Merge branch 'dev' into refactor/logging

This commit is contained in:
2025-11-05 15:09:14 +01:00
11 changed files with 153 additions and 51 deletions

View File

@@ -10,7 +10,7 @@
# An array of allowed commit types
ALLOWED_TYPES=(feat fix refactor perf style test docs build chore revert)
# An array of branches to ignore
IGNORED_BRANCHES=(main dev)
IGNORED_BRANCHES=(main dev demo)
# --- Colors for Output ---
RED='\033[0;31m'

View File

@@ -1,6 +1,8 @@
from spade.behaviour import CyclicBehaviour
from spade.message import Message
from control_backend.core.config import settings
from control_backend.schemas.ri_message import SpeechCommand
class ReceiveLLMResponseBehaviour(CyclicBehaviour):
@@ -16,7 +18,20 @@ class ReceiveLLMResponseBehaviour(CyclicBehaviour):
case settings.agent_settings.llm_agent_name:
content = msg.body
self.agent.logger.info("Received LLM response: %s", content)
# Here the BDI can pass the message back as a response
speech_command = SpeechCommand(data=content)
message = Message(
to=settings.agent_settings.ri_command_agent_name
+ "@"
+ settings.agent_settings.host,
sender=self.agent.jid,
body=speech_command.model_dump_json(),
)
self.agent.logger.debug("Sending message: %s", message)
await self.send(message)
case _:
self.agent.logger.debug("Discarding message from %s", sender)
pass

View File

@@ -1,4 +1,6 @@
from typing import Any
import json
import re
from collections.abc import AsyncGenerator
import httpx
from spade.behaviour import CyclicBehaviour
@@ -45,11 +47,16 @@ class LLMAgent(BaseAgent):
async def _process_bdi_message(self, message: Message):
"""
Forwards user text to the LLM and replies with the generated text.
Forwards user text from the BDI to the LLM and replies with the generated text in chunks
separated by punctuation.
"""
user_text = message.body
llm_response = await self._query_llm(user_text)
await self._reply(llm_response)
# Consume the streaming generator and send a reply for every chunk
async for chunk in self._query_llm(user_text):
await self._reply(chunk)
self.agent.logger.debug(
"Finished processing BDI message. Response sent in chunks to BDI Core Agent."
)
async def _reply(self, msg: str):
"""
@@ -60,48 +67,89 @@ class LLMAgent(BaseAgent):
body=msg,
)
await self.send(reply)
self.agent.logger.info("Reply sent to BDI Core Agent")
async def _query_llm(self, prompt: str) -> str:
async def _query_llm(self, prompt: str) -> AsyncGenerator[str]:
"""
Sends a chat completion request to the local LLM service.
Sends a chat completion request to the local LLM service and streams the response by
yielding fragments separated by punctuation like.
:param prompt: Input text prompt to pass to the LLM.
:return: LLM-generated content or fallback message.
:yield: Fragments of the LLM-generated content.
"""
async with httpx.AsyncClient(timeout=120.0) as client:
# Example dynamic content for future (optional)
instructions = LLMInstructions(
"- Be friendly and respectful.\n"
"- Make the conversation feel natural and engaging.\n"
"- Speak like a pirate.\n"
"- When the user asks what you can do, tell them.",
"- Try to learn the user's name during conversation.\n"
"- Suggest playing a game of asking yes or no questions where you think of a word "
"and the user must guess it.",
)
messages = [
{
"role": "developer",
"content": instructions.build_developer_instruction(),
},
{
"role": "user",
"content": prompt,
},
]
instructions = LLMInstructions()
developer_instruction = instructions.build_developer_instruction()
try:
current_chunk = ""
async for token in self._stream_query_llm(messages):
current_chunk += token
response = await client.post(
# Stream the message in chunks separated by punctuation.
# We include the delimiter in the emitted chunk for natural flow.
pattern = re.compile(r".*?(?:,|;|:|—||\.{3}|…|\.|\?|!)\s*", re.DOTALL)
for m in pattern.finditer(current_chunk):
chunk = m.group(0)
if chunk:
yield current_chunk
current_chunk = ""
# Yield any remaining tail
if current_chunk:
yield current_chunk
except httpx.HTTPError as err:
self.agent.logger.error("HTTP error.", exc_info=err)
yield "LLM service unavailable."
except Exception as err:
self.agent.logger.error("Unexpected error.", exc_info=err)
yield "Error processing the request."
async def _stream_query_llm(self, messages) -> AsyncGenerator[str]:
"""Raises httpx.HTTPError when the API gives an error."""
async with httpx.AsyncClient(timeout=None) as client:
async with client.stream(
"POST",
settings.llm_settings.local_llm_url,
headers={"Content-Type": "application/json"},
json={
"model": settings.llm_settings.local_llm_model,
"messages": [
{"role": "developer", "content": developer_instruction},
{"role": "user", "content": prompt},
],
"messages": messages,
"temperature": 0.3,
"stream": True,
},
)
try:
) as response:
response.raise_for_status()
data: dict[str, Any] = response.json()
return (
data.get("choices", [{}])[0]
.get("message", {})
.get("content", "No response")
)
except httpx.HTTPError as err:
self.agent.logger.error("HTTP error: %s", err)
return "LLM service unavailable."
except Exception as err:
self.agent.logger.error("Unexpected error: %s", err)
return "Error processing the request."
async for line in response.aiter_lines():
if not line or not line.startswith("data: "):
continue
data = line[len("data: ") :]
if data.strip() == "[DONE]":
break
try:
event = json.loads(data)
delta = event.get("choices", [{}])[0].get("delta", {}).get("content")
if delta:
yield delta
except json.JSONDecodeError:
self.agent.logger.error("Failed to parse LLM response: %s", data)
async def setup(self):
"""

