Files
pepperplus-ri/test/unit/test_actuation_receiver.py
Storm 912af8d821 feat: implemented force speech functionality in RI and refactored actuation_receiver tests
Before actuation_receiver tests started a receiver with real zmq context. This led to flaky tests because of port congestion issues.

ref: N25B-386
2025-12-12 14:38:06 +01:00

331 lines
11 KiB
Python

import sys
import mock
import pytest
import zmq
import Queue
from robot_interface.endpoints.actuation_receiver import ActuationReceiver
@pytest.fixture
def zmq_context():
"""
A pytest fixture that creates and yields a ZMQ context.
:return: An initialized ZeroMQ context.
:rtype: zmq.Context
"""
context = zmq.Context()
yield context
def test_force_speech_clears_queue(mocker):
"""
Tests that a force speech message clears the existing queue
and places the high-priority message at the front.
"""
mocker.patch("threading.Thread")
mock_state = mocker.patch("robot_interface.endpoints.actuation_receiver.state")
mock_qi = mock.Mock()
sys.modules["qi"] = mock_qi
mock_tts_service = mock.Mock()
mock_state.qi_session.service.return_value = mock_tts_service
# Use Mock Context
mock_zmq_ctx = mock.Mock()
receiver = ActuationReceiver(mock_zmq_ctx)
receiver._message_queue.put("old_message_1")
receiver._message_queue.put("old_message_2")
assert receiver._message_queue.qsize() == 2
force_msg = {
"endpoint": "actuate/speech",
"data": "Emergency Notification",
"is_priority": True,
}
receiver.handle_message(force_msg)
assert receiver._message_queue.qsize() == 1
queued_item = receiver._message_queue.get()
assert queued_item == "Emergency Notification"
def test_handle_unimplemented_endpoint(mocker):
"""
Tests handling of unknown endpoints.
"""
mocker.patch("threading.Thread")
# Use Mock Context
mock_zmq_ctx = mock.Mock()
receiver = ActuationReceiver(mock_zmq_ctx)
receiver.handle_message({
"endpoint": "some_endpoint_that_definitely_does_not_exist",
"data": None,
})
def test_speech_message_no_data(mocker):
"""
Tests that if the message data is empty, the receiver returns immediately
WITHOUT attempting to access the global robot state or session.
"""
# 1. Prevent background threads from running
mocker.patch("threading.Thread")
# 2. Mock the global state object
mock_state = mocker.patch("robot_interface.endpoints.actuation_receiver.state")
# 3. Create a PropertyMock to track whenever 'qi_session' is accessed
# We attach it to the class type of the mock so it acts like a real property
mock_session_prop = mock.PropertyMock(return_value=None)
type(mock_state).qi_session = mock_session_prop
# 4. Initialize Receiver (Mocking the context to avoid ZMQ errors)
mock_zmq_ctx = mock.Mock()
receiver = ActuationReceiver(mock_zmq_ctx)
# 5. Send empty data
receiver.handle_message({"endpoint": "actuate/speech", "data": ""})
# 6. Assertion:
# Because the code does `if not text: return` BEFORE `if not state.qi_session`,
# the state property should NEVER be read.
mock_session_prop.assert_not_called()
def test_speech_message_invalid_data(mocker):
"""
Tests that if the message data is not a string, the function returns.
:param mocker: Description
"""
mocker.patch("threading.Thread")
mock_state = mocker.patch("robot_interface.endpoints.actuation_receiver.state")
mock_session_prop = mock.PropertyMock(return_value=None)
type(mock_state).qi_session = mock_session_prop
# Use Mock Context
mock_zmq_ctx = mock.Mock()
receiver = ActuationReceiver(mock_zmq_ctx)
receiver.handle_message({"endpoint": "actuate/speech", "data": True})
# Because the code does `if not text: return` BEFORE `if not state.qi_session`,
# the state property should NEVER be read.
mock_session_prop.assert_not_called()
def test_speech_no_qi(mocker):
"""
Tests the actuation receiver's behavior when processing a speech request
but the global state does not have an active QI session.
"""
mock_state = mocker.patch("robot_interface.endpoints.actuation_receiver.state")
mock_qi_session = mock.PropertyMock(return_value=None)
type(mock_state).qi_session = mock_qi_session
mock_tts_service = mock.Mock()
mock_zmq_ctx = mock.Mock()
receiver = ActuationReceiver(mock_zmq_ctx)
receiver._tts_service = mock_tts_service
receiver._handle_speech({"endpoint": "actuate/speech", "data": "Some message to speak."})
receiver._tts_service.assert_not_called()
def test_speech(mocker):
"""
Tests the core speech actuation functionality by mocking the QI TextToSpeech
service and verifying that the received message is put into the queue.
"""
mock_state = mocker.patch("robot_interface.endpoints.actuation_receiver.state")
mock_qi = mock.Mock()
sys.modules["qi"] = mock_qi
mock_tts_service = mock.Mock()
mock_state.qi_session = mock.Mock()
mock_state.qi_session.service.return_value = mock_tts_service
mock_zmq_ctx = mock.Mock()
receiver = ActuationReceiver(mock_zmq_ctx)
receiver._tts_service = None
receiver._handle_speech({"endpoint": "actuate/speech", "data": "Some message to speak."})
assert receiver._message_queue.qsize() == 1
queued_item = receiver._message_queue.get()
assert queued_item == "Some message to speak."
def test_speech_priority(mocker):
"""
