INFOSP - Fall 2025 - Developer Manual

Manual for Developers for Pepper+ Software

Pepper™ Team
January 2026

Contents

1 Introduction & Reading Guide

2 Architecture Overview

2.1 Global Architecture
2.2 CB Architecture e e e
2.2.1 DataFlow e e
2.2.2 Agent Descriptions
3 User Interface
3.1 Separation of Assets, Components, Pages, and Utilities
3.2 Visual Programming Page L
3.2.1 Basic ReactFlow implementation 0oL
3.2.2 Visual Programming Componentso
3.2.3 Visual Programming Nodes o
3.24 Noderegistry e
3.25 Creationofanewnode e
3.3 Monitoring Page
3.3.1 Synchronization with Control Backend.
3.3.2 User Interrupt Events
3.3.3 Experiment Controls
3.3.4 Robot Connection Monitoring L
3.3.5 Implementing your own node in MonitoringPage

4 Control Backend

4.1 Core Infrastructure oL
4.1.1 Agent System e
4.1.2 Internal Messaging e e e
4.1.3 ZeroMQ Integration
4.1.4 Configuration L e

4.2 Creating a New Agent e

4.3 Extending the BDI System
4.3.1 Adding Custom Actions e
4.3.2 AgentSpeak Generation and Pipeline Integration

4.4 API and External Communication
4.4.1 Adding a New Endpoint

4.5 Hardware Abstraction (Robot Interface) L oL

5 Robot Interface
5.1 Our Robot Interface
5.2 Future Robot Interfaces

D NN N

oo 0o Co QO

11
11
16
16
17
18
18
19

19
19
19
19
20
21
21
22
22
22
23
23
23

1 Introduction & Reading Guide

In this document, we provide potential future developers of Peppert with the tools and knowledge they
need to succeed in extending and improving our product. In Section 2, we provide a global overview of the
architecture of the project, focusing heavily on the Control Backend. In Section 3, we go into detail about all
components of the User Interface and provide concrete steps to change/add certain functionality. In Section
5, we go over the communication channels between the Robot Interface and the Control Backend and provide
a checklist for implementing a new robot interface. We conclude by walking through some concrete examples
of new functionality one might wish to add, explaining what code to change/add and what a developer can
expect.

2 Architecture Overview

In this section, we discuss the global architecture of the project, as well as dive deeper into some aspects of
the pipeline we use for decision making within the server backend.

2.1 Global Architecture

Our software consists of three components: the User Interface (UI), the Control Backend (CB), and the
Robot Interface (RI). A high-level overview of these components and their interaction is shown in Figure 1.

We will outline each of the components in this figure, as well as how they interact with each other, beginning
with the UL

User Interface The UI, which is a web application built using React/TypeScript, is the part of the software
that an end user will interact with. It communicates to the CB using HTTP, either by listening to endpoints
that send server-sent events for continuous streams of data (i.e., logs), or via REST API endpoints, exposed
on both the UI and the CB. The UI enables a researcher to utilize all available features of the software in an
intuitive and easy-to-navigate manner, acting as a shell around the core functionality in the CB. In the UI,
a researcher can design and monitor a so-called behavior program. Such a program consists of one or more
phases, each of which may contain a set of (conditional) norms, goals, and triggers. The UT is responsible for
sending a behavior program to the CB, ensuring that it is correctly formatted for the CB to load. It consists
of two main components: the program editor and the monitoring page.

The program editor is the dedicated tool for a researcher to define their programs and express their desired
behavior in terms of nodes. The program editor provides a drag-and-drop menu to build a network of nodes,
each node having its own function. The nodes have extra functionality to show their purpose and give
feedback about the status and validity of their connections. Researchers also have the option to save and
load their programs locally. When the 'Run Program’ button, shown in Figure 2, is pressed, the program
editor will compile all of the nodes and connections into a reduced program and send it to the control backend,
starting the experiment. The Monitoring Page is then automatically loaded.

The Monitoring Page serves as a source of information and enables interaction during an active experiment.
It provides information about the state of the current experiment, ranging from the current phase of the
experiment to the conditions that are currently met. The page contains experiment controls to allow for
managing the current phase and state of experiments. Additionally, it provides the researcher with speech
and gesture controls to manually intervene during the experiment. To allow for more transparent monitoring,
there is a built-in log window, which presents high-level information, like what the robot heard or said.

Control Backend The CB is the brain behind the software. It executes user-defined behavior programs,
facilitates communication between the RI and the UI, manages LLM queries, and generates actions based
on input. The CB is also responsible for the behavior and decision making of the robot. It does this by
following the principles behind the belief-desire-intention (BDI) software model. The pipeline behind this
will be covered in Section 2.2.1. To actually control the (physical) robot, it communicates with the RI,

UI

Program Editor

Nodes

Monitoring Page

Phase Updates

anual Rabot Conrols

Avaiable Gestures

Communication (With RI)

)

Actuate
Publish Port

‘Audio port

Speech Agent

Pings

[——

Communication with UL
Endpoints

Gesture Data

User Interrupt Agent

> Robotendpoint |

anual User Inceractions

User Interact Endpoint

Underlying Agent System

Program Endpoint

Logs Endpoint |

Figure 1: Overview of the software architecture with the three main components. Blue arrows represent
connections over (ZeroMQ) sockets, while red arrows represent HT'TP connections.

Undo Redo

Run Program

Figure 2: Undo, Redo, and Run Program buttons, located at the bottom of the visual programming page

which provides an API for executing certain behavior on the robot. Additionally, it informs the UI about the
current state of the program, including the active phase, active norms, and the goal currently being pursued.

The Control Backend is a multi-agent system, with each agent having its own responsibilities. For example,
some agents handle communication with the Ul and RI, some are responsible for forming beliefs based on
text/video, one is responsible for decision making, etc. By separating these agents into their own isolated
instances, we make it easy to add and remove certain functionality, as well as to swap out certain agents in
the future for ones with better performance. A detailed overview of the architecture of the CB is given in
Section 2.2.

The CB is written in Python 3. As mentioned previously, it communicates with the UI through HTTP. RI
communication is handled through sockets, specifically using the library ZeroMQ[?]. The considerations that
went into choosing this library will be covered in Section 77.

Robot interface The Robot Interface is the part of the software responsible for executing behavior on the
robot, like saying a sentence or performing a gesture. The RI is an abstraction layer that ensures that we
can, at a later point, introduce a different robot, which provides the same API in its RI, thereby eliminating
the need to change any code in the CB. The RI provides an API to the CB through ZeroMQ sockets, through
which it receives commands for the robot to execute. These commands include a specific endpoint, which
can be used to distinguish functionality between commands. Implementation of how exactly these commands
are translated to the robot is left to an individual interface.

An RI is directly linked to a single (physical or virtual) robot. Introducing support for a new robot only
requires writing an RI for that robot (in whichever language you choose). In the case of the Pepper RI,
it is written in Python 2.7.18, as that is the latest version of Python compatible with the Pepper software
development kit (SDK).

2.2 CB Architecture

As the CB is the main component of our software, it is important to explain its architecture in detail. In
this part, we first provide a global overview of how data flows through the CB (Section 2.2.1), after which
we provide a detailed description of each agent in the CB (Section 2.2.2).

2.2.1 Data Flow

In this section, we outline the pipeline through which data flows, explaining at each point what happens to
the data and why it might or might not be well-defined behavior. In Figure 7?7, a more zoomed-in overview
(compared to Figure 1) of the CB architecture is shown.

We have divided the data flow through the CB into three distinct phases: input processing and belief
formation, intention formation, and action output. We will go into detail about each of these phases in the
following parts.

