Files
pepperplus-cb/src/control_backend/agents/perception/transcription_agent/speech_recognizer.py
Kasper Marinus 1cd5b46f97 fix: should work now
Also added trimming to Windows transcription.

ref: N25B-452
2026-01-19 15:03:59 +01:00

151 lines
5.1 KiB
Python

import abc
import sys
if sys.platform == "darwin":
import mlx.core as mx
import mlx_whisper
from mlx_whisper.transcribe import ModelHolder
import numpy as np
import torch
import whisper
from control_backend.core.config import settings
class SpeechRecognizer(abc.ABC):
"""
Abstract base class for speech recognition backends.
Provides a common interface for loading models and transcribing audio,
as well as heuristics for estimating token counts to optimize decoding.
:ivar limit_output_length: If True, limits the generated text length based on audio duration.
"""
def __init__(self, limit_output_length=True):
"""
:param limit_output_length: When ``True``, the length of the generated speech will be
limited by the length of the input audio and some heuristics.
"""
self.limit_output_length = limit_output_length
@abc.abstractmethod
def load_model(self):
"""
Load the speech recognition model into memory.
"""
...
@abc.abstractmethod
def recognize_speech(self, audio: np.ndarray) -> str:
"""
Recognize speech from the given audio sample.
:param audio: A full utterance sample. Audio must be 16 kHz, mono, np.float32, values in the
range [-1.0, 1.0].
:return: The recognized speech text.
"""
@staticmethod
def _estimate_max_tokens(audio: np.ndarray) -> int:
"""
Estimate the maximum length of a given audio sample in tokens.
Assumes a maximum speaking rate of 450 words per minute (3x average), and assumes that
3 words is approx. 4 tokens.
:param audio: The audio sample (16 kHz) to use for length estimation.
:return: The estimated length of the transcribed audio in tokens.
"""
length_seconds = len(audio) / settings.vad_settings.sample_rate_hz
length_minutes = length_seconds / 60
word_count = length_minutes * settings.behaviour_settings.transcription_words_per_minute
token_count = word_count / settings.behaviour_settings.transcription_words_per_token
return int(token_count) + settings.behaviour_settings.transcription_token_buffer
def _get_decode_options(self, audio: np.ndarray) -> dict:
"""
Construct decoding options for the Whisper model.
:param audio: The audio sample (16 kHz) to use to determine options like max decode length.
:return: A dict that can be used to construct ``whisper.DecodingOptions`` (or equivalent).
"""
options = {}
if self.limit_output_length:
options["sample_len"] = self._estimate_max_tokens(audio)
return options
@staticmethod
def best_type():
"""
Factory method to get the best available `SpeechRecognizer`.
:return: An instance of :class:`MLXWhisperSpeechRecognizer` if on macOS with Apple Silicon,
otherwise :class:`OpenAIWhisperSpeechRecognizer`.
"""
if torch.mps.is_available():
print("Choosing MLX Whisper model.")
return MLXWhisperSpeechRecognizer()
else:
print("Choosing reference Whisper model.")
return OpenAIWhisperSpeechRecognizer()
class MLXWhisperSpeechRecognizer(SpeechRecognizer):
"""
Speech recognizer using the MLX framework (optimized for Apple Silicon).
"""
def __init__(self, limit_output_length=True):
super().__init__(limit_output_length)
self.was_loaded = False
self.model_name = settings.speech_model_settings.mlx_model_name
def load_model(self):
"""
Ensures the model is downloaded and cached. MLX loads dynamically, so this
pre-fetches the model.
"""
if self.was_loaded:
return
# There appears to be no dedicated mechanism to preload a model, but this `get_model` does
# store it in memory for later usage
ModelHolder.get_model(self.model_name, mx.float16)
self.was_loaded = True
def recognize_speech(self, audio: np.ndarray) -> str:
self.load_model()
return mlx_whisper.transcribe(
audio,
path_or_hf_repo=self.model_name,
**self._get_decode_options(audio),
)["text"].strip()
class OpenAIWhisperSpeechRecognizer(SpeechRecognizer):
"""
Speech recognizer using the standard OpenAI Whisper library (PyTorch).
"""
def __init__(self, limit_output_length=True):
super().__init__(limit_output_length)
self.model = None
def load_model(self):
"""
Loads the OpenAI Whisper model onto the available device (CUDA or CPU).
"""
if self.model is not None:
return
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
self.model = whisper.load_model(
settings.speech_model_settings.openai_model_name, device=device
)
def recognize_speech(self, audio: np.ndarray) -> str:
self.load_model()
return whisper.transcribe(self.model, audio, **self._get_decode_options(audio))[
"text"
].strip()