Merge branch 'feat/belief-from-text' into 'dev'
implemented basic belief-from-text extractor including demo version See merge request ics/sp/2025/n25b/pepperplus-cb!13
This commit was merged in pull request #13.
This commit is contained in:
@@ -0,0 +1,96 @@
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
|
||||
from spade.behaviour import CyclicBehaviour
|
||||
from spade.message import Message
|
||||
|
||||
from control_backend.core.config import settings
|
||||
|
||||
|
||||
class BeliefFromText(CyclicBehaviour):
|
||||
logger = logging.getLogger("Belief From Text")
|
||||
|
||||
# TODO: LLM prompt nog hardcoded
|
||||
llm_instruction_prompt = """
|
||||
You are an information extraction assistent for a BDI agent. Your task is to extract values from a user's text to bind a list of ungrounded beliefs. Rules:
|
||||
You will receive a JSON object with "beliefs" (a list of ungrounded AgentSpeak beliefs) and "text" (user's transcript).
|
||||
Analyze the text to find values that sematically match the variables (X,Y,Z) in the beliefs.
|
||||
A single piece of text might contain multiple instances that match a belief.
|
||||
Respond ONLY with a single JSON object.
|
||||
The JSON object's keys should be the belief functors (e.g., "weather").
|
||||
The value for each key must be a list of lists.
|
||||
Each inner list must contain the extracted arguments (as strings) for one instance of that belief.
|
||||
CRITICAL: If no information in the text matches a belief, DO NOT include that key in your response.
|
||||
"""
|
||||
|
||||
# on_start agent receives message containing the beliefs to look out for and sets up the LLM with instruction prompt
|
||||
#async def on_start(self):
|
||||
# msg = await self.receive(timeout=0.1)
|
||||
# self.beliefs = dict uit message
|
||||
# send instruction prompt to LLM
|
||||
|
||||
beliefs: dict[str, list[str]]
|
||||
beliefs = {
|
||||
"mood": ["X"],
|
||||
"car": ["Y"]
|
||||
}
|
||||
|
||||
async def run(self):
|
||||
msg = await self.receive(timeout=0.1)
|
||||
if msg:
|
||||
sender = msg.sender.node
|
||||
match sender:
|
||||
# TODO: Change to Transcriber agent name once implemented
|
||||
case settings.agent_settings.test_agent_name:
|
||||
self.logger.info("Received text from transcriber.")
|
||||
await self._process_transcription_demo(msg.body)
|
||||
case _:
|
||||
self.logger.info("Received message from other agent.")
|
||||
pass
|
||||
await asyncio.sleep(1)
|
||||
|
||||
async def _process_transcription(self, text: str):
|
||||
text_prompt = f"Text: {text}"
|
||||
|
||||
beliefs_prompt = "These are the beliefs to be bound:\n"
|
||||
for belief, values in self.beliefs.items():
|
||||
beliefs_prompt += f"{belief}({', '.join(values)})\n"
|
||||
|
||||
prompt = text_prompt + beliefs_prompt
|
||||
self.logger.info(prompt)
|
||||
#prompt_msg = Message(to="LLMAgent@whatever")
|
||||
#response = self.send(prompt_msg)
|
||||
|
||||
# Mock response; response is beliefs in JSON format, it parses do dict[str,list[list[str]]]
|
||||
response = '{"mood": [["happy"]]}'
|
||||
# Verify by trying to parse
|
||||
try:
|
||||
json.loads(response)
|
||||
belief_message = Message(
|
||||
to=settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host,
|
||||
body=response)
|
||||
belief_message.thread = "beliefs"
|
||||
|
||||
await self.send(belief_message)
|
||||
self.logger.info("Sent beliefs to BDI.")
|
||||
except json.JSONDecodeError:
|
||||
# Parsing failed, so the response is in the wrong format, log warning
|
||||
self.logger.warning("Received LLM response in incorrect format.")
|
||||
|
||||
async def _process_transcription_demo(self, txt: str):
|
||||
"""
|
||||
Demo version to process the transcription input to beliefs. For the demo only the belief
|
||||
'user_said' is relevant, so this function simply makes a dict with key: "user_said",
|
||||
value: txt and passes this to the Belief Collector agent.
