Merge remote-tracking branch 'origin/dev' into feat/belief-collector

# Conflicts:
#	src/control_backend/main.py
This commit is contained in:
Twirre Meulenbelt
2025-10-29 15:37:55 +01:00
4 changed files with 137 additions and 37 deletions

View File

@@ -0,0 +1,96 @@
import asyncio
import json
import logging
from spade.behaviour import CyclicBehaviour
from spade.message import Message
from control_backend.core.config import settings
class BeliefFromText(CyclicBehaviour):
logger = logging.getLogger("Belief From Text")
# TODO: LLM prompt nog hardcoded
llm_instruction_prompt = """
You are an information extraction assistent for a BDI agent. Your task is to extract values from a user's text to bind a list of ungrounded beliefs. Rules:
You will receive a JSON object with "beliefs" (a list of ungrounded AgentSpeak beliefs) and "text" (user's transcript).
Analyze the text to find values that sematically match the variables (X,Y,Z) in the beliefs.
A single piece of text might contain multiple instances that match a belief.
Respond ONLY with a single JSON object.
The JSON object's keys should be the belief functors (e.g., "weather").
The value for each key must be a list of lists.
Each inner list must contain the extracted arguments (as strings) for one instance of that belief.
CRITICAL: If no information in the text matches a belief, DO NOT include that key in your response.
"""
# on_start agent receives message containing the beliefs to look out for and sets up the LLM with instruction prompt
#async def on_start(self):
# msg = await self.receive(timeout=0.1)
# self.beliefs = dict uit message
# send instruction prompt to LLM
beliefs: dict[str, list[str]]
beliefs = {
"mood": ["X"],
"car": ["Y"]
}
async def run(self):
msg = await self.receive(timeout=0.1)
if msg:
sender = msg.sender.node
match sender:
# TODO: Change to Transcriber agent name once implemented
case settings.agent_settings.test_agent_name:
self.logger.info("Received text from transcriber.")
await self._process_transcription_demo(msg.body)
case _:
self.logger.info("Received message from other agent.")
pass
await asyncio.sleep(1)
async def _process_transcription(self, text: str):
text_prompt = f"Text: {text}"
beliefs_prompt = "These are the beliefs to be bound:\n"
for belief, values in self.beliefs.items():
beliefs_prompt += f"{belief}({', '.join(values)})\n"
prompt = text_prompt + beliefs_prompt
self.logger.info(prompt)
#prompt_msg = Message(to="LLMAgent@whatever")
#response = self.send(prompt_msg)
# Mock response; response is beliefs in JSON format, it parses do dict[str,list[list[str]]]
response = '{"mood": [["happy"]]}'
# Verify by trying to parse
try:
json.loads(response)
belief_message = Message(
to=settings.agent_settings.bdi_core_agent_name + '@' + settings.agent_settings.host,
body=response)
belief_message.thread = "beliefs"
await self.send(belief_message)
self.logger.info("Sent beliefs to BDI.")
except json.JSONDecodeError:
# Parsing failed, so the response is in the wrong format, log warning
self.logger.warning("Received LLM response in incorrect format.")
async def _process_transcription_demo(self, txt: str):
"""
Demo version to process the transcription input to beliefs. For the demo only the belief
'user_said' is relevant, so this function simply makes a dict with key: "user_said",
value: txt and passes this to the Belief Collector agent.
"""
belief = {"user_said": [txt]}
payload = json.dumps(belief)
# TODO: Change to belief collector
belief_msg = Message(to=settings.agent_settings.bdi_core_agent_name
+ '@' + settings.agent_settings.host,
body=payload)
belief_msg.thread = "beliefs"
await self.send(belief_msg)
self.logger.info("Sent beliefs to Belief Collector.")

View File

@@ -0,0 +1,9 @@
from spade.agent import Agent
from control_backend.agents.bdi.behaviours.text_belief_extractor import BeliefFromText
class TBeliefExtractor(Agent):
async def setup(self):
self.b = BeliefFromText()
self.add_behaviour(self.b)