Compare commits
23 Commits
feat/add-e
...
dev
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
f2953fb1de | ||
|
|
4b6980a26e | ||
|
|
0413e0f710 | ||
|
|
941aa00b7b | ||
|
|
cc09c1b289 | ||
|
|
82aa7c76df | ||
|
|
bc9045c977 | ||
|
|
43d81002ec | ||
|
|
1e7c2ba229 | ||
|
|
2404c847ae | ||
|
|
7c8a56dfcc | ||
|
|
9b040ffc62 | ||
|
|
27f91150e1 | ||
|
|
215bafe27f | ||
| da0f48e96d | |||
|
|
7dd47c9de8 | ||
|
|
4f927bc025 | ||
| bc1fa2ea35 | |||
| 650050fa0f | |||
|
|
d8dc558d3e | ||
|
|
e7e305c4a3 | ||
| b9df47b7d1 | |||
|
|
a74ecc6c45 |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -223,7 +223,7 @@ docs/*
|
||||
!docs/conf.py
|
||||
|
||||
# Generated files
|
||||
agentspeak.asl
|
||||
*.asl
|
||||
experiment-*.log
|
||||
|
||||
|
||||
@@ -275,6 +275,5 @@ experiment-*.log
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -7,7 +7,6 @@ requires-python = ">=3.13"
|
||||
dependencies = [
|
||||
"agentspeak>=0.2.2",
|
||||
"colorlog>=6.10.1",
|
||||
"deepface>=0.0.96",
|
||||
"fastapi[all]>=0.115.6",
|
||||
"mlx-whisper>=0.4.3 ; sys_platform == 'darwin'",
|
||||
"numpy>=2.3.3",
|
||||
@@ -22,7 +21,6 @@ dependencies = [
|
||||
"silero-vad>=6.0.0",
|
||||
"sphinx>=7.3.7",
|
||||
"sphinx-rtd-theme>=3.0.2",
|
||||
"tf-keras>=2.20.1",
|
||||
"torch>=2.8.0",
|
||||
"uvicorn>=0.37.0",
|
||||
]
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import json
|
||||
import logging
|
||||
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
@@ -8,6 +9,8 @@ from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.ri_message import GestureCommand, RIEndpoint
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class RobotGestureAgent(BaseAgent):
|
||||
"""
|
||||
@@ -111,6 +114,7 @@ class RobotGestureAgent(BaseAgent):
|
||||
gesture_command.data,
|
||||
)
|
||||
return
|
||||
experiment_logger.action("Gesture: %s", gesture_command.data)
|
||||
await self.pubsocket.send_json(gesture_command.model_dump())
|
||||
except Exception:
|
||||
self.logger.exception("Error processing internal message.")
|
||||
|
||||
@@ -8,31 +8,78 @@ from enum import StrEnum
|
||||
class AstNode(ABC):
|
||||
"""
|
||||
Abstract base class for all elements of an AgentSpeak program.
|
||||
|
||||
This class serves as the foundation for all AgentSpeak abstract syntax tree (AST) nodes.
|
||||
It defines the core interface that all AST nodes must implement to generate AgentSpeak code.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Generates the AgentSpeak code string.
|
||||
|
||||
This method converts the AST node into its corresponding
|
||||
AgentSpeak source code representation.
|
||||
|
||||
:return: The AgentSpeak code string representation of this node.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""
|
||||
Returns the string representation of this AST node.
|
||||
|
||||
This method provides a convenient way to get the AgentSpeak code representation
|
||||
by delegating to the _to_agentspeak method.
|
||||
|
||||
:return: The AgentSpeak code string representation of this node.
|
||||
"""
|
||||
return self._to_agentspeak()
|
||||
|
||||
|
||||
class AstExpression(AstNode, ABC):
|
||||
"""
|
||||
Intermediate class for anything that can be used in a logical expression.
|
||||
|
||||
This class extends AstNode to provide common functionality for all expressions
|
||||
that can be used in logical operations within AgentSpeak programs.
|
||||
"""
|
||||
|
||||
def __and__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||
"""
|
||||
Creates a logical AND operation between this expression and another.
|
||||
|
||||
This method allows for operator overloading of the & operator to create
|
||||
binary logical operations in a more intuitive syntax.
|
||||
|
||||
:param other: The right-hand side expression to combine with this one.
|
||||
:return: A new AstBinaryOp representing the logical AND operation.