User Interface

—— HTTP (REST)
—— ZMQ (Pub/Sub)

Internal Message

JSON program FastAPI Button Events

[Cemmi
l l l

Visual Emotion BDI Program User Interrupt Agent
Recognition Agent Manager Agent Pt A)
Goals/Norms J Override J
l AgentSpeak Program l Command
Emotions RI C
i - omm.
Text Belief Ex Beliefs BDI Core Agent Command _ Robot Gesture Agent %1 Cesture o «——————p| Robot Interface

tractor Agent

< Agent

Raw Text Prompt/Norms| | Response

Command
S h
Transcription Agent LLM Agent Robot Speech Agent [2= |

Audio Stream

VAD Agent <

Figure 3: Overview of the agentic structure of the CB. Agents are grouped by their function and stage in
the data flow pipeline. The darker red nodes in the top right corner of some agents represent pre-trained
models whose function is encapsulated in the corresponding agent. Connections are color-coded, with blue
connections indicating HTTP communication, orange indicating connection over sockets (specifically ZeroMQ
sockets in this case) and gray indicating internal communication (simple string messsages between agents).

Phase 1: Input Processing and Belief Formation The CB receives audio and video data from the
RI. The audio data is sent to the Voice Activity Detection Agent, which is responsible for detecting when
a user is speaking. It then sends the speech fragments to the Transcription Agent, which converts the raw
audio data to text. This text is sent to the Text Belief Extraction Agent. It is responsible for forming beliefs
based on the transcribed text and the context of the conversation, and sending these beliefs to the BDI Core
Agent. It also forwards the raw transcription to the BDI Core in the form of a user_said("<text>") belief.

The video data is sent to the Visual Emotion Recognition Agent, which is responsible for converting the raw
video data into beliefs about what emotions are currently detected, and sending these beliefs to the BDI
Core.

Since all of the agents in this phase use some form of AI (mostly pre-trained neural networks), the input-
output relation is not strictly well-defined. Slightly different input might lead to differences in recognized
emotions, text, etc. It is important to recognize this and treat the data received from these agents as
partially incorrect. Balancing the minimization of model error with the maximization of performance is a
delicate subject that requires a great deal of thought to be put into it, should the application require it.

Phase 2: Intention Formation The beliefs formed in the previous phase are sent to the “brain” of the
CB: the BDI Core Agent. This agent is responsible for forming intentions (short-term goals). It does this by
combining its desires (long-term goals and norms, specified by the researcher) with the beliefs formed in the

previous phase. The rules for combining beliefs and desires into intentions and actions are typically written
in AgentSpeak [?]. This language, similar to prolog, allows us to control intention formation by defining
plans that get executed when certain beliefs or goals are added to the belief base.

For our purposes, we convert the program created by the user in the UI into AgentSpeak code representing
the same structure automatically. The BDI Program Manager handles this conversion through the use of a
dedicated AgentSpeakGenerator class. As a short illustration, consider a very simple program that consists
of a single phase with a single goal: find the user’s name. This would result in the following core AgentSpeak
plans:

phase (1) . // we start off in the first (and only) phase
+user_said(Message) // whenever the user says something, we execute this plan
phase (1) // this plan is specifically for phase 1
<- !'find_user_s_name. // add the goal to find the user's name to our intentions
+!find_user_s_name // whenever we want to find the user's name, do this
phase (1)
<- .say("What is your name?"). // call to a Python function to let the robot speak

Note that this file would not be functional in our program, as it omits several key elements in favor of brevity.
This file gets parsed by the Program Manager, which in turn sends it to the BDI Core. The BDI Core uses
the agentspeak library to abstract away some of the details of manually managing intentions and the BDI
loop.

Phase 3: Action Output After the intentions are formed by the BDI Core Agent, they are converted into
concrete actions (callable Python functions from within the AgentSpeak file). Inside these actions, the BDI
Core forms gesture and speech commands, which it sends to the corresponding agents. the Robot Speech
Agent and the Robot Gesture Agent are responsible for telling the robot what to do. These are relatively
simple agents, interacting directly with the RI. They receive commands from the BDI Core, which they
forward to the RI over ZeroM(Q sockets.

2.2.2 Agent Descriptions

In this part, we discuss each agent mentioned previously in more detail. We outline their functionality and
describe the mechanisms they use internally for achieving this functionality.

RI Communication Agent The RI Communication Agent is responsible for initializing communication
with the RI, and checking whether the connection holds. It sends a negotiation message to the RI, which
should respond with supported endpoints and the ports used for each. Using this response, the agent starts
other agents, namely the VAD Agent, the Visual Emotion Recognition Agent, the Robot Speech Agent, and
the Robot Gesture Agent. A continuous behavior of the RI Communication Agent is the periodic health check
pings. If the RI is determined to be disconnected, this agent informs the Ul and attempts re-negotiation.
Note that this functionality is partially abstracted away in Figure 3. In actuality, the individual agents
correspond directly with the RI, after connection is established through the RI Communication Agent.

VAD Agent The VAD Agent starts the Transcription Agent and listens continuously to the audio endpoint
of the RI. It uses a pre-trained voice activity detection model to detect the beginning and end of a user’s
utterance, and when the end of an utterance is detected, it sends the a full audio fragment to the Transcription
Agent.

Transcription Agent Receiving the audio fragments that the VAD Agent sends, the Transcription Agent
uses a pre-trained transcription model to transcribe audio into text. It sends the transcription to the Text
Belief Extractor Agent.

Text Belief Extractor Agent From conversation text, the Text Belief Extractor Agent uses an LLM to
determine whether beliefs hold and whether goals have been achieved. When a belief changes or a goal is
achieved, the Text Belief Extractor Agent sends a message to the BDI Core Agent.

The beliefs formed by this agent are two-fold. The first type of belief is the semantic belief. A semantic belief
is a belief derived from the conversation history using an LLM. An example of such a belief could be: "The
user is a pirate". Since this is determined by semantic meaning rather than exact keywords, the system can
infer this belief from synonyms (e.g., "I am a privateer") or indirect expressions (e.g., "My name is Captain
Jack Sparrow"), in addition to literal statements. The other type of belief that this agent is responsible for is
the achievement of goals. During program creation, the user has specified a set of (sub)goals for each phase.
Determining whether these goals are achieved (based on their name and description) is also the responsibility
of this agent.

The way these beliefs are formed is through structured LLM calls. The agent has access to the conversation
history and tasks an LLM with determining which beliefs (out of a set of available beliefs) hold. The Text
Belief Extraction Agent gets the available beliefs and goals from the BDI Program Manager, which is another
agent, responsible for keeping track of the currently loaded program.

Visual Emotion Recognition Agent The Visual Emotion Recognition Agent listens to the video end-
point of the RI, using a pre-trained emotion detection model to detect emotions in frames. In a window of
time, it tracks the emotions of each face. At the end of the time window it determines the dominant emotion
for each face and updates the BDI Core Agent about each individual emotion that is currently detected.

BDI Core Agent The BDI Core Agent runs the AgentSpeak program and uses inputs from most other
agents as beliefs in this program. These beliefs are constantly updated as agents receive new information.
The BDI Core receives the AgentSpeak program from the BDI Program Manager Agent, indirectly coming
from the UI. Depending on which actions are triggered from within the AgentSpeak program, it might either
directly give commands to the Robot Speech Agent and the Robot Gesture Agent, or first query the LLM
Agent for a response. It then passes this response as speech commands to the Robot Speech Agent. Changes
in state of the program, such as a phase change, which norms are active, and which goal is currently being
chased, are shared with the User Interrupt Agent.

BDI Program Manager Agent The BDI Program Manager Agent receives programs from the Ul and
transforms them into AgentSpeak code. It resets agents that might keep track of which state the experiment
is in, namely the LLM Agent and the Text Belief Extractor Agent. Then it shares the new program with the
User Interrupt Agent, sends the AgentSpeak program to the BDI Core Agent, and shares information about
which beliefs and goals should be tracked with the Text Belief Extractor Agent.

LLM Agent The LLM Agent is responsible for managing conversation history and generating responses
using an LLM. It can receive prompts from the BDI Core, which include the current norms to follow and the
message the user spoke. Optionally, a prompt can carry a temporary “goal”’, used to further steer the LLM
in the desired direction. It queries the LLM for a response, which is directly streamed back to the BDI Core.

Robot Speech Agent The Robot Speech Agent receives SpeechCommands from the BDI Core and the
User Interrupt Agent, which it forwards directly to the RI over ZeroMQ sockets.

Robot Gesture Agent The Robot Gesture Agent receives GestureCommands from the BDI Core and the
User Interrupt Agent, which it forwards directly to the RI over ZeroMQ sockets.

