feat: visual emotion recognition agent

This commit is contained in:
Luijkx,S.O.H. (Storm)
2026-01-30 16:53:15 +00:00
committed by Kasper Marinus
parent 68f445c8bc
commit 45b8597f15
12 changed files with 1533 additions and 112 deletions

View File

@@ -7,6 +7,7 @@ requires-python = ">=3.13"
dependencies = [
"agentspeak>=0.2.2",
"colorlog>=6.10.1",
"deepface>=0.0.96",
"fastapi[all]>=0.115.6",
"mlx-whisper>=0.4.3 ; sys_platform == 'darwin'",
"numpy>=2.3.3",
@@ -21,6 +22,7 @@ dependencies = [
"silero-vad>=6.0.0",
"sphinx>=7.3.7",
"sphinx-rtd-theme>=3.0.2",
"tf-keras>=2.20.1",
"torch>=2.8.0",
"uvicorn>=0.37.0",
]
@@ -38,6 +40,7 @@ dev = [
]
test = [
"agentspeak>=0.2.2",
"deepface>=0.0.97",
"fastapi>=0.115.6",
"httpx>=0.28.1",
"mlx-whisper>=0.4.3 ; sys_platform == 'darwin'",
@@ -52,6 +55,7 @@ test = [
"pyyaml>=6.0.3",
"pyzmq>=27.1.0",
"soundfile>=0.13.1",
"tf-keras>=2.20.1",
]
[tool.pytest.ini_options]

View File

@@ -29,6 +29,7 @@ from control_backend.schemas.program import (
BaseGoal,
BasicNorm,
ConditionalNorm,
EmotionBelief,
GestureAction,
Goal,
InferredBelief,
@@ -681,6 +682,10 @@ class AgentSpeakGenerator:
:return: An AstLiteral representing the semantic belief.
"""
return AstLiteral(self.slugify(sb))
@_astify.register
def _(self, eb: EmotionBelief) -> AstExpression:
return AstLiteral("emotion_detected", [AstAtom(eb.emotion)])
@_astify.register
def _(self, ib: InferredBelief) -> AstExpression:

View File

@@ -9,14 +9,14 @@ import json
import zmq
import zmq.asyncio as azmq
from pydantic import ValidationError
from zmq.asyncio import Context
from control_backend.agents import BaseAgent
from control_backend.agents.actuation.robot_gesture_agent import RobotGestureAgent
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent import ( # noqa
VisualEmotionRecognitionAgent,
)
from control_backend.core.config import settings
from control_backend.schemas.internal_message import InternalMessage
from control_backend.schemas.ri_message import PauseCommand
from ..actuation.robot_speech_agent import RobotSpeechAgent
from ..perception import VADAgent
@@ -58,6 +58,7 @@ class RICommunicationAgent(BaseAgent):
self.connected = False
self.gesture_agent: RobotGestureAgent | None = None
self.speech_agent: RobotSpeechAgent | None = None
self.visual_emotion_recognition_agent: VisualEmotionRecognitionAgent | None = None
async def setup(self):
"""
@@ -215,6 +216,14 @@ class RICommunicationAgent(BaseAgent):
case "audio":
vad_agent = VADAgent(audio_in_address=addr, audio_in_bind=bind)
await vad_agent.start()
case "video":
visual_emotion_agent = VisualEmotionRecognitionAgent(
settings.agent_settings.visual_emotion_recognition_name,
socket_address=addr,
bind=bind,
)
self.visual_emotion_recognition_agent = visual_emotion_agent
await visual_emotion_agent.start()
case _:
self.logger.warning("Unhandled negotiation id: %s", id)
@@ -319,6 +328,9 @@ class RICommunicationAgent(BaseAgent):
if self.speech_agent is not None:
await self.speech_agent.stop()
if self.visual_emotion_recognition_agent is not None:
await self.visual_emotion_recognition_agent.stop()
if self.pub_socket is not None:
self.pub_socket.close()
@@ -326,11 +338,4 @@ class RICommunicationAgent(BaseAgent):
self.logger.debug("Restarting communication negotiation.")
if await self._negotiate_connection(max_retries=2):
self.connected = True
async def handle_message(self, msg: InternalMessage):
try:
pause_command = PauseCommand.model_validate_json(msg.body)
await self._req_socket.send_json(pause_command.model_dump())
self.logger.debug(await self._req_socket.recv_json())
except ValidationError:
self.logger.warning("Incorrect message format for PauseCommand.")