|
||||
"""
|
||||
return AstBinaryOp(self, BinaryOperatorType.AND, _coalesce_expr(other))
|
||||
|
||||
def __or__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||
"""
|
||||
Creates a logical OR operation between this expression and another.
|
||||
|
||||
This method allows for operator overloading of the | operator to create
|
||||
binary logical operations in a more intuitive syntax.
|
||||
|
||||
:param other: The right-hand side expression to combine with this one.
|
||||
:return: A new AstBinaryOp representing the logical OR operation.
|
||||
"""
|
||||
return AstBinaryOp(self, BinaryOperatorType.OR, _coalesce_expr(other))
|
||||
|
||||
def __invert__(self) -> AstLogicalExpression:
|
||||
"""
|
||||
Creates a logical negation of this expression.
|
||||
|
||||
This method allows for operator overloading of the ~ operator to create
|
||||
negated expressions. If the expression is already a logical expression,
|
||||
it toggles the negation flag. Otherwise, it wraps the expression in a
|
||||
new AstLogicalExpression with negation set to True.
|
||||
|
||||
:return: An AstLogicalExpression representing the negated form of this expression.
|
||||
"""
|
||||
if isinstance(self, AstLogicalExpression):
|
||||
self.negated = not self.negated
|
||||
return self
|
||||
@@ -81,11 +128,25 @@ class AstTerm(AstExpression, ABC):
|
||||
class AstAtom(AstTerm):
|
||||
"""
|
||||
Represents a grounded atom in AgentSpeak (e.g., lowercase constants).
|
||||
|
||||
Atoms are the simplest form of terms in AgentSpeak, representing concrete,
|
||||
unchanging values. They are typically used as constants in logical expressions.
|
||||
|
||||
:ivar value: The string value of this atom, which will be converted to lowercase
|
||||
in the AgentSpeak representation.
|
||||
"""
|
||||
|
||||
value: str
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this atom to its AgentSpeak string representation.
|
||||
|
||||
Atoms are represented in lowercase in AgentSpeak to distinguish them
|
||||
from variables (which are capitalized).
|
||||
|
||||
:return: The lowercase string representation of this atom.
|
||||
"""
|
||||
return self.value.lower()
|
||||
|
||||
|
||||
@@ -93,11 +154,25 @@ class AstAtom(AstTerm):
|
||||
class AstVar(AstTerm):
|
||||
"""
|
||||
Represents an ungrounded variable in AgentSpeak (e.g., capitalized names).
|
||||
|
||||
Variables in AgentSpeak are placeholders that can be bound to specific values
|
||||
during execution. They are distinguished from atoms by their capitalization.
|
||||
|
||||
:ivar name: The name of this variable, which will be capitalized in the
|
||||
AgentSpeak representation.
|
||||
"""
|
||||
|
||||
name: str
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this variable to its AgentSpeak string representation.
|
||||
|
||||
Variables are represented with capitalized names in AgentSpeak to distinguish
|
||||
them from atoms (which are lowercase).
|
||||
|
||||
:return: The capitalized string representation of this variable.
|
||||
"""
|
||||
return self.name.capitalize()
|
||||
|
||||
|
||||
@@ -105,11 +180,21 @@ class AstVar(AstTerm):
|
||||
class AstNumber(AstTerm):
|
||||
"""
|
||||
Represents a numeric constant in AgentSpeak.
|
||||
|
||||
Numeric constants can be either integers or floating-point numbers and are
|
||||
used in logical expressions and comparisons.
|
||||
|
||||
:ivar value: The numeric value of this constant (can be int or float).
|
||||
"""
|
||||
|
||||
value: int | float
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this numeric constant to its AgentSpeak string representation.
|
||||
|
||||
:return: The string representation of the numeric value.
|
||||
"""
|
||||
return str(self.value)
|
||||
|
||||
|
||||
@@ -117,11 +202,23 @@ class AstNumber(AstTerm):
|
||||
class AstString(AstTerm):
|
||||
"""
|
||||
Represents a string literal in AgentSpeak.
|
||||
|
||||
String literals are used to represent textual data and are enclosed in
|
||||
double quotes in the AgentSpeak representation.
|
||||
|
||||
:ivar value: The string content of this literal.
|
||||
"""
|
||||
|
||||
value: str
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this string literal to its AgentSpeak string representation.
|
||||
|
||||
String literals are enclosed in double quotes in AgentSpeak.
