feat: LLM agent #12
11
README.md
11
README.md
@@ -16,6 +16,17 @@ Using UV, installing the packages and virtual environment is as simple as typing
|
|||||||
uv sync
|
uv sync
|
||||||
```
|
```
|
||||||
|
|
||||||
|
## Local LLM
|
||||||
|
|
||||||
|
To run a LLM locally download https://lmstudio.ai
|
||||||
|
When installing select developer mode, download a model (it will already suggest one) and run it (see developer window, status: running)
|
||||||
|
|
||||||
|
copy the url at the top right and replace local_llm_url with it + v1/chat/completions.
|
||||||
|
This + part might differ based on what model you choose.
|
||||||
|
|
||||||
|
copy the model name in the module loaded and replace local_llm_modelL. In settings.
|
||||||
|
|
||||||
|
|
||||||
## Running
|
## Running
|
||||||
To run the project (development server), execute the following command (while inside the root repository):
|
To run the project (development server), execute the following command (while inside the root repository):
|
||||||
|
|
||||||
|
|||||||
@@ -1,11 +1,15 @@
|
|||||||
import asyncio
|
|
||||||
import logging
|
import logging
|
||||||
|
|
||||||
import agentspeak
|
import agentspeak
|
||||||
import spade_bdi.bdi
|
from spade.behaviour import OneShotBehaviour
|
||||||
|
from spade.message import Message
|
||||||
from spade_bdi.bdi import BDIAgent
|
from spade_bdi.bdi import BDIAgent
|
||||||
|
|
||||||
from control_backend.agents.bdi.behaviours.belief_setter import BeliefSetterBehaviour
|
from control_backend.agents.bdi.behaviours.belief_setter import BeliefSetterBehaviour
|
||||||
|
from control_backend.agents.bdi.behaviours.receive_llm_resp_behaviour import (
|
||||||
|
ReceiveLLMResponseBehaviour,
|
||||||
|
)
|
||||||
|
from control_backend.core.config import settings
|
||||||
|
|
||||||
|
|
||||||
class BDICoreAgent(BDIAgent):
|
class BDICoreAgent(BDIAgent):
|
||||||
@@ -13,24 +17,55 @@ class BDICoreAgent(BDIAgent):
|
|||||||
This is the Brain agent that does the belief inference with AgentSpeak.
|
This is the Brain agent that does the belief inference with AgentSpeak.
|
||||||
This is a continous process that happens automatically in the background.
|
This is a continous process that happens automatically in the background.
|
||||||
This class contains all the actions that can be called from AgentSpeak plans.
|
This class contains all the actions that can be called from AgentSpeak plans.
|
||||||
|
It has the BeliefSetter behaviour and can aks and recieve requests from the LLM agent.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
logger = logging.getLogger("BDI Core")
|
logger = logging.getLogger("bdi_core_agent")
|
||||||
|
|
||||||
async def setup(self):
|
async def setup(self) -> None:
|
||||||
belief_setter = BeliefSetterBehaviour()
|
"""
|
||||||
self.add_behaviour(belief_setter)
|
Initializes belief behaviors and message routing.
|
||||||
|
"""
|
||||||
|
self.logger.info("BDICoreAgent setup started")
|
||||||
|
|
||||||
|
self.add_behaviour(BeliefSetterBehaviour())
|
||||||
|
self.add_behaviour(ReceiveLLMResponseBehaviour())
|
||||||
|
|
||||||
|
await self._send_to_llm("Hi pepper, how are you?")
|
||||||
|
# This is the example message currently sent to the llm at the start of the Program
|
||||||
|
|
||||||
|
self.logger.info("BDICoreAgent setup complete")
|
||||||
|
|
||||||
|
def add_custom_actions(self, actions) -> None:
|
||||||
|
"""
|
||||||
|
Registers custom AgentSpeak actions callable from plans.
|
||||||
|
"""
|
||||||
|
|
||||||
def add_custom_actions(self, actions):
|
|
||||||
@actions.add(".reply", 1)
|
@actions.add(".reply", 1)
|
||||||
def _reply(agent, term, intention):
|
def _reply(agent: "BDICoreAgent", term, intention):
|
||||||
message = agentspeak.grounded(term.args[0], intention.scope)
|
"""
|
||||||
self.logger.info(f"Replying to message: {message}")
|
Sends text to the LLM (AgentSpeak action).
