implemented basic belief-from-text extractor including demo version #13
@@ -1,8 +1,10 @@
|
|||||||
import asyncio
|
import asyncio
|
||||||
from spade.behaviour import CyclicBehaviour
|
|
||||||
import logging
|
|
||||||
from spade.message import Message
|
|
||||||
import json
|
import json
|
||||||
|
import logging
|
||||||
|
|
||||||
|
from spade.behaviour import CyclicBehaviour
|
||||||
|
from spade.message import Message
|
||||||
|
|
||||||
from control_backend.core.config import settings
|
from control_backend.core.config import settings
|
||||||
|
|
||||||
|
|
||||||
@@ -11,8 +13,7 @@ class BeliefFromText(CyclicBehaviour):
|
|||||||
|
|
||||||
# TODO: LLM prompt nog hardcoded
|
# TODO: LLM prompt nog hardcoded
|
||||||
llm_instruction_prompt = """
|
llm_instruction_prompt = """
|
||||||
You are an information extraction assistent for a BDI agent. Your task is to extract values from
|
You are an information extraction assistent for a BDI agent. Your task is to extract values from a user's text to bind a list of ungrounded beliefs. Rules:
|
||||||
a user's text to bind a list of ungrounded beliefs. Rules:
|
|
||||||
You will receive a JSON object with "beliefs" (a list of ungrounded AgentSpeak beliefs) and "text" (user's transcript).
|
You will receive a JSON object with "beliefs" (a list of ungrounded AgentSpeak beliefs) and "text" (user's transcript).
|
||||||
Analyze the text to find values that sematically match the variables (X,Y,Z) in the beliefs.
|
Analyze the text to find values that sematically match the variables (X,Y,Z) in the beliefs.
|
||||||
A single piece of text might contain multiple instances that match a belief.
|
A single piece of text might contain multiple instances that match a belief.
|
||||||
@@ -29,7 +30,7 @@ class BeliefFromText(CyclicBehaviour):
|
|||||||
# self.beliefs = dict uit message
|
# self.beliefs = dict uit message
|
||||||
# send instruction prompt to LLM
|
# send instruction prompt to LLM
|
||||||
|
|
||||||
beliefs: dict[str,list[str]]
|
beliefs: dict[str, list[str]]
|
||||||
beliefs = {
|
beliefs = {
|
||||||
"mood": ["X"],
|
"mood": ["X"],
|
||||||
"car": ["Y"]
|
"car": ["Y"]
|
||||||
@@ -49,7 +50,7 @@ class BeliefFromText(CyclicBehaviour):
|
|||||||
pass
|
pass
|
||||||
await asyncio.sleep(1)
|
await asyncio.sleep(1)
|
||||||
|
|
||||||
async def _process_transcription(self,text: str):
|
async def _process_transcription(self, text: str):
|
||||||
text_prompt = f"Text: {text}"
|
text_prompt = f"Text: {text}"
|
||||||
|
|
||||||
beliefs_prompt = "These are the beliefs to be bound:\n"
|
beliefs_prompt = "These are the beliefs to be bound:\n"
|
||||||
@@ -66,26 +67,30 @@ class BeliefFromText(CyclicBehaviour):
|
|||||||
# Verify by trying to parse
|
# Verify by trying to parse
|
||||||
try:
|
try:
|
||||||
json.loads(response)
|
json.loads(response)
|
||||||
belief_message = Message(to=settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host, body=response)
|
belief_message = Message(
|
||||||
|
to=settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host,
|
||||||
|
body=response)
|
||||||
belief_message.thread = "beliefs"
|
belief_message.thread = "beliefs"
|
||||||
|
|
||||||
await self.send(belief_message)
|
await self.send(belief_message)
|
||||||
self.logger.info("Sent beliefs to BDI.")
|
self.logger.info("Sent beliefs to BDI.")
|
||||||
except:
|
except json.JSONDecodeError:
|
||||||
#loading failed so the response is in wrong format, throw warning (let LLM respond to ask again?)
|
# Parsing failed, so the response is in the wrong format, log warning
|
||||||
self.logger.warning("Received LLM response in incorrect format.")
|
self.logger.warning("Received LLM response in incorrect format.")
|
||||||
|
|
||||||
async def _process_transcription_demo(self, txt: str):
|
async def _process_transcription_demo(self, txt: str):
|
||||||
"""
|
"""
|
||||||
Demo version to process the transcription input to beliefs. For the demo only the belief 'user_said' is relevant so
|
Demo version to process the transcription input to beliefs. For the demo only the belief
|
||||||
this function simply makes a dict with key: "user_said", value: txt and passes this to the Belief Collector agent.
|
'user_said' is relevant, so this function simply makes a dict with key: "user_said",
|
||||||
|
value: txt and passes this to the Belief Collector agent.
|
||||||
"""
|
"""
|
||||||
belief = {"user_said": [[txt]]}
|
belief = {"user_said": [[txt]]}
|
||||||
payload = json.dumps(belief)
|
payload = json.dumps(belief)
|
||||||
# TODO: Change to belief collector
|
# TODO: Change to belief collector
|
||||||
belief_msg = Message(to=settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host, body=payload)
|
belief_msg = Message(to=settings.agent_settings.bdi_core_agent_name
|
||||||
|
+ '@' + settings.agent_settings.host,
|
||||||
|
body=payload)
|
||||||
belief_msg.thread = "beliefs"
|
belief_msg.thread = "beliefs"
|
||||||
|
|
||||||
await self.send(belief_msg)
|
await self.send(belief_msg)
|
||||||
self.logger.info("Sent beliefs to Belief Collector.")