|
||||
|
||||
:return: The string literal enclosed in double quotes.
|
||||
"""
|
||||
return f'"{self.value}"'
|
||||
|
||||
|
||||
@@ -129,12 +226,26 @@ class AstString(AstTerm):
|
||||
class AstLiteral(AstTerm):
|
||||
"""
|
||||
Represents a literal (functor and terms) in AgentSpeak.
|
||||
|
||||
Literals are the fundamental building blocks of AgentSpeak programs, consisting
|
||||
of a functor (predicate name) and an optional list of terms (arguments).
|
||||
|
||||
:ivar functor: The name of the predicate or function.
|
||||
:ivar terms: A list of terms (arguments) for this literal. Defaults to an empty list.
|
||||
"""
|
||||
|
||||
functor: str
|
||||
terms: list[AstTerm] = field(default_factory=list)
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this literal to its AgentSpeak string representation.
|
||||
|
||||
If the literal has no terms, it returns just the functor name.
|
||||
Otherwise, it returns the functor followed by the terms in parentheses.
|
||||
|
||||
:return: The AgentSpeak string representation of this literal.
|
||||
"""
|
||||
if not self.terms:
|
||||
return self.functor
|
||||
args = ", ".join(map(str, self.terms))
|
||||
@@ -142,6 +253,13 @@ class AstLiteral(AstTerm):
|
||||
|
||||
|
||||
class BinaryOperatorType(StrEnum):
|
||||
"""
|
||||
Enumeration of binary operator types used in AgentSpeak expressions.
|
||||
|
||||
These operators are used to create binary operations between expressions,
|
||||
including logical operations (AND, OR) and comparison operations.
|
||||
"""
|
||||
|
||||
AND = "&"
|
||||
OR = "|"
|
||||
GREATER_THAN = ">"
|
||||
@@ -156,6 +274,13 @@ class BinaryOperatorType(StrEnum):
|
||||
class AstBinaryOp(AstExpression):
|
||||
"""
|
||||
Represents a binary logical or relational operation in AgentSpeak.
|
||||
|
||||
Binary operations combine two expressions using a logical or comparison operator.
|
||||
They are used to create complex logical conditions in AgentSpeak programs.
|
||||
|
||||
:ivar left: The left-hand side expression of the operation.
|
||||
:ivar operator: The binary operator type (AND, OR, comparison operators, etc.).
|
||||
:ivar right: The right-hand side expression of the operation.
|
||||
"""
|
||||
|
||||
left: AstExpression
|
||||
@@ -163,10 +288,25 @@ class AstBinaryOp(AstExpression):
|
||||
right: AstExpression
|
||||
|
||||
def __post_init__(self):
|
||||
"""
|
||||
Post-initialization processing to ensure proper expression types.
|
||||
|
||||
This method wraps the left and right expressions in AstLogicalExpression
|
||||
instances if they aren't already, ensuring consistent handling throughout
|
||||
the AST.
|
||||
"""
|
||||
self.left = _as_logical(self.left)
|
||||
self.right = _as_logical(self.right)
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this binary operation to its AgentSpeak string representation.
|
||||
|
||||
The method handles proper parenthesization of sub-expressions to maintain
|
||||
correct operator precedence and readability.
|
||||
|
||||
:return: The AgentSpeak string representation of this binary operation.
|
||||
"""
|
||||
l_str = str(self.left)
|
||||
r_str = str(self.right)
|
||||
|
||||
@@ -185,12 +325,27 @@ class AstBinaryOp(AstExpression):
|
||||
class AstLogicalExpression(AstExpression):
|
||||
"""
|
||||
Represents a logical expression, potentially negated, in AgentSpeak.
|
||||
|
||||
Logical expressions can be either positive or negated and form the basis
|
||||
of conditions and beliefs in AgentSpeak programs.
|
||||
|
||||
:ivar expression: The underlying expression being evaluated.
|
||||
:ivar negated: Boolean flag indicating whether this expression is negated.
|
||||
"""
|
||||
|
||||
expression: AstExpression
|
||||
negated: bool = False
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this logical expression to its AgentSpeak string representation.
|
||||
|
||||
If the expression is negated, it prepends 'not ' to the expression string.
|
||||
For complex expressions (binary operations), it adds parentheses when negated
|
||||
to maintain correct logical interpretation.
|
||||
|
||||
:return: The AgentSpeak string representation of this logical expression.