|
||||||
reply = self._send_to_llm(message)
|
Example: .reply("Hello LLM!")
|
||||||
self.logger.info(f"Received reply: {reply}")
|
"""
|
||||||
|
message_text = agentspeak.grounded(term.args[0], intention.scope)
|
||||||
|
self.logger.info("Reply action sending: %s", message_text)
|
||||||
|
|
||||||
|
self._send_to_llm(message_text)
|
||||||
yield
|
yield
|
||||||
|
|
||||||
def _send_to_llm(self, message) -> str:
|
async def _send_to_llm(self, text: str):
|
||||||
"""TODO: implement"""
|
"""
|
||||||
return f"This is a reply to {message}"
|
Sends a text query to the LLM Agent asynchronously.
|
||||||
|
"""
|
||||||
|
|
||||||
|
class SendBehaviour(OneShotBehaviour):
|
||||||
|
async def run(self) -> None:
|
||||||
|
msg = Message(
|
||||||
|
to= settings.agent_settings.llm_agent_name + '@' + settings.agent_settings.host,
|
||||||
|
body= text
|
||||||
|
)
|
||||||
|
|
||||||
|
await self.send(msg)
|
||||||
|
self.agent.logger.debug("Message sent to LLM: %s", text)
|
||||||
|
|
||||||
|
self.add_behaviour(SendBehaviour())
|
||||||
@@ -33,6 +33,7 @@ class BeliefSetterBehaviour(CyclicBehaviour):
|
|||||||
self.logger.debug("Processing message from belief collector.")
|
self.logger.debug("Processing message from belief collector.")
|
||||||
self._process_belief_message(message)
|
self._process_belief_message(message)
|
||||||
case _:
|
case _:
|
||||||
|
self.logger.debug("Not the belief agent, discarding message")
|
||||||
pass
|
pass
|
||||||
|
|
||||||
def _process_belief_message(self, message: Message):
|
def _process_belief_message(self, message: Message):
|
||||||
@@ -59,7 +60,7 @@ class BeliefSetterBehaviour(CyclicBehaviour):
|
|||||||
for belief, arguments in beliefs.items():
|
for belief, arguments in beliefs.items():
|
||||||
self.agent.bdi.set_belief(belief, *arguments)
|
self.agent.bdi.set_belief(belief, *arguments)
|
||||||
|
|
||||||
# Special case: if there's a new user message, we need to flag that we haven't responded yet
|
# Special case: if there's a new user message, flag that we haven't responded yet
|
||||||
if belief == "user_said":
|
if belief == "user_said":
|
||||||
try:
|
try:
|
||||||
self.agent.bdi.remove_belief("responded")
|
self.agent.bdi.remove_belief("responded")
|
||||||
|
|||||||
@@ -0,0 +1,26 @@
|
|||||||
|
import logging
|
||||||
|
|
||||||
|
from spade.behaviour import CyclicBehaviour
|
||||||
|
|
||||||
|
from control_backend.core.config import settings
|
||||||
|
|
||||||
|
|
||||||
|
class ReceiveLLMResponseBehaviour(CyclicBehaviour):
|
||||||
|
"""
|
||||||
|
Adds behavior to receive responses from the LLM Agent.
|
||||||
|
"""
|
||||||
|
logger = logging.getLogger("BDI/LLM Reciever")
|
||||||
|
async def run(self):
|
||||||
|
msg = await self.receive(timeout=2)
|
||||||
|
if not msg:
|
||||||
|
return
|
||||||
|
|
||||||
|
sender = msg.sender.node
|
||||||
|
match sender:
|
||||||
|
case settings.agent_settings.llm_agent_name:
|
||||||
|
content = msg.body
|
||||||
|
self.logger.info("Received LLM response: %s", content)
|
||||||
|
#Here the BDI can pass the message back as a response
|
||||||
|
case _:
|
||||||
|
self.logger.debug("Not from the llm, discarding message")
|
||||||
|
pass
|
||||||
127
src/control_backend/agents/llm/llm.py
Normal file
127
src/control_backend/agents/llm/llm.py
Normal file
@@ -0,0 +1,127 @@
|
|||||||
|
"""
|
||||||
|
LLM Agent module for routing text queries from the BDI Core Agent to a local LLM
|
||||||
|
service and returning its responses back to the BDI Core Agent.