View File

@@ -0,0 +1,207 @@
import asyncio
import json
import time
from collections import Counter, defaultdict
import numpy as np
import zmq
import zmq.asyncio as azmq
from pydantic_core import ValidationError
from control_backend.agents import BaseAgent
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognizer import ( # noqa
DeepFaceEmotionRecognizer,
)
from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.belief_message import Belief
class VisualEmotionRecognitionAgent(BaseAgent):
def __init__(
self,
name: str,
socket_address: str,
bind: bool = False,
timeout_ms: int = 1000,
window_duration: int = settings.behaviour_settings.visual_emotion_recognition_window_duration_s, # noqa
min_frames_required: int = settings.behaviour_settings.visual_emotion_recognition_min_frames_per_face, # noqa
):
"""
Initialize the Visual Emotion Recognition Agent.
:param name: Name of the agent
:param socket_address: Address of the socket to connect or bind to
:param bind: Whether to bind to the socket address (True) or connect (False)
:param timeout_ms: Timeout for socket receive operations in milliseconds
:param window_duration: Duration in seconds over which to aggregate emotions
:param min_frames_required: Minimum number of frames per face required to consider a face
valid
"""
super().__init__(name)
self.socket_address = socket_address
self.socket_bind = bind
self.timeout_ms = timeout_ms
self.window_duration = window_duration
self.min_frames_required = min_frames_required
# Pause functionality
# NOTE: flag is set when running, cleared when paused
self._paused = asyncio.Event()
self._paused.set()
async def setup(self):
"""
Initialize the agent resources.
1. Initializes the :class:`VisualEmotionRecognizer`.
2. Connects to the video input ZMQ socket.
3. Starts the background emotion recognition loop.
"""
self.logger.info("Setting up %s.", self.name)
self.emotion_recognizer = DeepFaceEmotionRecognizer()
self.video_in_socket = azmq.Context.instance().socket(zmq.SUB)
self.video_in_socket.setsockopt(zmq.RCVHWM, 3)
if self.socket_bind:
self.video_in_socket.bind(self.socket_address)
else:
self.video_in_socket.connect(self.socket_address)
self.video_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
self.video_in_socket.setsockopt(zmq.RCVTIMEO, self.timeout_ms)
self.add_behavior(self.emotion_update_loop())
async def emotion_update_loop(self):
"""
Background loop to receive video frames, recognize emotions, and update beliefs.
1. Receives video frames from the ZMQ socket.
2. Uses the :class:`VisualEmotionRecognizer` to detect emotions.
3. Aggregates emotions over a time window.
4. Sends updates to the BDI Core Agent about detected emotions.
"""
# Next time to process the window and update emotions
next_window_time = time.time() + self.window_duration
# Tracks counts of detected emotions per face index
face_stats = defaultdict(Counter)
prev_dominant_emotions = set()
while self._running:
try:
await self._paused.wait()
width, height, image_bytes = await self.video_in_socket.recv_multipart()
width = int.from_bytes(width, 'little')
height = int.from_bytes(height, 'little')
# Convert bytes to a numpy buffer
image_array = np.frombuffer(image_bytes, np.uint8)
frame = image_array.reshape((height, width, 3))
# Get the dominant emotion from each face
current_emotions = self.emotion_recognizer.sorted_dominant_emotions(frame)
# Update emotion counts for each detected face
for i, emotion in enumerate(current_emotions):
face_stats[i][emotion] += 1
# If window duration has passed, process the collected stats
if time.time() >= next_window_time:
window_dominant_emotions = set()
# Determine dominant emotion for each face in the window
for _, counter in face_stats.items():
total_detections = sum(counter.values())
if total_detections >= self.min_frames_required:
dominant_emotion = counter.most_common(1)[0][0]
window_dominant_emotions.add(dominant_emotion)
await self.update_emotions(prev_dominant_emotions, window_dominant_emotions)
prev_dominant_emotions = window_dominant_emotions
face_stats.clear()
next_window_time = time.time() + self.window_duration
except zmq.Again:
self.logger.warning("No video frame received within timeout.")
except Exception as e:
self.logger.error(f"Error in emotion recognition loop: {e}")
async def update_emotions(self, prev_emotions: set[str], emotions: set[str]):
"""
Compare emotions from previous window and current emotions,
send updates to BDI Core Agent.
"""
emotions_to_remove = prev_emotions - emotions
emotions_to_add = emotions - prev_emotions
if not emotions_to_add and not emotions_to_remove:
return
emotion_beliefs_remove = []
for emotion in emotions_to_remove:
self.logger.info(f"Emotion '{emotion}' has disappeared.")
try:
emotion_beliefs_remove.append(
Belief(name="emotion_detected", arguments=[emotion], remove=True)
)
except ValidationError:
self.logger.warning("Invalid belief for emotion removal: %s", emotion)
emotion_beliefs_add = []
for emotion in emotions_to_add:
self.logger.info(f"New emotion detected: '{emotion}'")
try:
emotion_beliefs_add.append(Belief(name="emotion_detected", arguments=[emotion]))
except ValidationError:
self.logger.warning("Invalid belief for new emotion: %s", emotion)
beliefs_list_add = [b.model_dump() for b in emotion_beliefs_add]
beliefs_list_remove = [b.model_dump() for b in emotion_beliefs_remove]
payload = {"create": beliefs_list_add, "delete": beliefs_list_remove}
message = InternalMessage(
to=settings.agent_settings.bdi_core_name,
sender=self.name,
body=json.dumps(payload),
thread="beliefs",
)
await self.send(message)
async def handle_message(self, msg: InternalMessage):
"""
Handle incoming messages.
Expects messages to pause or resume the Visual Emotion Recognition
processing from User Interrupt Agent.
:param msg: The received internal message.
"""
sender = msg.sender
if sender == settings.agent_settings.user_interrupt_name:
if msg.body == "PAUSE":
self.logger.info("Pausing Visual Emotion Recognition processing.")
self._paused.clear()
elif msg.body == "RESUME":
self.logger.info("Resuming Visual Emotion Recognition processing.")
self._paused.set()
else:
self.logger.warning(f"Unknown command from User Interrupt Agent: {msg.body}")
else:
self.logger.debug(f"Ignoring message from unknown sender: {sender}")
async def stop(self):
"""
Clean up resources used by the agent.
"""
self.video_in_socket.close()
await super().stop()