User Interrupt Agent When a user performs a runtime interruption of a program, the User Interrupt
Agent is responsible for forwarding this interruption to the BDI Core (or the actuation agents, if the inter-
ruption was a direct speech or gesture action for the robot to perform). It also receives updates about the
currently-running program from the BDI Core, which it shares with the UI over a dedicated server-sent event
endpoint.

3 User Interface

This section hopes to provide a detailed guide, as well as information about the workings of the User Interface
(UI). We will provide extra context and explanation into all the components we use, as well as give a step-by-
step guide on how to create a node from the ground up. First, we will talk a bit about how we have divided
some of our code and assets, then we will go into the visual programming page and its implementation,
following up we will provide information about the monitoring page, and finally we provide in which way we
expect any connection and formats to the Control Backend (CB).

3.1 Separation of Assets, Components, Pages, and Utilities

In order to strive for more modularity, the User Interface is structured having separation of concerns in
mind. All assets, meaning pictures or other external files, are stored in the src/assets/ folder. Components
that are accessed throughout the entire User Interface, are defined and stored in the first src/components/
folder. Any other components that are directly involved in certain pages, or subpages, are defined in the
corresponding ./components/ folder of that (sub)page.

3.2 Visual Programming Page

The following section will explain in which way the Programming Page is implemented, as well as inform
about any places one can remove, add, or adjust the current features.

3.2.1 Basic ReactFlow implementation

The core of the Visual Programming Page is ReactFlow!, in combination with Zustand?. ReactFlow is
a customizable React component for building node-based editors and interactive diagrams. We define a
FlowState type in VisProgTypes.tsx that defines the shape of the Zustand store used for managing the
visual programming flow. This compound type includes defining the all with a type signature based on the
ReactFlow, such as “OnConnect” and “OnNodesChange”. We initialize our own FlowState based on this type
in ‘VisProgStores.tsx’. Within this file, we control the logic that is called through the interaction of the
editor.

In case a developer would like to change the basic functionality at the core of how the visual programmer
works, they can change the functions defined in our constant ‘useFlowStore’, within ‘VisProgstores.tsx’. For
example, if one had a function to celebrate a new node being added, they would only need to add a call to
this function within the designated function ‘addNode’ contained inside our defined useFlowStore.

3.2.2 Visual Programming Components

For the Programming Page, we have specific components to help users create a complex diagram. Each of
these components contain logic and visual elements for their defined purpose. In Table 1, we see a list of the
types of components we have, with information about them.

The rest of this subsection will explain the components in more detail, going over their functionality, as well
as how one can adjust them.

Drag and Drop Bar
Relevant files: DragDropSidebar.tsz

The drag and drop bar is a web element that provides the users with the ability to drag a node from the
toolbar onto the existing program diagram, adding them to the editor. We define the complete element as
a function ‘DndToolbar()’, which loops over all the default node data, and checks if the boolean ’droppable’
is set to true. For each type of node for which this holds, this function creates calls ‘DraggableNode()’, a
function that creates another web element within our toolbar. We pass a function to each node that, on

Ihttps://reactflow.dev/
2https://zustand-demo.pmnd.rs/

https://reactflow.dev/
https://zustand-demo.pmnd.rs/

Component Main purpose of the component

Drag and Drop Bar Allows users to drag and drop defined nodes

Warnings Bar Notifies the user about any illegal or disfavored configurations
Rule-based Handles Allow for complex configuration of connections between defined nodes
Save and Load Panel Provides the ability to save and load created diagrams

Plan Creating Serves as a medium for creating compound plans, needed for certain nodes

Table 1: Visual Programming Page Components and Functionality

drop, checks if the position is valid, and calls ‘AddNodeToFlow()’, correctly adding any nodes to our flow.
This bar is designed with modularity in mind, meaning that defining a new node should automatically be
correctly handled with the existing code. However, note that there is a specific CSS style called within this
element, namely .draggable-node-<node type>, which should be defined in ‘VisProg.module.css’.

Warnings Bar
Relevant files: Editor Warnings.tsz, WarningSidebar.tsx, WarningSidebar.css

The Warnings Bar serves as an extra precaution against the creation of unwanted programs. Inside ‘Editor-
Warnings.tsx’, all logic for the warning system is defined. It includes all types and severities, as well as a
defined type for how the complete warning registry should be structured, alongside our used editor warning
registry. This logic is used for our page element, defined in ‘WarningSidebar.tsx’, which consists of a header
where you can change the severity filter, as well as the lists of all the warnings. The warnings are dynam-
ically updated through the use of the program. Node-specific warnings are defined within their respective
react elements, adjusting the registry where needed. The check for a complete program, and the warning
arising from an incomplete program are defined in ‘VisProg.tsx’, and called on an update. The styles for the
Warnings Bar are stored in ‘WarningSidebar.css’.

In case a developer would like to adjust the types or severities of warnings available, they would have to adjust
the type ‘WarningType’ and ‘WarningSeverity’ in EditorWarnings.tsx. Then, implementing this warning can
be done from any point in the visual programming page, by (un)registering a warning, following the type of
‘EditorWarning’, using the FlowStores’ ‘registerWarning()’ and ‘unregisterWarning()’ respectively.

Rule-based Handles
Relevant files: RuleBasedHandle.tsx, RuleBasedHandle.module.css, HandleRules.ts, HandleRuleLogic.ts

Rule-based handles are used to create a new layer of conditions for handles to adhere to before validating
connection. This way any change of handle connection in the program editor is automatically enforced into
a correct state. Definitions for a rule, as well as the registering and evaluation are defined in ‘HandleRule-
Logic.ts’. The ‘HandleRule’ typing is then used in ‘HandleRules.ts’ to define our own rules. In our case we
have rules for allowing only connections from an array of types, allowing only connections from a certain
handle, and disallowing connections to the node’s own typing. These rules can be given arbitrarily when
creating the handles, defined in ‘RuleBasedHandle.tsx’. In ‘RuleBasedHandle.tsx’ there is a definition for
a Single- and Multi-Connection Handle, which allow a single and multiple connection, respectively. These
handles can be used within Nodes to give them their functionality. All the styles for the handle components
are stored in ‘RuleBasedHandle.module.css’.

In case a developer would like to add, or remove certain rules, they would have to add, or remove the rules
in ‘HandleRules.ts’. Next, they can use the rule when creating handles in their nodes. Rules are passed in
an array, as an argument ‘rules’. Note that the rules themself are defined to take another array as argument,
so an example ‘rules’ variable inside typescript would be:

rules=[allowOnlyConnectionsFromHandle([node Type: "phase " handleld: "data"])]

Save and Load Panel
Relevant files: SaveLoadPanel.tsz, SaveLoadPanel.module.css

The Save and Load Panel allows users to save their graph locally, and upload previously saved programs into
the editor, recreating them. This also allows them to share programs via any means possible. It uses the
‘SaveLoad.ts’ file, defined in ‘src\utils\’ to create a Blob using the correct structure, and passes this object to
create a URL to save this object, and passes it to the user. Currently, the Blob creation only takes nodes and
edges into account, as well as a name for the program. If, in the future, a graph needs more information than
the Nodes and Edges to (re)create a graph, this information should be encoded in this Blob as well. Note that
this also means updating the ‘HandleFileChange’ to correctly adjust the Zustand store with the additional
information. All the styles for the Save and Load Panel are contained in ‘SaveLoadPanel.module.css’.