|
||||
"""
|
||||
belief = {"user_said": [txt]}
|
||||
payload = json.dumps(belief)
|
||||
# TODO: Change to belief collector
|
||||
belief_msg = Message(to=settings.agent_settings.bdi_core_agent_name
|
||||
+ '@' + settings.agent_settings.host,
|
||||
body=payload)
|
||||
belief_msg.thread = "beliefs"
|
||||
|
||||
await self.send(belief_msg)
|
||||
self.logger.info("Sent beliefs to Belief Collector.")
|
||||
9
src/control_backend/agents/bdi/text_extractor.py
Normal file
9
src/control_backend/agents/bdi/text_extractor.py
Normal file
@@ -0,0 +1,9 @@
|
||||
from spade.agent import Agent
|
||||
|
||||
from control_backend.agents.bdi.behaviours.text_belief_extractor import BeliefFromText
|
||||
|
||||
|
||||
class TBeliefExtractor(Agent):
|
||||
async def setup(self):
|
||||
self.b = BeliefFromText()
|
||||
self.add_behaviour(self.b)
|
||||
@@ -10,6 +10,7 @@ class AgentSettings(BaseModel):
|
||||
host: str = "localhost"
|
||||
bdi_core_agent_name: str = "bdi_core"
|
||||
belief_collector_agent_name: str = "belief_collector"
|
||||
text_belief_extractor_agent_name: str = "text_belief_extractor"
|
||||
vad_agent_name: str = "vad_agent"
|
||||
llm_agent_name: str = "llm_agent"
|
||||
test_agent_name: str = "test_agent"
|
||||
@@ -19,8 +20,8 @@ class AgentSettings(BaseModel):
|
||||
|
||||
|
||||
class LLMSettings(BaseModel):
|
||||
local_llm_url: str = "http://145.107.82.68:1234/v1/chat/completions"
|
||||
local_llm_model: str = "openai/gpt-oss-120b"
|
||||
local_llm_url: str = "http://localhost:1234/v1/chat/completions"
|
||||
local_llm_model: str = "openai/gpt-oss-20b"
|
||||
|
||||
class Settings(BaseSettings):
|
||||
app_title: str = "PepperPlus"
|
||||
|
||||
@@ -13,6 +13,7 @@ from control_backend.agents.ri_communication_agent import RICommunicationAgent
|
||||
from control_backend.agents.bdi.bdi_core import BDICoreAgent
|
||||
from control_backend.agents.vad_agent import VADAgent
|
||||
from control_backend.agents.llm.llm import LLMAgent
|
||||
from control_backend.agents.bdi.text_extractor import TBeliefExtractor
|
||||
from control_backend.api.v1.router import api_router
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.core.zmq_context import context
|
||||
@@ -41,15 +42,26 @@ async def lifespan(app: FastAPI):
|
||||
bind=True,
|
||||
)
|
||||
await ri_communication_agent.start()
|
||||
|
||||
|
||||
llm_agent = LLMAgent(settings.agent_settings.llm_agent_name + '@' + settings.agent_settings.host,
|
||||
settings.agent_settings.llm_agent_name)
|
||||
|
||||
llm_agent = LLMAgent(
|
||||
settings.agent_settings.llm_agent_name + '@' + settings.agent_settings.host,
|
||||
settings.agent_settings.llm_agent_name,
|
||||
)
|
||||
await llm_agent.start()
|
||||
bdi_core = BDICoreAgent(settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host,
|
||||
settings.agent_settings.bdi_core_agent_name, "src/control_backend/agents/bdi/rules.asl")
|
||||
|
||||
bdi_core = BDICoreAgent(
|
||||
settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host,
|
||||
settings.agent_settings.bdi_core_agent_name,
|
||||
"src/control_backend/agents/bdi/rules.asl",
|
||||
)
|
||||
await bdi_core.start()
|
||||
|
||||
text_belief_extractor = TBeliefExtractor(
|
||||
settings.agent_settings.text_belief_extractor_agent_name + '@' + settings.agent_settings.host,
|
||||
settings.agent_settings.text_belief_extractor_agent_name,
|
||||
)
|
||||
await text_belief_extractor.start()
|
||||
|
||||
_temp_vad_agent = VADAgent("tcp://localhost:5558", False)
|
||||
await _temp_vad_agent.start()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user