View File

@@ -0,0 +1,53 @@
import abc
import numpy as np
from deepface import DeepFace
class VisualEmotionRecognizer(abc.ABC):
@abc.abstractmethod
def load_model(self):
"""Load the visual emotion recognition model into memory."""
pass
@abc.abstractmethod
def sorted_dominant_emotions(self, image) -> list[str]:
"""
Recognize dominant emotions from faces in the given image.
Emotions can be one of ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'].
To minimize false positives, consider filtering faces with low confidence.
:param image: The input image for emotion recognition.
:return: List of dominant emotion detected for each face in the image,
sorted per face.
"""
pass
class DeepFaceEmotionRecognizer(VisualEmotionRecognizer):
"""
DeepFace-based implementation of VisualEmotionRecognizer.
DeepFape has proven to be quite a pessimistic model, so expect sad, fear and neutral
emotions to be over-represented.
"""
def __init__(self):
self.load_model()
def load_model(self):
dummy_img = np.zeros((224, 224, 3), dtype=np.uint8)
# analyze does not take a model as an argument, calling it once on a dummy image to load
# the model
DeepFace.analyze(dummy_img, actions=['emotion'], enforce_detection=False)
def sorted_dominant_emotions(self, image) -> list[str]:
analysis = DeepFace.analyze(image,
actions=['emotion'],
enforce_detection=False
)
# Sort faces by x coordinate to maintain left-to-right order
analysis.sort(key=lambda face: face['region']['x'])
analysis = [face for face in analysis if face['face_confidence'] >= 0.90]
dominant_emotions = [face['dominant_emotion'] for face in analysis]
return dominant_emotions