Plan Creating

Relevant files: Plan.tsx, Plan.default.ts, PlanEditor.tsz, PlanEditor.module.css, PlanEditingFunctions.tsz,
Gesture ValueEditor.tsz, GestureValueEditor.module.css

The main component, the Plan Editor is a component that allows users to create a complex plan for certain
nodes. A plan is collection of steps, like: ‘say “hi”’, or ‘do gesture: “wave”’. A plan and its subparts are
defined within ‘Plan.tsx’. The default value for a plan is defined in ‘Plan.default.ts’. The ‘PlanEditor.tsx’
contains the multipart component, starting with a button that opens a separate creation window. After
opening the user is faced with two main parts; the left side, which is responsible for creating an action,
and the right side, which shows all the steps of the current plan. Creating an action is subdivided into
three options: Speech, Gesture, and LLM. All the creation logic for Speech and LLM action is contained
within the Plan Editor. However, the Gesture Editor has its separate sub-component and logic, stored in
‘GestureValueEditor.tsx’. It contains a toggle for switching between the “tag” mode and the “single” mode.
Adding any of these actions to the plan using the “Add Step” button adds this action to the plan. Creating/
Saving the program updates the parent node with the updated plan. ‘PlanEditingFunctions.tsx’ contains
two functions that take in a plan and insert, or delete a goal, respectively. When the program is run, these
plan are reduced into useful data using the ‘PlanReduce()’ function within ‘Plan.tsx’. The PlanEditor and
GestureValueEditor component each have their own styles defined in their ‘.module.css’ files.

For future development, it is essential that all the types of correct actions and their possible values are well-
defined. Different types of actions can be redefined in ‘Plan.tsx’. Note that changing this, in turn, means
updating ‘PlanEditor.tsx’ to account for the change in types, needing a case for how their action should be
build, as well as an interface with the user for input. The Gesture Value Editor component is responsible for
fetching, or storing all of the correct types of gestures. In case this changes, this should be updated.

3.2.3 Visual Programming Nodes

At core, a node is a typing that represents everything ReactFlow needs to know about a node, extending
the functionality of a Record. The basic definitions holds for our implementation, however, we expand upon
this definition, by giving all of nodes additional responsibilities. A node is not a class, but rather a type
that holds its own information compared to other nodes, and we add most of the functionality through the
functions that defined in the same file as the typing. One function we have integrated into all of our nodes,
and is essential to our visual programming page is the default export function, with the name of the node.
It takes the respective node’s properties as parameter, and returns a React element describing this node,
allowing us to rending it in the graph. Next, we also have functions that are called in certain scenarios for
all of our implemented nodes. One key function that is called is the ‘Reduce’ function. This function is
responsible for reducing all the information a node holds into essential information for the Control Backend
to receive, making sure that all the values are correctly parsed. Additionally, we have a default initialization
of the information stored in a different file: ‘<Node>.default.ts’. All of our individual nodes are defined in
‘nodes\’. The nodes we have currently defined are: the Basic Belief Node, the End Node, the Inferred Belief
Node, the Norm Node, the Phase Node, the Start Node, and the Trigger Node.

10

3.2.4 Node registry

Next to the modular approach of having a specific file be responsible for the functionality of a node, another
import factor is the Node Registry, which allows for polymorphism in code, reducing needed complexity in
calling functions. The Node Registry serves a ‘main hub’, telling the rest of the program what functions or
variables should be accessed for which types of nodes. These functions can then be called regardless of type
in other parts, for example, when creating new nodes we can access the default data using its ‘type’:

const defaultData = NodeDefaults[type as keyof typeof NodeDefaults/

In this case, for example, we have defined all the default values of the nodes inside a variable ‘NodeDefaults’
inside ‘NodeRegistry.ts’. The registry holds (references to) information about many different aspects, includ-
ing the respective: React Component, Default values, Reducing algorithm, Connection Logic, Deletion Logic,
Tooltips.

3.2.5 Creation of a new node

Now, we know the concise definition of our nodes, however, for future developers it is essential to understand
the complete idea when creating new nodes. Therefor, we provide additional information, and a guide, to
the creation of new nodes:

1. Create new files for the node

The first step will be to create two new files for the new node. For this guide I will refer to the new
node’s type as ‘(newNodeType)’. One of the two files created should be a file (preferably) named
(newNodeType).tsx. This file will contain all the logic for the new node. The second file is a file (preferably)
named (newNodeType).default.ts. This file will only contain the default values of the node.

2. Define the typing of the node

In your (newNodeType).tsx file, you need to define what kind of information your new type has. You can
define this using

1 export type <newNodeType> Data = {
2 // Any node-specific data goes here.
3 }

In this definition you can fill this typing with all the needed information. Note that, for our implementations
of the Drag and Drop Bar and phases, your type should at least have parameters for: ‘label’” - a string that
shows its label on the drag and drop bar, ‘droppable’ - a boolean that tells the drag and drop bar whether
this node should be droppable or not Then, you should add

1 export type <newNodeType> = Node<<newNodeType>Data>
2 < >

Adding this completes the initializing of our node as a React node. Note that this requires you to import
the type ‘Node’ from ‘@xyflow /react’. Finally, make sure that this node has default values in the ‘.default.ts’
file. This should be something like

1 export const <newNodeType>Defaults: <newNodeType>Data = {
label: <Your 1label>,

droppable: <True/False>,
/*Make sure to add any other data of your new types signature here.x*/

Uk W N

This marks the first definition of your new node! Let’s implement all the needed functions to correctly show
the new node in our graph, and use it.

3. Implementing the visuals

Now, we want to make sure that when we are able to add the new node to the graph, it correctly shows. In
our software, we expect all the nodes to have their own default export function, that defines how the node
should be rendered. You can add this like:

11

1 export default function <newNodeType>(props: NodeProps<<newNodeType>>) {
2 /*Here will come the rendering logic*/
3 }

Now, you can already return any React.JSX.Element you would like to render, and this would work. However,
with how our modular nodes are defined, we usually follow a structure like:

1 return (<>

2 {/*You can use a Toolbar here, to allow for tooltips and deletion.x*/}

3 {/*import { Toolbar } from '../components/NodeComponents'; */3}

4

5 // Make sure we use the correct styles

6 <div className={ ${styles.defaultNode} ${styles.<YourStyle>} 1}>

7 <div className={"flex-row gap-sm'"}>

8 Your static text.

9 {/* Feel free to use the 'TextField' function from our components for more

dynamic text input */}
10 {/* For textfields, you have to import TextField from '../../../../components/
TextField'. */}

11 </div>

12

13 {/* Usually, we define the handle logic and creation here. */}

14 {/* You can do this using the SingleConnectionHandle and MultiConnectionHandle
*/}

15 {/* These are defined in '../HandleRules'.*/}

16 {/* For now, here is a simple handle that allows multiple connections: */}

17 <MultiConnectionHandle id="source'" type="source' position={Position.Right}/>

18 </div>

19 </>)

Note that, you can use the properties of the node to allow for more dynamic visualization. Adding ‘const
data = props.data as (newNodeType)Data;” before rendering allows you to more easily change the React
Element based on dynamic preferences.

4. Adding our node to the registry

All of our defined nodes are linked together through the use of the registry. It allows other files to know the
node exists, and use the needed functionality to correctly implement the node. Without adding the node to
the registry, the program will 'never know’ it exists.

Adding a node to the registry is quite simple. In NodeRegistry.ts we keep all the relevant functions and
data together. In this file, you can see that we have defined variables which range from defining the different
Node’s types to their tooltips. For now, we should add our node to this registry, letting it know that we
have this new type of node, with its own data, default values, and rendering function. Note that for the
registry, we use a key that represents the type of your node, in this guide we indicate the exact key type as
(newType).

You can follow the next idea, adding your functions and data to relevant variables:

1 export const NodeTypes = {

2 start: StartNode,

3 end: EndNode,

4 // Other defined nodes like phase, norm, goal
5 // You need to add this:

6 <newType>: <newTypeNode>,

7T 0}

8

9 export const NodeDefaults = {

10 start: StartNodeDefaults,

11 end: EndNodeDefaults,

12 // Other defined nodes standards, like phase, norm, goal
13 // You need to add this:

14 <newType>: <newTypeNode>Defaults,

15 };

12

Adding this basically means telling your program that your (newType) has the defaults and rendering func-
tion. You might notice there are a lot of different functions also being passed into the registry, from other
nodes. These are also very important, and we will handle them in a later step. Note that every new global
functionality to all the nodes, should have their own variable in the registry, mapping them the type keys,
so we can easily look up all the nodes’ functionality using their type.

Adding this already should allow you to see, drag and drop your new node unto the graph. Note that this
new node does not have any connection logic yet, so connecting can result in console errors.

