feat: (hopefully) face detection
Simplified implementation, relying on the already-present VED Agent. ref: N25B-395
This commit is contained in:
@@ -30,6 +30,7 @@ from control_backend.schemas.program import (
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
EmotionBelief,
|
||||
FaceBelief,
|
||||
GestureAction,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
@@ -682,11 +683,15 @@ class AgentSpeakGenerator:
|
||||
:return: An AstLiteral representing the semantic belief.
|
||||
"""
|
||||
return AstLiteral(self.slugify(sb))
|
||||
|
||||
|
||||
@_astify.register
|
||||
def _(self, eb: EmotionBelief) -> AstExpression:
|
||||
return AstLiteral("emotion_detected", [AstAtom(eb.emotion)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, fb: FaceBelief) -> AstExpression:
|
||||
return AstLiteral("face_present")
|
||||
|
||||
@_astify.register
|
||||
def _(self, ib: InferredBelief) -> AstExpression:
|
||||
"""
|
||||
|
||||
@@ -14,7 +14,7 @@ from control_backend.agents.perception.visual_emotion_recognition_agent.visual_e
|
||||
)
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief
|
||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
|
||||
|
||||
class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
@@ -44,6 +44,7 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
self.timeout_ms = timeout_ms
|
||||
self.window_duration = window_duration
|
||||
self.min_frames_required = min_frames_required
|
||||
self._face_detected = False
|
||||
|
||||
# Pause functionality
|
||||
# NOTE: flag is set when running, cleared when paused
|
||||
@@ -97,8 +98,8 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
|
||||
width, height, image_bytes = await self.video_in_socket.recv_multipart()
|
||||
|
||||
width = int.from_bytes(width, 'little')
|
||||
height = int.from_bytes(height, 'little')
|
||||
width = int.from_bytes(width, "little")
|
||||
height = int.from_bytes(height, "little")
|
||||
|
||||
# Convert bytes to a numpy buffer
|
||||
image_array = np.frombuffer(image_bytes, np.uint8)
|
||||
@@ -107,6 +108,15 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
|
||||
# Get the dominant emotion from each face
|
||||
current_emotions = self.emotion_recognizer.sorted_dominant_emotions(frame)
|
||||
|
||||
# Form (or unform) face_detected belief
|
||||
if len(current_emotions) == 0 and self._face_detected:
|
||||
self._face_detected = False
|
||||
await self._inform_face_detected()
|
||||
elif len(current_emotions) > 0 and not self._face_detected:
|
||||
self._face_detected = True
|
||||
await self._inform_face_detected()
|
||||
|
||||
# Update emotion counts for each detected face
|
||||
for i, emotion in enumerate(current_emotions):
|
||||
face_stats[i][emotion] += 1
|
||||
@@ -133,7 +143,6 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in emotion recognition loop: {e}")
|
||||
|
||||
|
||||
async def update_emotions(self, prev_emotions: set[str], emotions: set[str]):
|
||||
"""
|
||||
Compare emotions from previous window and current emotions,
|
||||
@@ -149,9 +158,7 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
for emotion in emotions_to_remove:
|
||||
self.logger.info(f"Emotion '{emotion}' has disappeared.")
|
||||
try:
|
||||
emotion_beliefs_remove.append(
|
||||
Belief(name="emotion_detected", arguments=[emotion], remove=True)
|
||||
)
|
||||
emotion_beliefs_remove.append(Belief(name="emotion_detected", arguments=[emotion]))
|
||||
except ValidationError:
|
||||
self.logger.warning("Invalid belief for emotion removal: %s", emotion)
|
||||
|
||||
@@ -175,11 +182,25 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
async def _inform_face_detected(self):
|
||||
if self._face_detected:
|
||||
belief_message = BeliefMessage(create=[Belief(name="face_present")])
|
||||
else:
|
||||
belief_message = BeliefMessage(delete=[Belief(name="face_present")])
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
thread="beliefs",
|
||||
body=belief_message.model_dump_json(),
|
||||
)
|
||||
|
||||
await self.send(msg)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming messages.
|
||||
|
||||
Expects messages to pause or resume the Visual Emotion Recognition
|
||||
Expects messages to pause or resume the Visual Emotion Recognition
|
||||
processing from User Interrupt Agent.
|
||||
|
||||
:param msg: The received internal message.
|
||||
@@ -204,4 +225,3 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
"""
|
||||
self.video_in_socket.close()
|
||||
await super().stop()
|
||||
|
||||
@@ -41,8 +41,8 @@ class LogicalOperator(Enum):
|
||||
OR = "OR"
|
||||
|
||||
|
||||
type Belief = KeywordBelief | SemanticBelief | InferredBelief | EmotionBelief
|
||||
type BasicBelief = KeywordBelief | SemanticBelief | EmotionBelief
|
||||
type Belief = KeywordBelief | SemanticBelief | InferredBelief | EmotionBelief | FaceBelief
|
||||
type BasicBelief = KeywordBelief | SemanticBelief | EmotionBelief | FaceBelief
|
||||
|
||||
|
||||
class KeywordBelief(ProgramElement):
|
||||
@@ -105,6 +105,7 @@ class InferredBelief(ProgramElement):
|
||||
left: Belief
|
||||
right: Belief
|
||||
|
||||
|
||||
class EmotionBelief(ProgramElement):
|
||||
"""
|
||||
Represents a belief that is set when a certain emotion is detected.
|
||||
@@ -115,6 +116,16 @@ class EmotionBelief(ProgramElement):
|
||||
name: str = ""
|
||||
emotion: str
|
||||
|
||||
|
||||
class FaceBelief(ProgramElement):
|
||||
"""
|
||||
Represents the belief that at least one face is currently in view.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
face_present: bool
|
||||
|
||||
|
||||
class Norm(ProgramElement):
|
||||
"""
|
||||
Base class for behavioral norms that guide the robot's interactions.
|
||||
@@ -329,4 +340,4 @@ class Program(BaseModel):
|
||||
if __name__ == "__main__":
|
||||
input = input("Enter program JSON: ")
|
||||
program = Program.model_validate_json(input)
|
||||
print(program)
|
||||
print(program)
|
||||
|
||||
Reference in New Issue
Block a user