View File

@@ -18,7 +18,6 @@ from control_backend.schemas.belief_message import Belief, BeliefMessage
from control_backend.schemas.program import ConditionalNorm, Goal, Program
from control_backend.schemas.ri_message import (
GestureCommand,
PauseCommand,
RIEndpoint,
SpeechCommand,
)
@@ -398,34 +397,29 @@ class UserInterruptAgent(BaseAgent):
self.logger.debug("Sending experiment control '%s' to BDI Core.", thread)
await self.send(out_msg)
async def _send_pause_command(self, pause):
async def _send_pause_command(self, pause: str):
"""
Send a pause command to the Robot Interface via the RI Communication Agent.
Send a pause command to the other internal agents; for now just VAD agent.
Send a pause command to the other internal agents; for now just VAD and VED agent.
"""
cmd = PauseCommand(data=pause)
message = InternalMessage(
to=settings.agent_settings.ri_communication_name,
sender=self.name,
body=cmd.model_dump_json(),
)
await self.send(message)
if pause == "true":
# Send pause to VAD agent
# Send pause to VAD and VED agent
vad_message = InternalMessage(
to=settings.agent_settings.vad_name,
to=[settings.agent_settings.vad_name,
settings.agent_settings.visual_emotion_recognition_name],
sender=self.name,
body="PAUSE",
)
await self.send(vad_message)
self.logger.info("Sent pause command to VAD Agent and RI Communication Agent.")
# Voice Activity Detection and Visual Emotion Recognition agents
self.logger.info("Sent pause command to VAD and VED agents.")
else:
# Send resume to VAD agent
# Send resume to VAD and VED agents
vad_message = InternalMessage(
to=settings.agent_settings.vad_name,
to=[settings.agent_settings.vad_name,
settings.agent_settings.visual_emotion_recognition_name],
sender=self.name,
body="RESUME",
)
await self.send(vad_message)
self.logger.info("Sent resume command to VAD Agent and RI Communication Agent.")
# Voice Activity Detection and Visual Emotion Recognition agents
self.logger.info("Sent resume command to VAD and VED agents.")

View File

@@ -54,6 +54,7 @@ class AgentSettings(BaseModel):
# agent names
bdi_core_name: str = "bdi_core_agent"
bdi_program_manager_name: str = "bdi_program_manager_agent"
visual_emotion_recognition_name: str = "visual_emotion_recognition_agent"
text_belief_extractor_name: str = "text_belief_extractor_agent"
vad_name: str = "vad_agent"
llm_name: str = "llm_agent"
@@ -81,6 +82,10 @@ class BehaviourSettings(BaseModel):
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
:ivar transcription_token_buffer: Buffer for transcription tokens.
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
:ivar visual_emotion_recognition_window_duration_s: Duration in seconds over which to aggregate
emotions and update emotion beliefs.
:ivar visual_emotion_recognition_min_frames_per_face: Minimum number of frames per face required
to consider a face valid.
:ivar trigger_time_to_wait: Amount of milliseconds to wait before informing the UI about trigger
completion.
"""
@@ -106,6 +111,9 @@ class BehaviourSettings(BaseModel):
# Text belief extractor settings
conversation_history_length_limit: int = 10
# Visual Emotion Recognition settings
visual_emotion_recognition_window_duration_s: int = 5
visual_emotion_recognition_min_frames_per_face: int = 3
# AgentSpeak related settings
trigger_time_to_wait: int = 2000
agentspeak_file: str = "src/control_backend/agents/bdi/agentspeak.asl"