4. Adding connection logic

The next two important parts of a node are the connection logic functions, and the reducing logic. With
every (dis)connection of nodes, a function gets called to both the source and target of the node, letting them
know that a new connection was made. The editor expects all of the nodes to handle extra functionality
themselves, so we need to add these functions, even if they are without additional logic:

export function <newType>ConnectionTarget(_thisNode: Node, _sourceNodeId: string) {

// no additional connection logic exists yet

}

1
2
3
4
5 export function <newType>ConnectionSource(_thisNode: Node, _targetNodeId: string) {
6 // no additional connection logic exists yet

7

8

}
9 export function <newType>DisconnectionTarget(_thisNode: Node, _sourceNodelId: string) {
10 // no additional connection logic exists yet
1}
12
13 export function <newType>DisconnectionSource(_thisNode: Node, _targetNodeId: string) {
14 // no additional connection logic exists yet
15}

Of course, new functionality means letting the registry know, so let us also add these functions on the correct
places in the registry, in NodeRegistry.tsx.

1 // Connections

2 export const NodeConnections = {

3 Targets: {

4 start: StartConnectionTarget,

5 end: EndConnectionTarget,

6 // Other nodes, add this:

7 <newType>: <newType>ConnectionTarget,
8 s

9 Sources: {

10 start: StartConnectionSource,

11 end: EndConnectionSource,

12 // Other nodes, add this:

13 <newType>: <newType>ConnectionSource,
14 }

15 }

16

17 // Disconnections

18 export const NodeDisconnections = {

19 Targets: {

20 start: StartDisconnectionTarget,

21 end: EndDisconnectionTarget,

22 // Other nodes, add this:

23 <newType>: <newType>DisconnectionTarget,
24 },

25 Sources: {

26 start: StartDisconnectionSource,

27 end: EndDisconnectionSource,

28 // Other nodes, add this:

29 <newType>: <newType>DisconnectionSource,
30 },

31 }

13

These functions will them be called whenever there is a (dis)connection, accounting for whether the node
was the source or target of the connection.

5. Adding reducing logic

In the case that this node should have data that is also send to the Control Backend, we should have a
function that reduces the information of the node into the expected needed data. This is our reduce function.
The reducer takes in the current node, and a possibly a list of nodes, and should return an output in the
form of ‘Record<string, unknown>’, mapping the relevant data to the corresponding fields. A simple reducer
could look something like:

1 export function <newType>Reduce(node: Node, _nodes: Nodel[]) {

2 // You can use “const data = node.data as <newNodeType>Data; for quicker access to
data.

3 return {

4 id: node.id,

5 reduceWorks: true,

6 label: node.data.label,

7 }

8 }

This will make sure that when the reduce function is called, we output the desired result. Again, we should
add this to the registry (in NodeRegistry.tsx), to make sure it is called properly:

1 export const NodeReduces = {

2 start: StartReduce,

3 end: EndReduce,

4 // Other nodes' reduce functions.
5 // Add this:

6 <newType>: <newType>Reduce,

7

Now, you should already be able to drag and drop the node, and connect and reduce properly. In case it
is connected to a phase node, it will automatically be reduced into the ‘<newType>s:’ field of the reduced
phase, so for example a simple problem with the example reduce would looks like:

{

a1,
1,

0O Utk WK -

1,

12 : true,

6. Styling and CSS

You’ve now got a fully functional Node, however, it can look very bland. In order to have a more complete
node, you should implement the correct styles and reference them. In case you added ${styles.<YourStyle>}
to your node’s className, you should incorporate this in VisProg.module.css. Furthermore, when creating
the drag and drop bar, we try to access the correct style using styles.draggable-node-<newType>. So for
the basic style implementation you should add the following to VisProg.module.css:

1 .node-<newType> {
2 /*Add a colour for the ouline and filter:x*/

14

outline: aquamarine solid 2pt;
filter: drop-shadow(0 O 0.25rem aquamarine);

}

.draggable-node-<newType> {
/* You can change this to your liking. */

9 padding: 3px 10px;

10 background-color: canvas;

11 border-radius: 5pt;

12 cursor: move;

13 outline: aquamarine solid 2pt;

14 filter: drop-shadow(0 O 0.75rem aquamarine);
15 3}

Now you have a fully working and visual node. The only thing to do next, is to extend its functionality, and
make sure that the program is even more happy!

7. Extra Functionality for Tooltips, Warnings and reducing

Our program would like all nodes to have their own tooltip, a small text which shows the users what you can
do with a node. Just like all other functionality, this is done by defining itself in the node’s file, and linking
it with the registry:

1 // In <newNodeType>.tsx:

2 export const <newType>Tooltip ="

3 This node is made for testing, this should show when the tooltip is shown.
4 This happens when hovering on the node in the drag and drop bar, or

5 when the tooltip is hovered on throughout the node's toolbar, in case it exists. ;
6

7 // In NodeRegistry.ts::

8 export const NodeTooltips = {

9 start: StartTooltip,

10 end: EndTooltip,

11 // Other nodes, add this:

12 <newType>: <newType>Tooltip,

13 1

Next, we can add additional warnings to the system whenever something is not up to our likings. We do this
using an useEffect() within the default <newNodeType> function. First, we need to define what warning we
would give, according to the EditorWarning type defined in EditorWarnings.tsx, and then (un)register it
accordingly:

1 // Inside of your default export <newNodeType> function:
2 1

3 /]

4

5 // Check for the warnings (a seperate function is more clean)
6 check<newType>Warnings (props) ;

7

8 // Return the React Element:

9 /7

10 %

11

12 // Then create a checking function:
13 function check<newType>Warnings (props: NodeProps<<NewNodeType>>) {

14 // The functions should be retrieved from the flow store.

15 const {registerWarning, unregisterWarning} = useFlowStore.getState();
16

17 // Example: A custom warning for if this node is too far to the left.
18 const tooFarLeftWarning : EditorWarning = {

19 // Make sure to check the correct typings in '../components/EditorWarnings'.
20 scope: {

21 id: props.id,

22 handleId: undefined,

23 1,

24 type: 'CUSTOM_WARNING',

25 severity: "INFO",

15

26 description: < >

27 };

28

29 // Make sure to check the (un)registerWarnings' documentation!

30 if (props.positionAbsoluteX < 30) { registerWarning(tooFarLeftWarning); }
31 else { unregisterWarning(props.id, ~${tooFarLeftWarning.type})}

32}

Finally, we can also specify whether or not we want this node to be (automatically) reduced as a field of the
Phase. By default, this is true, so the type automatically gets reduced in its own field. However, in case your
node should not be reduced as a field of the phase, you can add the following in NodeRegistry.ts:

1 export const NodesInPhase = {
2 start: () => false,

3 end: () => false,

4 // Other nodes:

5 <newType>: () => false,

6

This tells the phase to NOT handle this node as a child, or field of itself when reducing.

Now that you have the grasp of creating a node in our system, your imagination is the limit! Make sure
to always check for missing imports, and check the documentation whenever the functions seem hard to
understand. An example file for a new node is provided in section 77 .

For implementing more functionality related to this node in the Monitoring Page, check section 3.3.5.

3.3 Monitoring Page

This section will break down the implementation of the features in the monitoring page as well as discuss
the implementation of adding a new type of node in the Monitoring Page. Roughly the implementation of
the Monitoring Page is able to be subdivided into two parts. The implementation of user interrupt events
and the the implementation of state synchronization with the Control Backend.

3.3.1 Synchronization with Control Backend.

To maintain a real-time representation of the experiment, the frontend utilizes a custom hook, useExperimentLogic,
which manages the local state for phase progression, active node IDs, and goal tracking.

State Management and Stream Listeners
Relevant files: MonitoringPageAPI ts, MonitoringPage.tsx
The synchronization is driven by two Server-Sent Events (SSE) streams:

e Experiment Stream: Managed via useExperimentLogger, this stream handles phase_update, goal_update,
and trigger_update events to shift the UI context as the robot progresses.

e Status Stream: Managed via useStatusLogger, this stream specifically listens for cond_norms_state_update
to toggle the active status of conditional norms dynamically.