|
||||
"""
|
||||
expr_str = str(self.expression)
|
||||
if isinstance(self.expression, AstBinaryOp) and self.negated:
|
||||
expr_str = f"({expr_str})"
|
||||
@@ -198,31 +353,76 @@ class AstLogicalExpression(AstExpression):
|
||||
|
||||
|
||||
def _as_logical(expr: AstExpression) -> AstLogicalExpression:
|
||||
"""
|
||||
Converts an expression to a logical expression if it isn't already.
|
||||
|
||||
This helper function ensures that expressions are properly wrapped in
|
||||
AstLogicalExpression instances, which is necessary for consistent handling
|
||||
of logical operations in the AST.
|
||||
|
||||
:param expr: The expression to convert.
|
||||
:return: The expression wrapped in an AstLogicalExpression if it wasn't already.
|
||||
"""
|
||||
if isinstance(expr, AstLogicalExpression):
|
||||
return expr
|
||||
return AstLogicalExpression(expr)
|
||||
|
||||
|
||||
class StatementType(StrEnum):
|
||||
"""
|
||||
Enumeration of statement types that can appear in AgentSpeak plans.
|
||||
|
||||
These statement types define the different kinds of actions and operations
|
||||
that can be performed within the body of an AgentSpeak plan.
|
||||
"""
|
||||
|
||||
EMPTY = ""
|
||||
"""Empty statement (no operation, used when evaluating a plan to true)."""
|
||||
|
||||
DO_ACTION = "."
|
||||
"""Execute an action defined in Python."""
|
||||
|
||||
ACHIEVE_GOAL = "!"
|
||||
"""Achieve a goal (add a goal to be accomplished)."""
|
||||
|
||||
TEST_GOAL = "?"
|
||||
"""Test a goal (check if a goal can be achieved)."""
|
||||
|
||||
ADD_BELIEF = "+"
|
||||
"""Add a belief to the belief base."""
|
||||
|
||||
REMOVE_BELIEF = "-"
|
||||
"""Remove a belief from the belief base."""
|
||||
|
||||
REPLACE_BELIEF = "-+"
|
||||
"""Replace a belief in the belief base."""
|
||||
|
||||
|
||||
@dataclass
|
||||
class AstStatement(AstNode):
|
||||
"""
|
||||
A statement that can appear inside a plan.
|
||||
|
||||
Statements are the executable units within AgentSpeak plans. They consist
|
||||
of a statement type (defining the operation) and an expression (defining
|
||||
what to operate on).
|
||||
|
||||
:ivar type: The type of statement (action, goal, belief operation, etc.).
|
||||
:ivar expression: The expression that this statement operates on.
|
||||
"""
|
||||
|
||||
type: StatementType
|
||||
expression: AstExpression
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this statement to its AgentSpeak string representation.
|
||||
|
||||
The representation consists of the statement type prefix followed by
|
||||
the expression.
|
||||
|
||||
:return: The AgentSpeak string representation of this statement.
|
||||
"""
|
||||
return f"{self.type.value}{self.expression}"
|
||||
|
||||
|
||||
@@ -230,26 +430,59 @@ class AstStatement(AstNode):
|
||||
class AstRule(AstNode):
|
||||
"""
|
||||
Represents an inference rule in AgentSpeak. If there is no condition, it always holds.
|
||||
|
||||
Rules define logical implications in AgentSpeak programs. They consist of a
|
||||
result (conclusion) and an optional condition (premise). When the condition
|
||||
holds, the result is inferred to be true.
|
||||
|
||||
:ivar result: The conclusion or result of this rule.
|
||||
:ivar condition: The premise or condition for this rule (optional).
|
||||
"""
|
||||
|
||||
result: AstExpression
|
||||
condition: AstExpression | None = None
|
||||
|
||||
def __post_init__(self):
|
||||
"""
|
||||
Post-initialization processing to ensure proper expression types.
|
||||
|
||||
If a condition is provided, this method wraps it in an AstLogicalExpression
|
||||
to ensure consistent handling throughout the AST.
|
||||
"""
|
||||
if self.condition is not None:
|
||||
self.condition = _as_logical(self.condition)
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this rule to its AgentSpeak string representation.
|
||||
|
||||
If no condition is specified, the rule is represented as a simple fact.
|
||||
If a condition is specified, it's represented as an implication (result :- condition).
|
||||
|
||||
:return: The AgentSpeak string representation of this rule.