Tests that a priority speech message is handled correctly by clearing the queue
and placing the priority message at the front.
"""
mock_state = mocker.patch("robot_interface.endpoints.actuation_receiver.state")
mock_qi = mock.Mock()
sys.modules["qi"] = mock_qi
mock_tts_service = mock.Mock()
mock_state.qi_session = mock.Mock()
mock_state.qi_session.service.return_value = mock_tts_service
mock_zmq_ctx = mock.Mock()
receiver = ActuationReceiver(mock_zmq_ctx)
receiver._message_queue.put("old_message_1")
receiver._message_queue.put("old_message_2")
assert receiver._message_queue.qsize() == 2
priority_msg = {
"endpoint": "actuate/speech",
"data": "Urgent Message",
"is_priority": True,
}
receiver._handle_speech(priority_msg)
assert receiver._message_queue.qsize() == 1
queued_item = receiver._message_queue.get()
assert queued_item == "Urgent Message"
def test_handle_messages_loop(mocker):
"""
Tests the background consumer loop (_handle_messages) processing an item.
Runs SYNCHRONOUSLY to ensure coverage tools pick up the lines.
"""
# Patch Thread so the real background thread NEVER starts automatically
mocker.patch("threading.Thread")
# Mock state
mock_state = mocker.patch("robot_interface.endpoints.actuation_receiver.state")
# Setup initial speaking state to False (covers "Started speaking" print)
mock_state.is_speaking = False
# Mock the TextToSpeech service
mock_tts_service = mock.Mock()
mock_state.qi_session.service.return_value = mock_tts_service
# Initialize receiver (Thread is patched, so no thread starts)
# Use Mock Context to avoid ZMQ errors
mock_zmq_ctx = mock.Mock()
receiver = ActuationReceiver(mock_zmq_ctx)
# Manually inject service (since lazy loading might handle it, but this is safer)
receiver._tts_service = mock_tts_service
# This ensures the while loop iterates exactly once
mock_state.exit_event.is_set.side_effect = [False, True]
# Put an item in the queue
receiver._message_queue.put("Hello World")
# RUN MANUALLY in the main thread
# This executes the code: while -> try -> get -> if print -> speaking=True -> say
receiver._handle_messages()
# Assertions
assert receiver._message_queue.empty()
mock_tts_service.say.assert_called_with("Hello World")
assert mock_state.is_speaking is True
def test_handle_messages_queue_empty(mocker):
"""
Tests the Queue.Empty exception handler in the consumer loop.
This covers the logic that resets 'state.is_speaking' to False.
"""
# Prevent the real background thread from starting
mocker.patch("threading.Thread")
# Mock the state object
mock_state = mocker.patch("robot_interface.endpoints.actuation_receiver.state")
# Setup 'is_speaking' property mock
# We set return_value=True so the code enters the 'if state.is_speaking:' block.
# We use PropertyMock to track when this attribute is set.
type(mock_state).is_speaking = True
mock_zmq_ctx = mock.Mock()
receiver = ActuationReceiver(mock_zmq_ctx)
# This ensures the while loop body runs exactly once for our test
mock_state.exit_event.is_set.side_effect = [False, True]
# Force get() to raise Queue.Empty immediately (simulate timeout)
# We patch the 'get' method on the specific queue instance of our receiver
#mocker.patch.object(receiver._message_queue, 'get', side_effect=Queue.Empty)
# Run the loop logic manually (synchronously)
receiver._handle_messages()
# Final Assertion: Verify is_speaking was set to False
# The code execution order is: read (returns True) -> print -> set (to False)
# assert_called_with checks the arguments of the LAST call, which is the setter.
assert mock_state.is_speaking is False
def test_handle_messages_runtime_error(mocker):
"""
Tests the RuntimeError exception handler (e.g. lost WiFi connection).
Uses a Mock ZMQ context to avoid 'Address already in use' errors.
"""
# Patch Thread so we don't accidentally spawn real threads
mocker.patch("threading.Thread")
# Mock the state and logging
mock_state = mocker.patch("robot_interface.endpoints.actuation_receiver.state")
# Use a MOCK ZMQ context.
# This prevents the receiver from trying to bind to a real TCP port.
mock_zmq_ctx = mock.Mock()
# Initialize receiver with the mock context
receiver = ActuationReceiver(mock_zmq_ctx)
mock_state.exit_event.is_set.side_effect = [False, True]
receiver._message_queue.put("Test Message")
# Setup: ...BUT the service raises RuntimeError when asked to speak
mock_tts = mock.Mock()
mock_tts.say.side_effect = RuntimeError("Connection lost")
receiver._tts_service = mock_tts
# Run the loop logic manually
receiver._handle_messages()
# Assertions
assert mock_state.exit_event.is_set.called
def test_clear_queue(mocker):
"""
Tests that the clear_queue method properly drains all items from the message queue.
"""
mocker.patch("threading.Thread")
# Use Mock Context
mock_zmq_ctx = mock.Mock()
receiver = ActuationReceiver(mock_zmq_ctx)
# Populate the queue with multiple items
receiver._message_queue.put("msg1")
receiver._message_queue.put("msg2")
receiver._message_queue.put("msg3")
assert receiver._message_queue.qsize() == 3
# Clear the queue
receiver.clear_queue()
# Assert the queue is empty
assert receiver._message_queue.qsize() == 0