|
||||||
|
"""
|
||||||
|
|
||||||
|
import logging
|
||||||
|
from typing import Any
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
from spade.agent import Agent
|
||||||
|
from spade.behaviour import CyclicBehaviour
|
||||||
|
from spade.message import Message
|
||||||
|
|
||||||
|
from control_backend.agents.llm.llm_instructions import LLMInstructions
|
||||||
|
from control_backend.core.config import settings
|
||||||
|
|
||||||
|
|
||||||
|
class LLMAgent(Agent):
|
||||||
|
"""
|
||||||
|
Agent responsible for processing user text input and querying a locally
|
||||||
|
hosted LLM for text generation. Receives messages from the BDI Core Agent
|
||||||
|
and responds with processed LLM output.
|
||||||
|
"""
|
||||||
|
|
||||||
|
logger = logging.getLogger("llm_agent")
|
||||||
|
|
||||||
|
class ReceiveMessageBehaviour(CyclicBehaviour):
|
||||||
|
"""
|
||||||
|
Cyclic behaviour to continuously listen for incoming messages from
|
||||||
|
the BDI Core Agent and handle them.
|
||||||
|
"""
|
||||||
|
|
||||||
|
async def run(self):
|
||||||
|
"""
|
||||||
|
Receives SPADE messages and processes only those originating from the
|
||||||
|
configured BDI agent.
|
||||||
|
"""
|
||||||
|
msg = await self.receive(timeout=1)
|
||||||
|
if not msg:
|
||||||
|
return
|
||||||
|
|
||||||
|
sender = msg.sender.node
|
||||||
|
self.agent.logger.info(
|
||||||
|
"Received message: %s from %s",
|
||||||
|
msg.body,
|
||||||
|
sender,
|
||||||
|
)
|
||||||
|
|
||||||
|
if sender == settings.agent_settings.bdi_core_agent_name:
|
||||||
|
self.agent.logger.debug("Processing message from BDI Core Agent")
|
||||||
|
await self._process_bdi_message(msg)
|
||||||
|
else:
|
||||||
|
self.agent.logger.debug("Message ignored (not from BDI Core Agent)")
|
||||||
|
|
||||||
|
async def _process_bdi_message(self, message: Message):
|
||||||
|
"""
|
||||||
|
Forwards user text to the LLM and replies with the generated text.
|
||||||
|
"""
|
||||||
|
user_text = message.body
|
||||||
|
llm_response = await self._query_llm(user_text)
|
||||||
|
await self._reply(llm_response)
|
||||||
|
|
||||||
|
async def _reply(self, msg: str):
|
||||||
|
"""
|
||||||
|
Sends a response message back to the BDI Core Agent.
|
||||||
|
"""
|
||||||
|
reply = Message(
|
||||||
|
to=settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host,
|
||||||
|
body=msg
|
||||||
|
)
|
||||||
|
await self.send(reply)
|
||||||
|
self.agent.logger.info("Reply sent to BDI Core Agent")
|
||||||
|
|
||||||
|
async def _query_llm(self, prompt: str) -> str:
|
||||||
|
"""
|
||||||
|
Sends a chat completion request to the local LLM service.
|
||||||
|
|
||||||
|
:param prompt: Input text prompt to pass to the LLM.
|
||||||
|
:return: LLM-generated content or fallback message.