Initial Data Loading and Phase Transitions

Relevant files: MonitoringPage.tsx, MonitoringPageAPI.ts

When the experiment starts, the MonitoringPage relies on the useProgramStore to provide the full program
structure. The initial state is established as follows:

e Initial Phase: The useExperimentLogic hook initializes phaseIndex to 0 and activeIds to an empty
object.

e PhaseDashboard: This component acts as a filter. It uses getters from the store, such as getGoalsWithDepth,
getTriggersInPhase, and getNormsInPhase, to extract only the nodes relevant to the currently active
phaseld.

16

When a phase_update is received via the Experiment Stream, handleStreamUpdate searches for the index
of the new id within the phaseIds array retrieved from the store. If found, setPhaseIndex updates the Ul
context, causing the PhaseDashboard to re-render with the goals and norms of the new phase, while resetting
goalIndex to 0.

Experiment Completion

Relevant files: MonitoringPage.tsx

The transition to the final state is handled by a reserved ID check. If the incoming phase_update contains
an ID of "end", the isFinished state is set to true. In this state, the PhaseProgressBar marks all phases
as completed, and the PhaseDashboard is replaced with a finished message.

3.3.2 User Interrupt Events

Here we will list the implementation of all the features that allow the user to intervene with the experiment,
using buttons on the page. Generally speaking, when such button is pressed, relevant information is sent to
the Control Backend via HTTP requests.

Send API Call

Relevant files: MonitoringPageAPI.ts

Most user interrupt events utilize a unified sender function called send APICall. This function expects a type
and context. The type and context contain all the necessary information that the Control Backend needs for
an interrupt event. Consider the following example calls:

//Make Pepper say specified sentence
sendAPICall (s)

//Make Pepper perform specified gesture
sendAPICall (y)

//Make Pepper override a goal/conditional norm/trigger with specified ID
sendAPICall(, String(item.id))

© 00Uk W

An endpoint could also be included if you want to send the information to a more specific endpoint. In
our current implementation, this is not used and all the interrupt events are sent to the "button pressed"
endpoint.

Forced Speech

Relevant files: MonitoringPage Components.tsz

Forced speech allows a developer to override the robot’s current BDI (Belief-Desire-Intention) stack by in-
putting a direct utterance. This is implemented through two distinct React Functional Components that use
the API call described in section 3.3.2:

The first component is the direct speech component. An input component that uses the React state via
UseState to manage the text content. It supports both clicking events and the onKeyDown (Enter) event.
When such event is triggered it sends an API call with type "speech" and the text content as its context.
Afterwards it clears the text content (using UseState).

The second component contains a list of preset phrases. Each one of these contains a label, that is dis-
played on the page and a text property, which is the actual text that is passed through via the Send API
Call (3.3.2). In our current implementation these two fields differ slightly to ensure that all text can be nicely
displayed on the MonitoringPage without cluttering. To illustrate, consider this example:
1 A
2 label: ,
3 text:
4 ¥

17

Currently, there are three presets, which are hard-coded in the component itself. As a developer you can add
or edit any sentence that you want.

Forced Gesture
Relevant files: MonitoringPageComponents.tsz
Similar to the forced speech, one can also send gestures for Pepper to perform during the experiment. Right
now a drop-down menu of a list of pre-selected gestures is presented to the user. The items in the list contain
a label, which is presented on the Monitoring Page and a value, which is the hard-coded path of that specific
gesture. It must be noted that this path is specific to Pepper. To illustrate, consider this example:

{

label: s

1

2

3 value:
4 3}

As a developer, you might want to swap these gestures to be compatible with a different Robot Interface. To
do this, simply change the value to the specific path that contains the gesture on your specific gesture.

Design Note: A different approach to solving this problem would be to fetch the gestures available via
your specific Robot Interface, although our software currently does not implement this.

The selected gesture is stored via React’s UseState. An API call is sent (section 3.3.2) with the button’s
onClick event, containing the topic "gesture" and the path to the specific gesture as its context.

Overrides

Relevant files: MonitoringPage Components.tsz

The StatusList allows manual state toggling for Goals, Triggers, and Conditional Norms. Currently, Goals
and Triggers are only clickable when they are not achieved/active, whereas conditional norms is clickable
both in active as in inactive state. The corresponding clickable icons (X for inactive/unachieved and v for
active/achieved) trigger specific APT calls:

e v — override: Used to manually mark a goal as achieved or to activate a trigger or conditional norm.
e X — override unachieve: Used to manually deactivate an active Conditional Norm.

For conditional norms and triggers, after an override is performed, the active status is not immediately
updated in the UL, but rather by status updates sent by the CB as described in (section). For Goals, however,
the frontend performs an optimistic update by calling setActiveIds immediately, providing instant visual
feedback before the backend confirms the change via SSE. This is done, because letting the BDI core decide
whether a goal is completed in our current implementation causes it to be de-synchronized.

3.3.3 Experiment Controls

Relevant files: MonitoringPage.tsz, MonitoringPageAPI.ts
The ControlPanel provides four main global actions:

e Play/Pause: Sends a "pause" API call with context "false" (to play) or "true" (to pause).
e Next Phase: Triggers nextPhase () to force the backend into the next defined phase.

e Reset Experiment: Triggers resetExperiment, which re-parses the visual program using graphReducer,
clears local states, and restarts the backend logic via runProgramm.

3.3.4 Robot Connection Monitoring

Relevant files: MonitoringPageComponents.tsz

The RobotConnected component maintains a dedicated SSE connection to /robot/ping_stream. It listens
for a boolean value indicating connection status and updates the Ul with a "Robot is connected" or "Robot
is disconnected" message accordingly.

18

3.3.5 Implementing your own node in MonitoringPage

If you have created a new type of node, you first need to consider if it is a node that you want updates on
the monitoring page (e.g., its active/completion state) or if it is fine to not include it at all.

If visibility is required, you must register the node within the MonitoringRegistry. This involves mapping
the node’s internal state transitions—specifically those handled by the asynchronous _process_bdi_message
logic—to the UI components. This ensures that when the agent is "querying" or "interrupted," the frontend
reflects these states in real-time.

4 Control Backend

This section provides an in-depth guide for developers regarding the internal workings of the Control Backend
(CB). While Section 2 explained the high-level responsibilities of the agents, this section focuses on the code
implementation, extending the system, and the specific libraries used.

4.1 Core Infrastructure

The Control Backend is built upon a custom asynchronous agent framework. Understanding the base classes,
configuration management, and communication layers is essential before creating new functionality.

4.1.1 Agent System
Relevant files: src/control_backend/core/agent_system.py, src/control_backend/agents/base.py

Every functional unit in the backend inherits from the BaseAgent class. This class provides the foundational
infrastructure for lifecycle management, logging, and message passing.

When implementing a new agent, developers should inherit from control_backend.agents.base.BaseAgent.
This specific base class ensures that the logger is automatically named correctly based on the package struc-
ture, whereas the core system base class does not.

Key methods available to every agent include:

e setup(): An abstract method that must be implemented. This is where sockets are connected and
initial behaviors are started.

e add behavior(coroutine): Registers a long-running loop or a fire-and-forget task. The agent tracks
these tasks and cancels them automatically upon shutdown.

e send(message): Asynchronously sends an InternalMessage to another agent.

e handle message(message): An abstract method that acts as the handler for incoming messages.

4.1.2 Internal Messaging
Relevant files: src/control_backend/schemas/internal_message.py

Communication between agents is handled via the InternalMessage schema. This creates a uniform envelope
for all data passed within the system.

Sending Messages
The system uses a hybrid routing approach. When you call self.send (), the system checks the destination:

1. Direct Inbox: If the destination agent is running in the same process (registered in the AgentDirectory),
the message is placed directly into its asynchronous queue.

2. ZeroMQ Fallback: If the destination is not found locally, the message is serialized and broadcast
over the internal ZeroMQ PUB/SUB bus.

19

Handling Messages

To react to messages sent by other agents, you must implement the handle_message method. The rec-
ommended pattern is to match against the sender and the thread (topic) of the message, and then use
Pydantic to validate the body. It is recommended to implement new schemas for different message types in
src/control_backend/schemas/. In the following example, we use the existing BeliefMessage schema as
an illustration.