View File

@@ -41,8 +41,8 @@ class LogicalOperator(Enum):
OR = "OR"
type Belief = KeywordBelief | SemanticBelief | InferredBelief
type BasicBelief = KeywordBelief | SemanticBelief
type Belief = KeywordBelief | SemanticBelief | InferredBelief | EmotionBelief
type BasicBelief = KeywordBelief | SemanticBelief | EmotionBelief
class KeywordBelief(ProgramElement):
@@ -105,6 +105,15 @@ class InferredBelief(ProgramElement):
left: Belief
right: Belief
class EmotionBelief(ProgramElement):
"""
Represents a belief that is set when a certain emotion is detected.
:ivar emotion: The emotion on which this belief gets set.
"""
name: str = ""
emotion: str
class Norm(ProgramElement):
"""
@@ -315,3 +324,9 @@ class Program(BaseModel):
"""
phases: list[Phase]
if __name__ == "__main__":
input = input("Enter program JSON: ")
program = Program.model_validate_json(input)
print(program)

View File

@@ -10,8 +10,6 @@ from unittest.mock import ANY, AsyncMock, MagicMock, patch
import pytest
from control_backend.agents.communication.ri_communication_agent import RICommunicationAgent
from control_backend.core.agent_system import InternalMessage
from control_backend.schemas.ri_message import PauseCommand, RIEndpoint
def speech_agent_path():
@@ -402,38 +400,3 @@ async def test_negotiate_req_socket_none_causes_retry(zmq_context):
result = await agent._negotiate_connection(max_retries=1)
assert result is False
@pytest.mark.asyncio
async def test_handle_message_pause_command(zmq_context):
"""Test handle_message with a valid PauseCommand."""
agent = RICommunicationAgent("ri_comm")
agent._req_socket = AsyncMock()
agent.logger = MagicMock()
agent._req_socket.recv_json.return_value = {"status": "ok"}
pause_cmd = PauseCommand(data=True)
msg = InternalMessage(to="ri_comm", sender="user_int", body=pause_cmd.model_dump_json())
await agent.handle_message(msg)
agent._req_socket.send_json.assert_awaited_once()
args = agent._req_socket.send_json.await_args[0][0]
assert args["endpoint"] == RIEndpoint.PAUSE.value
assert args["data"] is True
@pytest.mark.asyncio
async def test_handle_message_invalid_pause_command(zmq_context):
"""Test handle_message with invalid JSON."""
agent = RICommunicationAgent("ri_comm")
agent._req_socket = AsyncMock()
agent.logger = MagicMock()
msg = InternalMessage(to="ri_comm", sender="user_int", body="invalid json")
await agent.handle_message(msg)
agent.logger.warning.assert_called_with("Incorrect message format for PauseCommand.")
agent._req_socket.send_json.assert_not_called()