View File

@@ -28,7 +28,9 @@ class LLMInstructions:
"""
sections = [
"You are a Pepper robot engaging in natural human conversation.",
"Keep responses between 15 sentences, unless instructed otherwise.\n",
"Keep responses between 13 sentences, unless told otherwise.\n",
"You're given goals to reach. Reach them in order, but make the conversation feel "
"natural. Some turns you should not try to achieve your goals.\n",
]
if self.norms:

View File

@@ -1,5 +1,6 @@
import json
import spade.agent
import zmq
from spade.behaviour import CyclicBehaviour
from zmq.asyncio import Context
@@ -29,6 +30,8 @@ class RICommandAgent(BaseAgent):
self.bind = bind
class SendCommandsBehaviour(CyclicBehaviour):
"""Behaviour for sending commands received from the UI."""
async def run(self):
"""
Run the command publishing loop indefinetely.
@@ -45,7 +48,19 @@ class RICommandAgent(BaseAgent):
# Send to the robot.
await self.agent.pubsocket.send_json(message.model_dump())
except Exception as e:
self.logger.error("Error processing message: %s", e)
self.agent.logger.error("Error processing message: %s", e)
class SendPythonCommandsBehaviour(CyclicBehaviour):
"""Behaviour for sending commands received from other Python agents."""
async def run(self):
message: spade.agent.Message = await self.receive(timeout=0.1)
if message and message.to == self.agent.jid:
try:
speech_command = SpeechCommand.model_validate_json(message.body)
await self.agent.pubsocket.send_json(speech_command.model_dump())
except Exception as e:
self.agent.logger.error("Error processing message: %s", e)
async def setup(self):
"""
@@ -70,5 +85,6 @@ class RICommandAgent(BaseAgent):
# Add behaviour to our agent
commands_behaviour = self.SendCommandsBehaviour()
self.add_behaviour(commands_behaviour)
self.add_behaviour(self.SendPythonCommandsBehaviour())
self.logger.info("Finished setting up %s", self.jid)