1 async def handle_message(self, msg: InternalMessage):

2 # Filter by sender

3 if msg.sender == settings.agent_settings.bdi_core_name:

4 match msg.thread:

5 case :

6 # Validate the JSON body into a Pydantic model

7 try:

8 belief_msg = BeliefMessage.model_validate_json(msg.body)
9 self . _process_beliefs(belief_msg)

10 except ValidationError:

11 self.logger.error ()
12 case :

13 await self.stop()

14 case _:

15 self.logger.debug(f)

4.1.3 ZeroMQ Integration
Relevant files: src/control_backend/core/config.py

While ‘InternalMessage‘ handles high-level agent coordination, raw ZeroMQ (ZMQ) sockets are often required
for streaming data (like audio), connecting to external APIs (like the Robot Interface), or specialized low-
latency channels. The system uses zmq.asyncio to integrate with the Python event loop.

Creating Sockets
Sockets should be initialized inside the setup () method of your agent. Always use the shared Context.instance ()
to ensure thread safety and proper context management.

1 import zmq

2 import zmq.asyncio as azmq

3

4 async def setup(self):

5 context = azmq.Context.instance ()

6

7 # Example 1: Creating a Subscriber (SUB) socket

8 self .sub_socket = context.socket(zmq.SUB)

9 self.sub_socket.connect(settings.zmq_settings.internal_sub_address)
10 self.sub_socket.subscribe (b

11

12 # Example 2: Creating a Publisher (PUB) socket

13 self .pub_socket = context.socket(zmq.PUB)

14 self .pub_socket.bind() # Bind allows others to connect
15

16 # Start a behavior to listen to the socket

17 self.add_behavior (self._listen_loop())

Using Sockets
To handle ZMQ messages without blocking the agent, use asynchronous reception within a behavior loop.

process data...
except Exception:
self.logger.exception()

1 async def _listen_loop(self):

2 while self._running:

3 try:

4 # wait for multipart message

5 topic, body = await self.sub_socket.recv_multipart ()
6

7

8

20

Cleanup
It is crucial to close sockets when the agent stops to prevent file descriptor leaks or port conflicts during
restarts. Override the stop() method:
async def stop(self):
if self.sub_socket:

1
2
3 self.sub_socket.close ()
4 await super().stop()

4.1.4 Configuration
Relevant files: src/control_backend/core/config.py, .env

The system uses pydantic-settings for configuration management. All configurable parameters are defined
in the Settings class and its nested sub-models (e.g., AgentSettings, BehaviourSettings).

To add a new configuration option:
1. Add the field to the relevant Pydantic model in src/control_backend/core/config.py.
2. (Optional) Add a default value directly in the class.

3. (Optional) Override the value using an environment variable in the .env file. Environment variables
map to settings using double underscores (e.g., behaviour_settings.sleep_s becomes BEHAVIOUR_SETTINGS__SLEEP_S

4.2 Creating a New Agent

Extending the backend usually involves creating a new agent. The following guide outlines the standard
procedure for implementing a new agent.

1. Create the Agent Class
Create a new file in the appropriate subdirectory of src/control_backend/agents/. Define a class that
inherits from BaseAgent.

1 from control_backend.agents import BaseAgent

2 from control_backend.core.agent_system import InternalMessage
3

4 class ExampleAgent (BaseAgent):

5 def __init__(self, name: str, *xkwargs):

6 super () . __init__ (name)

7 # Initialize custom state here

8

9 async def setup(self):

10 self.logger.info()
11 # Start background tasks

12 self .add_behavior(self._custom_loop ())

13

14 async def handle_message(self, msg: InternalMessage):
15 if msg.thread == :

16 self .logger.info (f)
17

18 async def _custom_loop(self):

19 while self._running:

20 # Perform periodic logic

21 await asyncio.sleep (1)

2. Register the Agent Name
Add a unique identifier for the agent in src/control_backend/core/config.py under the AgentSettings
class. This ensures the name is centralized and configurable.

1 class AgentSettings (BaseModel):

2 # ... existing agents
3 example_agent_name: str =

21

3. Initialize in Main

Finally, instantiate and start the agent in the lifespan function within src/control_backend/main.py.
Add the agent to the agents_to_start dictionary.

¢ (

ExampleAgent ,
{

settings.agent_settings.example_agent_name,

1,

DU W N

))

4.3 Extending the BDI System

Relevant files: src/control_backend/agents/bdi/bdi_core_agent.py, src/control_backend/agents/
bdi/default_behavior.asl

The BDI (Belief-Desire-Intention) Core is the reasoning center of the robot. It runs AgentSpeak(L) code. A
common task for developers is adding new "Actions"—Python functions that can be called directly from the
AgentSpeak logic (e.g., to query an API, calculate a value, or trigger a complex hardware sequence).

4.3.1 Adding Custom Actions

Custom actions are defined in BDICoreAgent._add_custom_actions. The library agentspeak is used to
bind Python functions to the AgentSpeak environment.

To add a new action, such as .turn_around(Speed):

1 @self.actions.add(, 1) # 1 is the number of arguments
2 def _turn_around(agent, term, intention):

3 # 'term.args' contains the arguments passed from AgentSpeak
4 speed = agentspeak.grounded(term.args[0], intention.scope)
5

6 self.logger.info (f)

7

8 # Perform the logic (e.g., send a message to a motor agent)
9 # If the action is async, use self.add_behavior

10

11 yield # Control must yield back to the BDI loop

Once registered, this can be used in the .asl file or generated program:

+!trigger_turn
<- .turn_around(50).

4.3.2 AgentSpeak Generation and Pipeline Integration

Relevant files: src/control_backend/schemas/program.py, src/control_backend/agents/bdi/agentspeak_
generator.py, src/control_backend/agents/bdi/bdi_core_agent.py

The backend receives behavioral programs from the UI in JSON format. Converting a new UI node into
executable behavior is a multi-step pipeline process. If you introduce a new concept (e.g., a "Loop" node
or a new type of "Condition"), you must update the system at several layers to ensure the data propagates
correctly from the API to the BDI execution engine.

1. Schema Definition (src/control_backend/schemas/program.py):
The entry point for the program is the Pydantic Program model. You must update this schema to
accept the new node type. For example, if adding a new action type, you must define a Pydantic model
for it (e.g., LoopAction) and register it in the PlanElement union type. This ensures the API accepts
and validates the new JSON structure.

22

2. AST Conversion (src/control_backend/agents/bdi/agentspeak_generator.py):
Once the data is validated, the AgentSpeakGenerator converts the Pydantic model into an Abstract
Syntax Tree (AST). You must:

e Update agentspeak_ast.py if new syntax structures are required.

e Implement the _astify method for your new Pydantic model in the generator using the @singledispatchmethod
decorator. This defines how your object translates to AgentSpeak string representation.

3. Execution Logic (src/control_backend/agents/bdi/bdi_core_agent.py):
If your new element translates to a specific operation (e.g., .wait_for_signal (X)), the BDI agent
needs to know how to execute it. You must register the corresponding Python function in BDI Core
using _add_custom_actions.

4. State Management (src/control_backend/agents/bdi/bdi_program_manager.py):
If the new element represents data that other agents need to know about (similar to how Goals and
Beliefs are shared with the TextBeliefExtractor), you must update the BDI Program Manager.
This agent is responsible for extracting static information from the program structure and routing it
to the appropriate perception or monitoring agents before the AgentSpeak code is executed.

4.4 API and External Communication

Relevant files: src/control_backend/api/v1/endpoints/, src/control_backend/api/vl/router.py

The Control Backend exposes a REST API using FastAPI. This is primarily used by the UI to upload
programs, trigger events, or retrieve logs.

4.4.1 Adding a New Endpoint

To add a new API route: 1. Create a new file in src/control_backend/api/v1/endpoints/ (e.g., custom.
py). 2. Define a router and the endpoint logic. 3. Access global state (like ZMQ sockets) via request . app. state.

from fastapi import APIRouter , Request
router = APIRouter ()

Q@router .post()

async def custom_endpoint(data: dict, request: Request):
pub_socket = request.app.state.endpoints_pub_socket
Broadcast to intermnal agents
awvait pub_socket.send_multipart ([b , b 1)
return { : }

OO 00U WN -

=

4. Register the router in src/control_backend/api/vi/router.py.

4.5 Hardware Abstraction (Robot Interface)

Relevant files: src/control_backend/schemas/ri_message.py, src/control_backend/agents/communication/
ri_communication_agent.py

The Control Backend communicates with the robot via the Robot Interface (RI) using ZeroMQ. The current
implementation supports two primary actuation modes: speech and gestures.