|
||||||
|
"""
|
||||||
|
async with httpx.AsyncClient(timeout=120.0) as client:
|
||||||
|
# Example dynamic content for future (optional)
|
||||||
|
|
||||||
|
instructions = LLMInstructions()
|
||||||
|
developer_instruction = instructions.build_developer_instruction()
|
||||||
|
|
||||||
|
response = await client.post(
|
||||||
|
settings.llm_settings.local_llm_url,
|
||||||
|
headers={"Content-Type": "application/json"},
|
||||||
|
json={
|
||||||
|
"model": settings.llm_settings.local_llm_model,
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "developer",
|
||||||
|
"content": developer_instruction
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": prompt
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"temperature": 0.3
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
try:
|
||||||
|
response.raise_for_status()
|
||||||
|
data: dict[str, Any] = response.json()
|
||||||
|
return data.get("choices", [{}])[0].get(
|
||||||
|
"message", {}
|
||||||
|
).get("content", "No response")
|
||||||
|
except httpx.HTTPError as err:
|
||||||
|
self.agent.logger.error("HTTP error: %s", err)
|
||||||
|
return "LLM service unavailable."
|
||||||
|
except Exception as err:
|
||||||
|
self.agent.logger.error("Unexpected error: %s", err)
|
||||||
|
return "Error processing the request."
|
||||||
|
|
||||||
|
async def setup(self):
|
||||||
|
"""
|
||||||
|
Sets up the SPADE behaviour to filter and process messages from the
|
||||||
|
BDI Core Agent.
|
||||||
|
"""
|
||||||
|
self.logger.info("LLMAgent setup complete")
|
||||||
|
|
||||||
|
behaviour = self.ReceiveMessageBehaviour()
|
||||||
|
self.add_behaviour(behaviour)
|
||||||
44
src/control_backend/agents/llm/llm_instructions.py
Normal file
44
src/control_backend/agents/llm/llm_instructions.py
Normal file
@@ -0,0 +1,44 @@
|
|||||||
|
class LLMInstructions:
|
||||||
|
"""
|
||||||
|
Defines structured instructions that are sent along with each request
|
||||||
|
to the LLM to guide its behavior (norms, goals, etc.).
|
||||||
|
"""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def default_norms() -> str:
|
||||||
|
return """
|
||||||
|
Be friendly and respectful.
|
||||||
|
Make the conversation feel natural and engaging.
|
||||||
|
""".strip()
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def default_goals() -> str:
|
||||||
|
return """
|
||||||
|
Try to learn the user's name during conversation.
|
||||||
|
""".strip()
|
||||||
|
|
||||||
|
def __init__(self, norms: str | None = None, goals: str | None = None):
|
||||||
|
self.norms = norms if norms is not None else self.default_norms()
|
||||||
|
self.goals = goals if goals is not None else self.default_goals()
|
||||||
|
|
||||||
|
def build_developer_instruction(self) -> str:
|
||||||
|
"""
|
||||||
|
Builds a multi-line formatted instruction string for the LLM.
|
||||||
|
Includes only non-empty structured fields.
|
||||||
|
"""
|
||||||
|
sections = [
|
||||||
|
"You are a Pepper robot engaging in natural human conversation.",
|
||||||
|
"Keep responses between 1–5 sentences, unless instructed otherwise.\n",
|
||||||
|
]
|
||||||
|
|
||||||
|
if self.norms:
|
||||||
|
sections.append("Norms to follow:")
|
||||||
|
sections.append(self.norms)
|
||||||
|
sections.append("")
|
||||||
|
|
||||||
|
if self.goals:
|
||||||
|
sections.append("Goals to reach:")
|
||||||
|
sections.append(self.goals)
|
||||||
|
sections.append("")
|
||||||
|
|
||||||
|
return "\n".join(sections).strip()
|
||||||
@@ -11,11 +11,17 @@ class AgentSettings(BaseModel):
|
|||||||
bdi_core_agent_name: str = "bdi_core"
|
bdi_core_agent_name: str = "bdi_core"
|
||||||
belief_collector_agent_name: str = "belief_collector"
|
belief_collector_agent_name: str = "belief_collector"
|
||||||
vad_agent_name: str = "vad_agent"
|
vad_agent_name: str = "vad_agent"