|
||||
"""
|
||||
if not self.condition:
|
||||
return f"{self.result}."
|
||||
return f"{self.result} :- {self.condition}."
|
||||
|
||||
|
||||
class TriggerType(StrEnum):
|
||||
"""
|
||||
Enumeration of trigger types for AgentSpeak plans.
|
||||
|
||||
Trigger types define what kind of events can activate an AgentSpeak plan.
|
||||
Currently, the system supports triggers for added beliefs and added goals.
|
||||
"""
|
||||
|
||||
ADDED_BELIEF = "+"
|
||||
"""Trigger when a belief is added to the belief base."""
|
||||
|
||||
# REMOVED_BELIEF = "-" # TODO
|
||||
# MODIFIED_BELIEF = "^" # TODO
|
||||
|
||||
ADDED_GOAL = "+!"
|
||||
"""Trigger when a goal is added to be achieved."""
|
||||
|
||||
# REMOVED_GOAL = "-!" # TODO
|
||||
|
||||
|
||||
@@ -257,6 +490,14 @@ class TriggerType(StrEnum):
|
||||
class AstPlan(AstNode):
|
||||
"""
|
||||
Represents a plan in AgentSpeak, consisting of a trigger, context, and body.
|
||||
|
||||
Plans define the reactive behavior of agents in AgentSpeak. They specify what
|
||||
actions to take when certain conditions are met (trigger and context).
|
||||
|
||||
:ivar type: The type of trigger that activates this plan.
|
||||
:ivar trigger_literal: The specific event or condition that triggers this plan.
|
||||
:ivar context: A list of conditions that must hold for this plan to be applicable.
|
||||
:ivar body: A list of statements to execute when this plan is triggered.
|
||||
"""
|
||||
|
||||
type: TriggerType
|
||||
@@ -265,6 +506,16 @@ class AstPlan(AstNode):
|
||||
body: list[AstStatement]
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this plan to its AgentSpeak string representation.
|
||||
|
||||
The representation follows the standard AgentSpeak plan format:
|
||||
trigger_type + trigger_literal
|
||||
: context_conditions
|
||||
<- body_statements.
|
||||
|
||||
:return: The AgentSpeak string representation of this plan.
|
||||
"""
|
||||
assert isinstance(self.trigger_literal, AstLiteral)
|
||||
|
||||
indent = " " * 6
|
||||
@@ -290,12 +541,26 @@ class AstPlan(AstNode):
|
||||
class AstProgram(AstNode):
|
||||
"""
|
||||
Represents a full AgentSpeak program, consisting of rules and plans.
|
||||
|
||||
This is the root node of the AgentSpeak AST, containing all the rules
|
||||
and plans that define the agent's behavior.
|
||||
|
||||
:ivar rules: A list of inference rules in this program.
|
||||
:ivar plans: A list of reactive plans in this program.
|
||||
"""
|
||||
|
||||
rules: list[AstRule] = field(default_factory=list)
|
||||
plans: list[AstPlan] = field(default_factory=list)
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this program to its AgentSpeak string representation.
|
||||
|
||||
The representation consists of all rules followed by all plans,
|
||||
separated by blank lines for readability.
|
||||
|
||||
:return: The complete AgentSpeak source code for this program.
|
||||
"""
|
||||
lines = []
|
||||
lines.extend(map(str, self.rules))
|
||||
|
||||
|
||||
@@ -18,11 +18,11 @@ from control_backend.agents.bdi.agentspeak_ast import (
|
||||
StatementType,
|
||||
TriggerType,
|
||||
)
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.program import (
|
||||
BaseGoal,
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
EmotionBelief,
|
||||
GestureAction,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
@@ -47,6 +47,15 @@ class AgentSpeakGenerator:
|
||||
|
||||
It handles the conversion of phases, norms, goals, and triggers into AgentSpeak rules and plans,
|
||||
ensuring the robot follows the defined behavioral logic.
|
||||
|
||||
The generator follows a systematic approach:
|
||||
1. Sets up initial phase and cycle notification rules
|
||||
2. Adds keyword inference capabilities for natural language processing
|
||||
3. Creates default plans for common operations
|
||||
4. Processes each phase with its norms, goals, and triggers
|
||||
5. Adds fallback plans for robust execution
|
||||
|
||||
:ivar _asp: The internal AgentSpeak program representation being built.