Because the RI acts as a translation layer between our specific protocol and the robot’s SDK (e.g., qi for
Pepper), adding a new physical capability (such as specific head movements or LED control) requires a
vertical update across the entire software stack. You cannot simply implement this in the Backend alone.

1. Define the Protocol (src/control_backend/schemas/ri_message.py):
First, establish the contract between the CB and RI. Add a new RIEndpoint (e.g., actuate/head) and
create a corresponding Pydantic model inheriting from RIMessage to validate the payload structure.

23

2. Update the Control Backend:
You must create the logic to generate this command.

e BDI Core: Register a new custom action (e.g., .move_head(Yaw, Pitch))inbdi_core_agent.py
so the behavior script can trigger it.

e Actuation Agent: Update the RobotGestureAgent (or create a new RobotMotorAgent) to listen
for this internal command and forward it to the RI via ZMQ.

3. Update the Robot Interface:
The RI must be updated to listen on the new endpoint. You will need to write the specific handler
that translates the incoming JSON payload into the robot-specific SDK calls.

4. Update the User Interface:
If this new capability should be usable within a behavior program, you must update the UI's Program
Editor to include a new Action Node type. This ensures the correct parameters are generated and
sent to the CB during program upload.

5 Robot Interface

In this section, we will give an in-depth explanation about how the Robot Interface (RI) works, and how we
expect future interfaces for robots to interact with the Control Backend (CB).

5.1 Our Robot Interface

The Robot Interface is an interface we have implemented with the goal of relaying useful information and
commands from and to the Pepper 3 Robot. However, Pepper robot is quite outdated. Therefor we have
designed the Robot Interface to be interchangeable, and adjustable for future developers. Here we will briefly
explain how our current Robot Interface works.

Main Loop

Our current Robot Interface runs on Python 2.7, and uses ZM@Q * sockets to communicate with the Control
Backend. When we start our Robot Interface, we start up our communication sockets, and poll on the main
thread until we receive a message from the Control Backend. Our different sockets have their own way of
handling incoming communication, and/or handling outgoing communication.

Pepper communication

In order to complete the Robot Interface, we have functionality set up to interact with the robot, Pepper.
This functionality depends on the Qi 5 library.

Default Interfaction

A default interaction with our Robot Interface follows a simple pattern. First, at the start of running the
Robot Interface, the Robot Interface enters negotiation with the Control Backend. This is done using an
endpoint negotiate/ports, within the Main Receiver. In this negotiation, the Robot Interface replies to a
request send from the Control Backend. This request is on the endpoint, without any additional data, where
the reply answers given the data of the ports. The data replied is formatted as a list, containing id, port,
and bind data, with the option for additional data for specific endpoints.

5.2 Future Robot Interfaces

Due to our Robot Inteface being designed to be replacable, we want to give delopers a clear idea about how
the robot interface should be changed to ensure proper functionality. For giving a clear idea, in the rest of
this subsection, we will explain workings with the idea of creating a new interface.

Shttps://us.softbankrobotics.com/pepper
4https://zeromq.org/languages/python/
5http://doc.aldebaran.com/libgi/

24

https://us.softbankrobotics.com/pepper
https://zeromq.org/languages/python/
http://doc.aldebaran.com/libqi/

Core Functionality

First, we need to make sure that the Robot Interface is compatible with the Control Backend, meaning
that the our program does not crash. The first step in doing this is ensuring that the new interface uses
ZMQ sockets to negotiate with the Control Backend. Our main receiver port is defined in the src\robot_
interface\core\config.py file. This current set to port 55655. Note that this same port is also defined
in the Control Backend, meaning that a change of the main port should be reflected in both repositories’
settings/ config file. Since the Control Backend initiates a request port (zmq.REQ), the Robot Interface should
initiate a reply port (zmq.REP) on the same port.

Next, the new interface should be able to reply to any request, making sure that the communication loops
keeps working correctly. The main port is accessed for two things: negotiation, and pings. The new reply
port should handle both of these. When the reply port receives a request on endpoint ping, it should simply
respond on the same endpoint with the same data. However, the more important part is ensure correct
negotiation. Negotation involves updating our Control Backend about the correct ports of the individual
endpoints. In our case, we have five different endpoints which can be negotiated: the main receiver, actuation,
video, audio, and face recognition. Note that, for the core functionality, it is not required to negotiate all
these ports, however, you would lose their functionality completely, of course. This can also result in code
blocking within individual agents of the Control Backend.

For a better implementation of a new interface, the interface should implement all of the different endpoints.
Here is an overview of the different endpoints:

Actuation

The actuation endpoint is the a receiver that handles commands for the robot. It received commands by
subscribing (zmq.SUB) on the actuation endpoint, which is defined in the config file, differentiating between
three different kinds: actuation/speech, actuation/gesture/tag, and actuation/gesture/single. The
new Robot Interface should handle all the speech commands that are received in this endpoint, next to all
the different gestures that are send through either actuation/gesture/tag and actuation/gesture/tag.
This means that any new interface that works with a different robot should include logic for communicating
to the robot, or handling invalid request gracefully.

Audio

The audio endpoint is a sender that sends audio to the Control Backend. It uses a publication (zmq.PUB)
socket on the defined port in the config file. The current audio is sent as raw 32-bit float PCM data, in
chunks of 512 samples and a sample rate of 16 kHz. Sent as bytes, not JSON. Make sure that the newly sent
audio is also sent in a compatible manner, by using the same format.

Video

The video endpoint is a sender that sends video to the Control Backend. It uses a publication (zmq.PUB)
socket on the defined port in the config file. The current video is sent as 24-bit BGR 640x480px, at 15 FPS.
Sent as bytes, not JSON. Make sure that the newly sent video is also sent in a compatible manner, by using
the same format.

Face

The face endpoint is a communication endpoint that replies with face recognition data to the Control Backend.
It uses a reply (zmq.REP) socket on the defined port in config. The Control Backend sends a message on
the endpoint without data, and after receiving this endpoint will send a boolean as reply, indicating whether
or not a face is currently detected. Make sure that in the new interface, this format is also followed.

New Interface Checklist

In order to be more certain about the validity of a new interface, we give a checklist about the requirements
for a complete new interface:

e The Robot Interface is constantly running.

e The Robot Interface is not blocked by a single endpoint receiver or sender.

25

The Robot Interface implements a main receiver, on the main port, which is able to negotiate about
the existing endpoints in the correct format, as well as reply to pings.

The Robot Interface implements an audio endpoint, which sends audio in the correct format. This
Endpoint is negotiated in the negotiation process.

The Robot Interface implements a video endpoint, which sends video in the correct format. This
Endpoint is negotiated in the negotiation process.

The Robot Interface implements an actuation endpoint, which relays any speech and gestures command
to the robot. This endpoint is negotiated in the negotiation process.

The Robot Interface implements a Face endpoint, which sends the face detection status on request.

26

	Introduction & Reading Guide
	Architecture Overview
	Global Architecture
	CB Architecture
	Data Flow
	Agent Descriptions

	User Interface
	Separation of Assets, Components, Pages, and Utilities
	Visual Programming Page
	Basic ReactFlow implementation
	Visual Programming Components
	Visual Programming Nodes
	Node registry
	Creation of a new node

	Monitoring Page
	Synchronization with Control Backend.
	User Interrupt Events
	Experiment Controls
	Robot Connection Monitoring
	Implementing your own node in MonitoringPage

	Control Backend
	Core Infrastructure
	Agent System
	Internal Messaging
	ZeroMQ Integration
	Configuration

	Creating a New Agent
	Extending the BDI System
	Adding Custom Actions
	AgentSpeak Generation and Pipeline Integration

	API and External Communication
	Adding a New Endpoint

	Hardware Abstraction (Robot Interface)

	Robot Interface
	Our Robot Interface
	Future Robot Interfaces

