Create transcriber agent #15
1
src/control_backend/agents/transcription/__init__.py
Normal file
1
src/control_backend/agents/transcription/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .transcription_agent import TranscriptionAgent as TranscriptionAgent
|
||||
@@ -0,0 +1,62 @@
|
||||
import abc
|
||||
import sys
|
||||
|
||||
if sys.platform == "darwin":
|
||||
import mlx.core as mx
|
||||
import mlx_whisper
|
||||
from mlx_whisper.transcribe import ModelHolder
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
import whisper
|
||||
|
||||
|
||||
class SpeechRecognizer(abc.ABC):
|
||||
@abc.abstractmethod
|
||||
def load_model(self): ...
|
||||
|
||||
@abc.abstractmethod
|
||||
def recognize_speech(self, audio: np.ndarray) -> str: ...
|
||||
|
||||
@staticmethod
|
||||
def best_type():
|
||||
if torch.mps.is_available():
|
||||
print("Choosing MLX Whisper model.")
|
||||
return MLXWhisperSpeechRecognizer()
|
||||
else:
|
||||
print("Choosing reference Whisper model.")
|
||||
return OpenAIWhisperSpeechRecognizer()
|
||||
|
||||
|
||||
class MLXWhisperSpeechRecognizer(SpeechRecognizer):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.model = None
|
||||
self.model_name = "mlx-community/whisper-small.en-mlx"
|
||||
|
||||
def load_model(self):
|
||||
if self.model is not None:
|
||||
return
|
||||
ModelHolder.get_model(
|
||||
self.model_name, mx.float16
|
||||
) # Should store it in memory for later usage
|
||||
|
||||
def recognize_speech(self, audio: np.ndarray) -> str:
|
||||
self.load_model()
|
||||
return mlx_whisper.transcribe(audio, path_or_hf_repo=self.model_name)["text"]
|
||||
|
||||
|
||||
class OpenAIWhisperSpeechRecognizer(SpeechRecognizer):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.model = None
|
||||
|
||||
def load_model(self):
|
||||
if self.model is not None:
|
||||
return
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
self.model = whisper.load_model("small.en", device=device)
|
||||
|
||||
def recognize_speech(self, audio: np.ndarray) -> str:
|
||||
self.load_model()
|
||||
return self.model.transcribe(audio)["text"]
|
||||
@@ -0,0 +1,69 @@
|
||||
import asyncio
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
from spade.agent import Agent
|
||||
from spade.behaviour import CyclicBehaviour
|
||||
from spade.message import Message
|
||||
|
||||
from control_backend.agents.transcription.speech_recognizer import SpeechRecognizer
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.core.zmq_context import context as zmq_context
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class TranscriptionAgent(Agent):
|
||||
"""
|
||||
An agent which listens to audio fragments with voice, transcribes them, and sends the
|
||||
transcription to other agents.
|
||||
"""
|
||||
|
||||
def __init__(self, audio_in_address: str):
|
||||
jid = settings.agent_settings.transcription_agent_name + "@" + settings.agent_settings.host
|
||||
super().__init__(jid, settings.agent_settings.transcription_agent_name)
|
||||
|
||||
self.audio_in_address = audio_in_address
|
||||
self.audio_in_socket: azmq.Socket | None = None
|
||||
|
||||
class Transcribing(CyclicBehaviour):
|
||||
def __init__(self, audio_in_socket: azmq.Socket):
|
||||
super().__init__()
|
||||
self.audio_in_socket = audio_in_socket
|
||||
self.speech_recognizer = SpeechRecognizer.best_type()
|
||||
self._concurrency = asyncio.Semaphore(3)
|
||||
|
||||
async def _transcribe(self, audio: np.ndarray) -> str:
|
||||
async with self._concurrency:
|
||||
return await asyncio.to_thread(self.speech_recognizer.recognize_speech, audio)
|
||||
|
||||
async def run(self) -> None:
|
||||
audio = await self.audio_in_socket.recv()
|
||||
audio = np.frombuffer(audio, dtype=np.float32)
|
||||
speech = await self._transcribe(audio)
|
||||
logger.info("Transcribed speech: %s", speech)
|
||||
|
||||
message = Message(body=speech)
|
||||
await self.send(message)
|
||||
|
||||
async def stop(self):
|
||||
self.audio_in_socket.close()
|
||||
self.audio_in_socket = None
|
||||
return await super().stop()
|
||||
|
||||
def _connect_audio_in_socket(self):
|
||||
self.audio_in_socket = zmq_context.socket(zmq.SUB)
|
||||
self.audio_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
self.audio_in_socket.connect(self.audio_in_address)
|
||||
|
||||
async def setup(self):
|
||||
logger.info("Setting up %s", self.jid)
|
||||
|
||||
self._connect_audio_in_socket()
|
||||
|
||||
transcribing = self.Transcribing(self.audio_in_socket)
|
||||
self.add_behaviour(transcribing)
|
||||
|
||||
logger.info("Finished setting up %s", self.jid)
|
||||
@@ -7,6 +7,7 @@ import zmq.asyncio as azmq
|
||||
from spade.agent import Agent
|
||||
from spade.behaviour import CyclicBehaviour
|
||||
|
||||
from control_backend.agents.transcription import TranscriptionAgent
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.core.zmq_context import context as zmq_context
|
||||
|
||||
@@ -145,10 +146,13 @@ class VADAgent(Agent):
|
||||
if audio_out_port is None:
|
||||
await self.stop()
|
||||
return
|
||||
audio_out_address = f"tcp://localhost:{audio_out_port}"
|
||||
|
||||
streaming = Streaming(self.audio_in_socket, self.audio_out_socket)
|
||||
self.add_behaviour(streaming)
|
||||
|
||||
# ... start agents dependent on the output audio fragments here
|
||||
# Start agents dependent on the output audio fragments here
|
||||
transcriber = TranscriptionAgent(audio_out_address)
|
||||
await transcriber.start()
|
||||
|
||||
logger.info("Finished setting up %s", self.jid)
|
||||
|
||||
@@ -11,6 +11,7 @@ class AgentSettings(BaseModel):
|
||||
bdi_core_agent_name: str = "bdi_core"
|
||||
belief_collector_agent_name: str = "belief_collector"
|
||||
vad_agent_name: str = "vad_agent"
|
||||
transcription_agent_name: str = "transcription_agent"
|
||||
|
||||
ri_communication_agent_name: str = "ri_communication_agent"
|
||||
ri_command_agent_name: str = "ri_command_agent"
|
||||
|
||||
Reference in New Issue
Block a user