||
await self._send_experiment_control_to_bdi_core(event_type)
|
||||
else:
|
||||
self.logger.warning(
|
||||
"Received button press with unknown type '%s' (context: '%s').",
|
||||
event_type,
|
||||
event_context,
|
||||
)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle commands received from other internal Python agents.
|
||||
Handles internal messages from other agents, such as program updates or trigger
|
||||
notifications.
|
||||
|
||||
:param msg: The incoming :class:`~control_backend.core.agent_system.InternalMessage`.
|
||||
"""
|
||||
match msg.thread:
|
||||
case "new_program":
|
||||
@@ -171,11 +184,9 @@ class UserInterruptAgent(BaseAgent):
|
||||
payload = {"type": "trigger_update", "id": ui_id, "achieved": True}
|
||||
await self._send_experiment_update(payload)
|
||||
self.logger.info(f"UI Update: Trigger {asl_slug} started (ID: {ui_id})")
|
||||
|
||||
case "trigger_end":
|
||||
asl_slug = msg.body
|
||||
ui_id = self._trigger_reverse_map.get(asl_slug)
|
||||
|
||||
if ui_id:
|
||||
payload = {"type": "trigger_update", "id": ui_id, "achieved": False}
|
||||
await self._send_experiment_update(payload)
|
||||
@@ -195,31 +206,37 @@ class UserInterruptAgent(BaseAgent):
|
||||
await self._send_experiment_update(payload)
|
||||
self.logger.info(f"UI Update: Goal {goal_name} started (ID: {ui_id})")
|
||||
case "active_norms_update":
|
||||
norm_list = [s.strip("() '\",") for s in msg.body.split(",") if s.strip("() '\",")]
|
||||
|
||||
await self._broadcast_cond_norms(norm_list)
|
||||
active_norms_asl = [
|
||||
s.strip("() '\",") for s in msg.body.split(",") if s.strip("() '\",")
|
||||
]
|
||||
await self._broadcast_cond_norms(active_norms_asl)
|
||||
case _:
|
||||
self.logger.debug(f"Received internal message on unhandled thread: {msg.thread}")
|
||||
|
||||
async def _broadcast_cond_norms(self, active_slugs: list[str]):
|
||||
"""
|
||||
Sends the current state of all conditional norms to the UI.
|
||||
:param active_slugs: A list of slugs (strings) currently active in the BDI core.
|
||||
Broadcasts the current activation state of all conditional norms to the UI.
|
||||
|
||||
:param active_slugs: A list of sluggified norm names currently active in the BDI core.
|
||||
"""
|
||||
updates = []
|
||||
|
||||
for asl_slug, ui_id in self._cond_norm_reverse_map.items():
|
||||
is_active = asl_slug in active_slugs
|
||||
updates.append({"id": ui_id, "name": asl_slug, "active": is_active})
|
||||
updates.append({"id": ui_id, "active": is_active})
|
||||
|
||||
payload = {"type": "cond_norms_state_update", "norms": updates}
|
||||
|
||||
await self._send_experiment_update(payload, should_log=False)
|
||||
# self.logger.debug(f"Broadcasted state for {len(updates)} conditional norms.")
|
||||
if self.pub_socket:
|
||||
topic = b"status"
|
||||
body = json.dumps(payload).encode("utf-8")
|
||||
await self.pub_socket.send_multipart([topic, body])
|
||||
# self.logger.info(f"UI Update: Active norms {updates}")
|
||||
|
||||
def _create_mapping(self, program_json: str):
|
||||
"""
|
||||
Create mappings between UI IDs and ASL slugs for triggers, goals, and conditional norms
|
||||
Creates a bidirectional mapping between UI identifiers and AgentSpeak slugs.
|
||||
|
||||
:param program_json: The JSON representation of the behavioral program.
|
||||
"""
|
||||
try:
|
||||
program = Program.model_validate_json(program_json)
|
||||
@@ -261,8 +278,10 @@ class UserInterruptAgent(BaseAgent):
|
||||
|
||||
async def _send_experiment_update(self, data, should_log: bool = True):
|
||||
"""
|
||||
Sends an update to the 'experiment' topic.
|
||||
The SSE endpoint will pick this up and push it to the UI.
|
||||
Publishes an experiment state update to the internal ZMQ bus for the UI.
|
||||
|
||||
:param data: The update payload.
|
||||
:param should_log: Whether to log the update.
|
||||
"""
|
||||
if self.pub_socket:
|
||||
topic = b"experiment"
|
||||
@@ -308,12 +327,20 @@ class UserInterruptAgent(BaseAgent):
|
||||
await self.send(msg)
|
||||
self.logger.info(f"Directly forced {thread} in BDI: {body}")
|
||||
|
||||
async def _send_to_bdi_belief(self, asl_goal: str):
|
||||
async def _send_to_bdi_belief(self, asl: str, asl_type: str, unachieve: bool = False):
|
||||
"""Send belief to BDI Core"""
|
||||
belief_name = f"achieved_{asl_goal}"
|
||||
if asl_type == "goal":
|
||||
belief_name = f"achieved_{asl}"
|
||||
elif asl_type == "cond_norm":
|
||||
belief_name = f"force_{asl}"
|
||||
else:
|
||||
self.logger.warning("Tried to send belief with unknown type")
|
||||
belief = Belief(name=belief_name, arguments=None)
|
||||
self.logger.debug(f"Sending belief to BDI Core: {belief_name}")
|
||||
belief_message = BeliefMessage(create=[belief])
|
||||
# Conditional norms are unachieved by removing the belief
|
||||
belief_message = (
|
||||
BeliefMessage(delete=[belief]) if unachieve else BeliefMessage(create=[belief])
|
||||
)
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
thread="beliefs",
|
||||
|
||||
Reference in New Issue
Block a user