View File

@@ -0,0 +1,338 @@
import asyncio
import json
import time
from unittest.mock import AsyncMock, MagicMock, patch
import numpy as np
import pytest
import zmq
from pydantic_core import ValidationError
# Adjust the import path to match your project structure
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent import ( # noqa
VisualEmotionRecognitionAgent,
)
from control_backend.core.agent_system import InternalMessage
# -----------------------------------------------------------------------------
# Fixtures
# -----------------------------------------------------------------------------
@pytest.fixture
def mock_settings():
with patch("control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent.settings") as mock: # noqa
# Set default values required by the agent
mock.behaviour_settings.visual_emotion_recognition_window_duration_s = 5
mock.behaviour_settings.visual_emotion_recognition_min_frames_per_face = 3
mock.agent_settings.bdi_core_name = "bdi_core_agent"
mock.agent_settings.user_interrupt_name = "user_interrupt_agent"
yield mock
@pytest.fixture
def mock_deepface():
with patch("control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent.DeepFaceEmotionRecognizer") as mock: # noqa
instance = mock.return_value
instance.sorted_dominant_emotions.return_value = []
yield instance
@pytest.fixture
def mock_zmq_context():
with patch("zmq.asyncio.Context.instance") as mock_ctx:
mock_socket = MagicMock()
# Mock socket methods to return None or AsyncMock for async methods
mock_socket.bind = MagicMock()
mock_socket.connect = MagicMock()
mock_socket.setsockopt = MagicMock()
mock_socket.setsockopt_string = MagicMock()
mock_socket.recv_multipart = AsyncMock()
mock_socket.close = MagicMock()
mock_ctx.return_value.socket.return_value = mock_socket
yield mock_ctx
@pytest.fixture
def agent(mock_settings, mock_deepface, mock_zmq_context):
# Initialize agent with specific params to control testing
agent = VisualEmotionRecognitionAgent(
name="test_agent",
socket_address="tcp://localhost:5555",
bind=False,
timeout_ms=100,
window_duration=2,
min_frames_required=2
)
# Mock the internal send method from BaseAgent
agent.send = AsyncMock()
# Mock the add_behavior method from BaseAgent
agent.add_behavior = MagicMock()
# Mock the logger
agent.logger = MagicMock()
return agent
# -----------------------------------------------------------------------------
# Tests
# -----------------------------------------------------------------------------
@pytest.mark.asyncio
async def test_initialization(agent):
"""Test that the agent initializes with correct attributes."""
assert agent.name == "test_agent"
assert agent.socket_address == "tcp://localhost:5555"
assert agent.socket_bind is False
assert agent.timeout_ms == 100
assert agent._paused.is_set()
@pytest.mark.asyncio
async def test_setup_connect(agent, mock_zmq_context, mock_deepface):
"""Test setup routine when binding is False (connect)."""
agent.socket_bind = False
await agent.setup()
socket = agent.video_in_socket
socket.connect.assert_called_with("tcp://localhost:5555")
socket.bind.assert_not_called()
socket.setsockopt.assert_any_call(zmq.RCVHWM, 3)
socket.setsockopt.assert_any_call(zmq.RCVTIMEO, 100)
agent.add_behavior.assert_called_once()
assert agent.emotion_recognizer == mock_deepface
@pytest.mark.asyncio
async def test_setup_bind(agent, mock_zmq_context):
"""Test setup routine when binding is True."""
agent.socket_bind = True
await agent.setup()
socket = agent.video_in_socket
socket.bind.assert_called_with("tcp://localhost:5555")
socket.connect.assert_not_called()
@pytest.mark.asyncio
async def test_emotion_update_loop_normal_flow(agent, mock_deepface):
"""
Test the main loop logic:
1. Receive frames
2. Aggregate stats
3. Trigger window update
4. Call update_emotions
"""
# Setup dependencies
await agent.setup()
agent._running = True
# Create fake image data (10x10 pixels)
width, height = 10, 10
image_bytes = np.zeros((10, 10, 3), dtype=np.uint8).tobytes()
w_bytes = width.to_bytes(4, 'little')
h_bytes = height.to_bytes(4, 'little')
# Mock ZMQ receive to return data 3 times, then stop the loop
# We use a side_effect on recv_multipart to simulate frames and then stop the loop
async def recv_side_effect():
if agent._running:
return w_bytes, h_bytes, image_bytes
raise asyncio.CancelledError()
agent.video_in_socket.recv_multipart.side_effect = recv_side_effect
# Mock DeepFace to return emotions
# Frame 1: Happy
# Frame 2: Happy
# Frame 3: Happy (Trigger window)
mock_deepface.sorted_dominant_emotions.side_effect = [
["happy"],
["happy"],
["happy"]
]
# Mock update_emotions to verify it's called
agent.update_emotions = AsyncMock()
# Mock time.time to simulate window passage
# We need time to advance significantly after the frames are collected
start_time = time.time()
with patch("time.time") as mock_time:
# Sequence of time calls:
# 1. Init next_window_time calculation
# 2. Loop 1 check
# 3. Loop 2 check
# 4. Loop 3 check (Make this one pass the window threshold)
mock_time.side_effect = [
start_time, # init
start_time + 0.1, # frame 1 check
start_time + 0.2, # frame 2 check
start_time + 10.0, # frame 3 check (triggers window reset)
start_time + 10.1, # next init
start_time + 10.2 # break loop
]
# We need to manually break the infinite loop after the update
# We can do this by wrapping update_emotions to set _running = False
async def stop_loop(*args, **kwargs):
agent._running = False
agent.update_emotions.side_effect = stop_loop