|
||||
"""
|
||||
|
||||
_asp: AstProgram
|
||||
@@ -55,6 +64,10 @@ class AgentSpeakGenerator:
|
||||
"""
|
||||
Translates a Program object into an AgentSpeak source string.
|
||||
|
||||
This is the main entry point for the code generation process. It initializes
|
||||
the AgentSpeak program structure and orchestrates the conversion of all
|
||||
program elements into their AgentSpeak representations.
|
||||
|
||||
:param program: The behavior program to translate.
|
||||
:return: The generated AgentSpeak code as a string.
|
||||
"""
|
||||
@@ -77,6 +90,18 @@ class AgentSpeakGenerator:
|
||||
return str(self._asp)
|
||||
|
||||
def _add_keyword_inference(self) -> None:
|
||||
"""
|
||||
Adds inference rules for keyword detection in user messages.
|
||||
|
||||
This method creates rules that allow the system to detect when specific
|
||||
keywords are mentioned in user messages. It uses string operations to
|
||||
check if a keyword is a substring of the user's message.
|
||||
|
||||
The generated rule has the form:
|
||||
keyword_said(Keyword) :- user_said(Message) & .substring(Keyword, Message, Pos) & Pos >= 0
|
||||
|
||||
This enables the system to trigger behaviors based on keyword detection.
|
||||
"""
|
||||
keyword = AstVar("Keyword")
|
||||
message = AstVar("Message")
|
||||
position = AstVar("Pos")
|
||||
@@ -91,12 +116,32 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
|
||||
def _add_default_plans(self):
|
||||
"""
|
||||
Adds default plans for common operations.
|
||||
|
||||
This method sets up the standard plans that handle fundamental operations
|
||||
like replying with goals, simple speech actions, general replies, and
|
||||
cycle notifications. These plans provide the basic infrastructure for
|
||||
the agent's reactive behavior.
|
||||
"""
|
||||
self._add_reply_with_goal_plan()
|
||||
self._add_say_plan()
|
||||
self._add_reply_plan()
|
||||
self._add_notify_cycle_plan()
|
||||
|
||||
def _add_reply_with_goal_plan(self):
|
||||
"""
|
||||
Adds a plan for replying with a specific conversational goal.
|
||||
|
||||
This plan handles the case where the agent needs to respond to user input
|
||||
while pursuing a specific conversational goal. It:
|
||||
1. Marks that the agent has responded this turn
|
||||
2. Gathers all active norms
|
||||
3. Generates a reply that considers both the user message and the goal
|
||||
|
||||
Trigger: +!reply_with_goal(Goal)
|
||||
Context: user_said(Message)
|
||||
"""
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
@@ -122,6 +167,17 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
|
||||
def _add_say_plan(self):
|
||||
"""
|
||||
Adds a plan for simple speech actions.
|
||||
|
||||
This plan handles direct speech actions where the agent needs to say
|
||||
a specific text. It:
|
||||
1. Marks that the agent has responded this turn
|
||||
2. Executes the speech action
|
||||
|
||||
Trigger: +!say(Text)
|
||||
Context: None (can be executed anytime)
|
||||
"""
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
@@ -135,6 +191,18 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
|
||||
def _add_reply_plan(self):
|
||||
"""
|
||||
Adds a plan for general reply actions.
|
||||
|
||||
This plan handles general reply actions where the agent needs to respond
|
||||
to user input without a specific conversational goal. It:
|
||||
1. Marks that the agent has responded this turn
|
||||
2. Gathers all active norms
|
||||
3. Generates a reply based on the user message and norms
|
||||
|
||||
Trigger: +!reply
|
||||
Context: user_said(Message)
|
||||
"""
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
@@ -158,6 +226,19 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
|
||||
def _add_notify_cycle_plan(self):
|
||||
"""
|
||||
Adds a plan for cycle notification.
|
||||
|
||||
This plan handles the periodic notification cycle that allows the system
|
||||
to monitor and report on the current state. It:
|
||||
1. Gathers all active norms
|
||||
2. Notifies the system about the current norms
|
||||
3. Waits briefly to allow processing
|
||||
4. Recursively triggers the next cycle
|
||||
|
||||
Trigger: +!notify_cycle
|
||||
Context: None (can be executed anytime)
|
||||
"""
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
@@ -181,6 +262,16 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
|
||||
def _process_phases(self, phases: list[Phase]) -> None:
|
||||
"""
|
||||
Processes all phases in the program and their transitions.