View File

@@ -36,16 +36,16 @@ class SpeechRecognizer(abc.ABC):
def _estimate_max_tokens(audio: np.ndarray) -> int:
"""
Estimate the maximum length of a given audio sample in tokens. Assumes a maximum speaking
rate of 300 words per minute (2x average), and assumes that 3 words is 4 tokens.
rate of 450 words per minute (3x average), and assumes that 3 words is 4 tokens.
:param audio: The audio sample (16 kHz) to use for length estimation.
:return: The estimated length of the transcribed audio in tokens.
"""
length_seconds = len(audio) / 16_000
length_minutes = length_seconds / 60
word_count = length_minutes * 300
word_count = length_minutes * 450
token_count = word_count / 3 * 4
return int(token_count)
return int(token_count) + 10
def _get_decode_options(self, audio: np.ndarray) -> dict:
"""
@@ -85,9 +85,10 @@ class MLXWhisperSpeechRecognizer(SpeechRecognizer):
def recognize_speech(self, audio: np.ndarray) -> str:
self.load_model()
return mlx_whisper.transcribe(
audio, path_or_hf_repo=self.model_name, decode_options=self._get_decode_options(audio)
)["text"]
return mlx_whisper.transcribe(audio, path_or_hf_repo=self.model_name)["text"].strip()
audio,
path_or_hf_repo=self.model_name,
**self._get_decode_options(audio),
)["text"].strip()
class OpenAIWhisperSpeechRecognizer(SpeechRecognizer):
@@ -103,6 +104,4 @@ class OpenAIWhisperSpeechRecognizer(SpeechRecognizer):
def recognize_speech(self, audio: np.ndarray) -> str:
self.load_model()
return whisper.transcribe(
self.model, audio, decode_options=self._get_decode_options(audio)
)["text"]
return whisper.transcribe(self.model, audio, **self._get_decode_options(audio))["text"]

View File

@@ -56,6 +56,10 @@ class TranscriptionAgent(BaseAgent):
audio = await self.audio_in_socket.recv()
audio = np.frombuffer(audio, dtype=np.float32)
speech = await self._transcribe(audio)
if not speech:
self.agent.logger.info("Nothing transcribed.")
return
self.agent.logger.info("Transcribed speech: %s", speech)
await self._share_transcription(speech)

View File

@@ -51,8 +51,20 @@ class Streaming(CyclicBehaviour):
self.audio_buffer = np.array([], dtype=np.float32)
self.i_since_speech = 100 # Used to allow small pauses in speech
self._ready = False
async def reset(self):
"""Clears the ZeroMQ queue and tells this behavior to start."""
discarded = 0
while await self.audio_in_poller.poll(1) is not None:
discarded += 1
self.agent.logger.info(f"Discarded {discarded} audio packets before starting.")
self._ready = True
async def run(self) -> None:
if not self._ready:
return
data = await self.audio_in_poller.poll()
if data is None:
if len(self.audio_buffer) > 0:
@@ -106,6 +118,8 @@ class VADAgent(BaseAgent):
self.audio_in_socket: azmq.Socket | None = None
self.audio_out_socket: azmq.Socket | None = None
self.streaming_behaviour: Streaming | None = None
async def stop(self):
"""
Stop listening to audio, stop publishing audio, close sockets.
@@ -148,8 +162,8 @@ class VADAgent(BaseAgent):
return
audio_out_address = f"tcp://localhost:{audio_out_port}"
streaming = Streaming(self.audio_in_socket, self.audio_out_socket)
self.add_behaviour(streaming)
self.streaming_behaviour = Streaming(self.audio_in_socket, self.audio_out_socket)
self.add_behaviour(self.streaming_behaviour)
# Start agents dependent on the output audio fragments here
transcriber = TranscriptionAgent(audio_out_address)

View File

@@ -48,6 +48,7 @@ async def test_real_audio(mocker):
audio_out_socket = AsyncMock()
vad_streamer = Streaming(audio_in_socket, audio_out_socket)
vad_streamer._ready = True
for _ in audio_chunks:
await vad_streamer.run()

View File

@@ -21,7 +21,9 @@ def streaming(audio_in_socket, audio_out_socket):
import torch
torch.hub.load.return_value = (..., ...) # Mock
return Streaming(audio_in_socket, audio_out_socket)
streaming = Streaming(audio_in_socket, audio_out_socket)
streaming._ready = True
return streaming
async def simulate_streaming_with_probabilities(streaming, probabilities: list[float]):

View File

@@ -5,12 +5,13 @@ from control_backend.agents.transcription.speech_recognizer import OpenAIWhisper
def test_estimate_max_tokens():
"""Inputting one minute of audio, assuming 300 words per minute, expecting 400 tokens."""
"""Inputting one minute of audio, assuming 450 words per minute and adding a 10 token padding,
expecting 610 tokens."""
audio = np.empty(shape=(60 * 16_000), dtype=np.float32)
actual = SpeechRecognizer._estimate_max_tokens(audio)
assert actual == 400
assert actual == 610
assert isinstance(actual, int)