|
self.logger.info("Sent beliefs to Belief Collector.")
|
||||||
|
|
||||||
@@ -1,9 +1,10 @@
|
|||||||
import spade
|
|
||||||
from spade.agent import Agent
|
from spade.agent import Agent
|
||||||
from spade.behaviour import OneShotBehaviour
|
from spade.behaviour import OneShotBehaviour
|
||||||
from spade.message import Message
|
from spade.message import Message
|
||||||
|
|
||||||
from control_backend.core.config import settings
|
from control_backend.core.config import settings
|
||||||
|
|
||||||
|
|
||||||
class SenderAgent(Agent):
|
class SenderAgent(Agent):
|
||||||
class InformBehav(OneShotBehaviour):
|
class InformBehav(OneShotBehaviour):
|
||||||
async def run(self):
|
async def run(self):
|
||||||
|
|||||||
@@ -1,9 +1,8 @@
|
|||||||
import spade
|
|
||||||
from spade.agent import Agent
|
from spade.agent import Agent
|
||||||
import logging
|
|
||||||
|
|
||||||
from control_backend.agents.bdi.behaviours.text_belief_extractor import BeliefFromText
|
from control_backend.agents.bdi.behaviours.text_belief_extractor import BeliefFromText
|
||||||
|
|
||||||
|
|
||||||
class TBeliefExtractor(Agent):
|
class TBeliefExtractor(Agent):
|
||||||
async def setup(self):
|
async def setup(self):
|
||||||
self.b = BeliefFromText()
|
self.b = BeliefFromText()
|
||||||
|
|||||||
@@ -10,6 +10,7 @@ class AgentSettings(BaseModel):
|
|||||||
host: str = "localhost"
|
host: str = "localhost"
|
||||||
bdi_core_agent_name: str = "bdi_core"
|
bdi_core_agent_name: str = "bdi_core"
|
||||||
belief_collector_agent_name: str = "belief_collector"
|
belief_collector_agent_name: str = "belief_collector"
|
||||||
|
text_belief_extractor_agent_name: str = "text_belief_extractor"
|
||||||
vad_agent_name: str = "vad_agent"
|
vad_agent_name: str = "vad_agent"
|
||||||
llm_agent_name: str = "llm_agent"
|
llm_agent_name: str = "llm_agent"
|
||||||
test_agent_name: str = "test_agent"
|
test_agent_name: str = "test_agent"
|
||||||
@@ -19,8 +20,8 @@ class AgentSettings(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
class LLMSettings(BaseModel):
|
class LLMSettings(BaseModel):
|
||||||
local_llm_url: str = "http://145.107.82.68:1234/v1/chat/completions"
|
local_llm_url: str = "http://localhost:1234/v1/chat/completions"
|
||||||
local_llm_model: str = "openai/gpt-oss-120b"
|
local_llm_model: str = "openai/gpt-oss-20b"
|
||||||
|
|
||||||
class Settings(BaseSettings):
|
class Settings(BaseSettings):
|
||||||
app_title: str = "PepperPlus"
|
app_title: str = "PepperPlus"
|
||||||
|
|||||||
@@ -44,18 +44,29 @@ async def lifespan(app: FastAPI):
|
|||||||
)
|
)
|
||||||
await ri_communication_agent.start()
|
await ri_communication_agent.start()
|
||||||
|
|
||||||
llm_agent = LLMAgent(settings.agent_settings.llm_agent_name + '@' + settings.agent_settings.host,
|
llm_agent = LLMAgent(
|
||||||
settings.agent_settings.llm_agent_name)
|
settings.agent_settings.llm_agent_name + '@' + settings.agent_settings.host,
|
||||||
|
settings.agent_settings.llm_agent_name,
|
||||||
|
)
|
||||||
await llm_agent.start()
|
await llm_agent.start()
|
||||||
|
|
||||||
bdi_core = BDICoreAgent(settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host,
|
bdi_core = BDICoreAgent(
|
||||||
settings.agent_settings.bdi_core_agent_name, "src/control_backend/agents/bdi/rules.asl")
|
settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host,
|
||||||
|
settings.agent_settings.bdi_core_agent_name,
|
||||||
|
"src/control_backend/agents/bdi/rules.asl",
|
||||||
|
)
|
||||||
await bdi_core.start()
|
await bdi_core.start()
|
||||||
|
|
||||||
text_belief_extractor = TBeliefExtractor(settings.agent_settings.belief_collector_agent_name + '@' + settings.agent_settings.host, "placehodler")
|
text_belief_extractor = TBeliefExtractor(
|
||||||
|
settings.agent_settings.text_belief_extractor_agent_name + '@' + settings.agent_settings.host,
|
||||||
|
settings.agent_settings.text_belief_extractor_agent_name,
|
||||||
|
)
|
||||||
await text_belief_extractor.start()
|
await text_belief_extractor.start()
|
||||||
|
|
||||||
test_agent = SenderAgent(settings.agent_settings.test_agent_name + '@' + settings.agent_settings.host, "placeholder")
|
test_agent = SenderAgent(
|
||||||
|
settings.agent_settings.test_agent_name + '@' + settings.agent_settings.host,
|
||||||
|
settings.agent_settings.test_agent_name
|
||||||
|
)
|
||||||
await test_agent.start()
|
await test_agent.start()
|
||||||
|
|
||||||
_temp_vad_agent = VADAgent("tcp://localhost:5558", False)
|
_temp_vad_agent = VADAgent("tcp://localhost:5558", False)
|
||||||
|
|||||||
Reference in New Issue
Block a user