# Run the loop
await agent.emotion_update_loop()
# Verifications
assert agent.update_emotions.called
# Check that it detected 'happy' as dominant (2 required, 3 found)
call_args = agent.update_emotions.call_args
assert call_args is not None
# args: (prev_emotions, window_dominant_emotions)
assert call_args[0][1] == {"happy"}
@pytest.mark.asyncio
async def test_emotion_update_loop_insufficient_frames(agent, mock_deepface):
"""Test that emotions are NOT updated if min_frames_required is not met."""
await agent.setup()
agent._running = True
agent.min_frames_required = 5 # Set high requirement
width, height = 10, 10
image_bytes = np.zeros((10, 10, 3), dtype=np.uint8).tobytes()
w_bytes = width.to_bytes(4, 'little')
h_bytes = height.to_bytes(4, 'little')
agent.video_in_socket.recv_multipart.return_value = (w_bytes, h_bytes, image_bytes)
mock_deepface.sorted_dominant_emotions.return_value = ["sad"]
agent.update_emotions = AsyncMock()
with patch("time.time") as mock_time:
# Time setup to trigger window processing immediately
mock_time.side_effect = [0, 100, 101]
# Stop loop after first pass
async def stop_loop(*args, **kwargs):
agent._running = False
agent.update_emotions.side_effect = stop_loop
await agent.emotion_update_loop()
# It should call update_emotions with EMPTY set because min frames (5) > detected (1)
call_args = agent.update_emotions.call_args
assert call_args[0][1] == set()
@pytest.mark.asyncio
async def test_emotion_update_loop_zmq_again_and_exception(agent):
"""Test that the loop handles ZMQ timeouts (Again) and generic exceptions."""
await agent.setup()
agent._running = True
# Side effect:
# 1. Raise ZMQ Again (Timeout) -> should log warning
# 2. Raise Generic Exception -> should log error
# 3. Raise CancelledError -> stop loop (simulating stop)
agent.video_in_socket.recv_multipart.side_effect = [
zmq.Again(),
RuntimeError("Random Failure"),
asyncio.CancelledError() # To break loop cleanly
]
# We need to ensure the loop doesn't block on _paused
agent._paused.set()
# Run loop
try:
await agent.emotion_update_loop()
except asyncio.CancelledError:
pass
@pytest.mark.asyncio
async def test_update_emotions_logic(agent, mock_settings):
"""Test the logic for calculating diffs and sending messages."""
agent.name = "viz_agent"
# Case 1: No change
await agent.update_emotions({"happy"}, {"happy"})
agent.send.assert_not_called()
# Case 2: Remove 'happy', Add 'sad'
await agent.update_emotions({"happy"}, {"sad"})
assert agent.send.called
call_args = agent.send.call_args
msg = call_args[0][0] # InternalMessage object
assert msg.to == mock_settings.agent_settings.bdi_core_name
assert msg.sender == "viz_agent"
assert msg.thread == "beliefs"
payload = json.loads(msg.body)
# Check Created Beliefs
assert len(payload["create"]) == 1
assert payload["create"][0]["name"] == "emotion_detected"
assert payload["create"][0]["arguments"] == ["sad"]
# Check Deleted Beliefs
assert len(payload["delete"]) == 1
assert payload["delete"][0]["name"] == "emotion_detected"
assert payload["delete"][0]["arguments"] == ["happy"]
@pytest.mark.asyncio
async def test_update_emotions_validation_error(agent):
"""Test that ValidationErrors during Belief creation are caught."""
# We patch Belief to raise ValidationError
with patch("control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent.Belief") as MockBelief: # noqa
MockBelief.side_effect = ValidationError.from_exception_data("Simulated Error", [])
# Try to update emotions
await agent.update_emotions(prev_emotions={"happy"}, emotions={"sad"})
# Verify empty payload is sent (or payload with valid ones if mixed)
# In this case both failed, so payload lists should be empty
assert agent.send.called
msg = agent.send.call_args[0][0]
payload = json.loads(msg.body)
assert payload["create"] == []
assert payload["delete"] == []
@pytest.mark.asyncio
async def test_handle_message(agent, mock_settings):
"""Test message handling for Pause/Resume."""
# Setup
ui_name = mock_settings.agent_settings.user_interrupt_name
# 1. PAUSE message
msg_pause = InternalMessage(to="me", sender=ui_name, body="PAUSE")
await agent.handle_message(msg_pause)
assert not agent._paused.is_set() # Should be cleared (paused)
agent.logger.info.assert_called_with("Pausing Visual Emotion Recognition processing.")
# 2. RESUME message
msg_resume = InternalMessage(to="me", sender=ui_name, body="RESUME")
await agent.handle_message(msg_resume)
assert agent._paused.is_set() # Should be set (running)
# 3. Unknown command
msg_unknown = InternalMessage(to="me", sender=ui_name, body="DANCE")
await agent.handle_message(msg_unknown)
# 4. Unknown sender
msg_random = InternalMessage(to="me", sender="random_guy", body="PAUSE")
await agent.handle_message(msg_random)
@pytest.mark.asyncio
async def test_stop(agent, mock_zmq_context):
"""Test the stop method cleans up resources."""
# We need to mock super().stop(). Since we can't easily patch super(),
# and the provided BaseAgent code shows stop() just sets _running and cancels tasks,
# we can rely on the fact that VisualEmotionRecognitionAgent calls it.
# However, since we provided a 'agent' fixture that mocks things, we should verify specific cleanups. # noqa
await agent.setup()
with patch("control_backend.agents.BaseAgent.stop", new_callable=AsyncMock) as mock_super_stop:
await agent.stop()
# Verify socket closed
agent.video_in_socket.close.assert_called_once()
# Verify parent stop called
mock_super_stop.assert_called_once()