|
||||||
|
llm_agent_name: str = "llm_agent"
|
||||||
|
test_agent_name: str = "test_agent"
|
||||||
|
|
||||||
ri_communication_agent_name: str = "ri_communication_agent"
|
ri_communication_agent_name: str = "ri_communication_agent"
|
||||||
ri_command_agent_name: str = "ri_command_agent"
|
ri_command_agent_name: str = "ri_command_agent"
|
||||||
|
|
||||||
|
|
||||||
|
class LLMSettings(BaseModel):
|
||||||
|
local_llm_url: str = "http://145.107.82.68:1234/v1/chat/completions"
|
||||||
|
local_llm_model: str = "openai/gpt-oss-120b"
|
||||||
|
|
||||||
class Settings(BaseSettings):
|
class Settings(BaseSettings):
|
||||||
app_title: str = "PepperPlus"
|
app_title: str = "PepperPlus"
|
||||||
|
|
||||||
@@ -25,7 +31,8 @@ class Settings(BaseSettings):
|
|||||||
|
|
||||||
agent_settings: AgentSettings = AgentSettings()
|
agent_settings: AgentSettings = AgentSettings()
|
||||||
|
|
||||||
|
llm_settings: LLMSettings = LLMSettings()
|
||||||
|
|
||||||
model_config = SettingsConfigDict(env_file=".env")
|
model_config = SettingsConfigDict(env_file=".env")
|
||||||
|
|
||||||
|
|
||||||
settings = Settings()
|
settings = Settings()
|
||||||
|
|||||||
@@ -12,6 +12,7 @@ from fastapi.middleware.cors import CORSMiddleware
|
|||||||
from control_backend.agents.ri_communication_agent import RICommunicationAgent
|
from control_backend.agents.ri_communication_agent import RICommunicationAgent
|
||||||
from control_backend.agents.bdi.bdi_core import BDICoreAgent
|
from control_backend.agents.bdi.bdi_core import BDICoreAgent
|
||||||
from control_backend.agents.vad_agent import VADAgent
|
from control_backend.agents.vad_agent import VADAgent
|
||||||
|
from control_backend.agents.llm.llm import LLMAgent
|
||||||
from control_backend.api.v1.router import api_router
|
from control_backend.api.v1.router import api_router
|
||||||
from control_backend.core.config import settings
|
from control_backend.core.config import settings
|
||||||
from control_backend.core.zmq_context import context
|
from control_backend.core.zmq_context import context
|
||||||
@@ -31,6 +32,7 @@ async def lifespan(app: FastAPI):
|
|||||||
app.state.internal_comm_socket = internal_comm_socket
|
app.state.internal_comm_socket = internal_comm_socket
|
||||||
logger.info("Internal publishing socket bound to %s", internal_comm_socket)
|
logger.info("Internal publishing socket bound to %s", internal_comm_socket)
|
||||||
|
|
||||||
|
|
||||||
# Initiate agents
|
# Initiate agents
|
||||||
ri_communication_agent = RICommunicationAgent(
|
ri_communication_agent = RICommunicationAgent(
|
||||||
settings.agent_settings.ri_communication_agent_name + "@" + settings.agent_settings.host,
|
settings.agent_settings.ri_communication_agent_name + "@" + settings.agent_settings.host,
|
||||||
@@ -40,11 +42,12 @@ async def lifespan(app: FastAPI):
|
|||||||
)
|
)
|
||||||
await ri_communication_agent.start()
|
await ri_communication_agent.start()
|
||||||
|
|
||||||
bdi_core = BDICoreAgent(
|
|
||||||
settings.agent_settings.bdi_core_agent_name + "@" + settings.agent_settings.host,
|
llm_agent = LLMAgent(settings.agent_settings.llm_agent_name + '@' + settings.agent_settings.host,
|
||||||
settings.agent_settings.bdi_core_agent_name,
|
settings.agent_settings.llm_agent_name)
|
||||||
"src/control_backend/agents/bdi/rules.asl",
|
await llm_agent.start()
|
||||||
)
|
bdi_core = BDICoreAgent(settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host,
|
||||||
|
settings.agent_settings.bdi_core_agent_name, "src/control_backend/agents/bdi/rules.asl")
|
||||||
await bdi_core.start()
|
await bdi_core.start()
|
||||||
|
|
||||||
_temp_vad_agent = VADAgent("tcp://localhost:5558", False)
|
_temp_vad_agent = VADAgent("tcp://localhost:5558", False)
|
||||||
|
|||||||
Reference in New Issue
Block a user