|
||||
|
||||
This method iterates through each phase and:
|
||||
1. Processes the current phase (norms, goals, triggers)
|
||||
2. Sets up transitions between phases
|
||||
3. Adds special handling for the end phase
|
||||
|
||||
:param phases: The list of phases to process.
|
||||
"""
|
||||
for curr_phase, next_phase in zip([None] + phases, phases + [None], strict=True):
|
||||
if curr_phase:
|
||||
self._process_phase(curr_phase)
|
||||
@@ -203,6 +294,17 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
|
||||
def _process_phase(self, phase: Phase) -> None:
|
||||
"""
|
||||
Processes a single phase, including its norms, goals, and triggers.
|
||||
|
||||
This method handles the complete processing of a phase by:
|
||||
1. Processing all norms in the phase
|
||||
2. Setting up the default execution loop for the phase
|
||||
3. Processing all goals in sequence
|
||||
4. Processing all triggers for reactive behavior
|
||||
|
||||
:param phase: The phase to process.
|
||||
"""
|
||||
for norm in phase.norms:
|
||||
self._process_norm(norm, phase)
|
||||
|
||||
@@ -217,6 +319,21 @@ class AgentSpeakGenerator:
|
||||
self._process_trigger(trigger, phase)
|
||||
|
||||
def _add_phase_transition(self, from_phase: Phase | None, to_phase: Phase | None) -> None:
|
||||
"""
|
||||
Adds plans for transitioning between phases.
|
||||
|
||||
This method creates two plans for each phase transition:
|
||||
1. A check plan that verifies if transition conditions are met
|
||||
2. A force plan that actually performs the transition (can be forced externally)
|
||||
|
||||
The transition involves:
|
||||
- Notifying the system about the phase change
|
||||
- Removing the current phase belief
|
||||
- Adding the next phase belief
|
||||
|
||||
:param from_phase: The phase being transitioned from (or None for initial setup).
|
||||
:param to_phase: The phase being transitioned to (or None for end phase).
|
||||
"""
|
||||
if from_phase is None:
|
||||
return
|
||||
from_phase_ast = self._astify(from_phase)
|
||||
@@ -246,18 +363,6 @@ class AgentSpeakGenerator:
|
||||
AstStatement(StatementType.ADD_BELIEF, to_phase_ast),
|
||||
]
|
||||
|
||||
# if from_phase:
|
||||
# body.extend(
|
||||
# [
|
||||
# AstStatement(
|
||||
# StatementType.TEST_GOAL, AstLiteral("user_said", [AstVar("Message")])
|
||||
# ),
|
||||
# AstStatement(
|
||||
# StatementType.REPLACE_BELIEF, AstLiteral("user_said", [AstVar("Message")])
|
||||
# ),
|
||||
# ]
|
||||
# )
|
||||
|
||||
# Check
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
@@ -278,6 +383,17 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
|
||||
def _process_norm(self, norm: Norm, phase: Phase) -> None:
|
||||
"""
|
||||
Processes a norm and adds it as an inference rule.
|
||||
|
||||
This method converts norms into AgentSpeak rules that define when
|
||||
the norm should be active. It handles both basic norms (always active
|
||||
in their phase) and conditional norms (active only when their condition
|
||||
is met).
|
||||
|
||||
:param norm: The norm to process.
|
||||
:param phase: The phase this norm belongs to.
|
||||
"""
|
||||
rule: AstRule | None = None
|
||||
|
||||
match norm:
|
||||
@@ -296,6 +412,18 @@ class AgentSpeakGenerator:
|
||||
self._asp.rules.append(rule)
|
||||
|
||||
def _add_default_loop(self, phase: Phase) -> None:
|
||||
"""
|
||||
Adds the default execution loop for a phase.
|
||||
|
||||
This method creates the main reactive loop that runs when the agent
|
||||
receives user input during a phase. The loop:
|
||||
1. Notifies the system about the user input
|
||||
2. Resets the response tracking
|
||||
3. Executes all phase goals
|
||||
4. Attempts phase transition
|
||||
|
||||
:param phase: The phase to create the loop for.
|
||||
"""
|
||||
actions = []
|
||||
|
||||
actions.append(
|
||||
@@ -304,7 +432,6 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
)
|
||||
actions.append(AstStatement(StatementType.REMOVE_BELIEF, AstLiteral("responded_this_turn")))
|
||||
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("check_triggers")))
|
||||
|
||||
for goal in phase.goals:
|
||||
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, self._astify(goal)))
|
||||
@@ -328,6 +455,22 @@ class AgentSpeakGenerator:
|
||||
continues_response: bool = False,
|
||||
main_goal: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Processes a goal and creates plans for achieving it.