View File

@@ -305,26 +305,30 @@ async def test_send_experiment_control(agent):
@pytest.mark.asyncio
async def test_send_pause_command(agent):
# --- Test PAUSE ---
await agent._send_pause_command("true")
# Sends to RI and VAD
assert agent.send.await_count == 2
msgs = [call.args[0] for call in agent.send.call_args_list]
ri_msg = next(m for m in msgs if m.to == settings.agent_settings.ri_communication_name)
assert json.loads(ri_msg.body)["endpoint"] == "" # PAUSE endpoint
assert json.loads(ri_msg.body)["data"] is True
# Should send exactly 1 message
assert agent.send.await_count == 1
# Extract the message object from the mock call
# call_args[0] are positional args, and [0] is the first arg (the message)
msg = agent.send.call_args[0][0]
vad_msg = next(m for m in msgs if m.to == settings.agent_settings.vad_name)
assert vad_msg.body == "PAUSE"
# Verify Body
assert msg.body == "PAUSE"
# --- Test RESUME ---
agent.send.reset_mock()
await agent._send_pause_command("false")
assert agent.send.await_count == 2
vad_msg = next(
m for m in agent.send.call_args_list if m.args[0].to == settings.agent_settings.vad_name
).args[0]
assert vad_msg.body == "RESUME"
# Should send exactly 1 message
assert agent.send.await_count == 1
msg = agent.send.call_args[0][0]
# Verify Body
assert msg.body == "RESUME"
@pytest.mark.asyncio
async def test_setup(agent):

887
uv.lock generated

File diff suppressed because it is too large Load Diff