|
||||
|
||||
This method creates two plans for each goal:
|
||||
1. A main plan that executes the goal's steps when conditions are met
|
||||
2. A fallback plan that provides a default empty implementation (prevents crashes)
|
||||
|
||||
The method also recursively processes any subgoals contained within
|
||||
the goal's plan.
|
||||
|
||||
:param goal: The goal to process.
|
||||
:param phase: The phase this goal belongs to.
|
||||
:param previous_goal: The previous goal in sequence (for dependency tracking).
|
||||
:param continues_response: Whether this goal continues an existing response.
|
||||
:param main_goal: Whether this is a main goal (for UI notification purposes).
|
||||
"""
|
||||
context: list[AstExpression] = [self._astify(phase)]
|
||||
context.append(~self._astify(goal, achieved=True))
|
||||
if previous_goal and previous_goal.can_fail:
|
||||
@@ -370,14 +513,39 @@ class AgentSpeakGenerator:
|
||||
prev_goal = subgoal
|
||||
|
||||
def _step_to_statement(self, step: PlanElement) -> AstStatement:
|
||||
"""
|
||||
Converts a plan step to an AgentSpeak statement.
|
||||
|
||||
This method transforms different types of plan elements into their
|
||||
corresponding AgentSpeak statements. Goals and speech-related actions
|
||||
become achieve-goal statements, while gesture actions become do-action
|
||||
statements.
|
||||
|
||||
:param step: The plan element to convert.
|
||||
:return: The corresponding AgentSpeak statement.
|
||||
"""
|
||||
match step:
|
||||
# Note that SpeechAction gets included in the ACHIEVE_GOAL, since it's a goal internally
|
||||
case Goal() | SpeechAction() | LLMAction() as a:
|
||||
return AstStatement(StatementType.ACHIEVE_GOAL, self._astify(a))
|
||||
case GestureAction() as a:
|
||||
return AstStatement(StatementType.DO_ACTION, self._astify(a))
|
||||
|
||||
# TODO: separate handling of keyword and others
|
||||
def _process_trigger(self, trigger: Trigger, phase: Phase) -> None:
|
||||
"""
|
||||
Processes a trigger and creates plans for its execution.
|
||||
|
||||
This method creates plans that execute when trigger conditions are met.
|
||||
It handles both automatic triggering (when conditions are detected) and
|
||||
manual forcing (from UI). The trigger execution includes:
|
||||
1. Notifying the system about trigger start
|
||||
2. Executing all trigger steps
|
||||
3. Waiting briefly for UI display
|
||||
4. Notifying the system about trigger end
|
||||
|
||||
:param trigger: The trigger to process.
|
||||
:param phase: The phase this trigger belongs to.
|
||||
"""
|
||||
body = []
|
||||
subgoals = []
|
||||
|
||||
@@ -394,7 +562,12 @@ class AgentSpeakGenerator:
|
||||
subgoals.append(step)
|
||||
|
||||
# Arbitrary wait for UI to display nicely
|
||||
body.append(AstStatement(StatementType.DO_ACTION, AstLiteral("wait", [AstNumber(2000)])))
|
||||
body.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral("wait", [AstNumber(settings.behaviour_settings.trigger_time_to_wait)]),
|
||||
)
|
||||
)
|
||||
|
||||
body.append(
|
||||
AstStatement(
|
||||
@@ -419,6 +592,18 @@ class AgentSpeakGenerator:
|
||||
self._process_goal(subgoal, phase, continues_response=True)
|
||||
|
||||
def _add_fallbacks(self):
|
||||
"""
|
||||
Adds fallback plans for robust execution, preventing crashes.
|
||||
|
||||
This method creates fallback plans that provide default empty implementations
|
||||
for key goals. These fallbacks ensure that the system can continue execution
|
||||
even when no specific plans are applicable, preventing crashes.
|
||||
|
||||
The fallbacks are created for:
|
||||
- check_triggers: When no triggers are applicable
|
||||
- transition_phase: When phase transition conditions aren't met
|
||||
- force_transition_phase: When forced transitions aren't possible
|
||||
"""
|
||||
# Trigger fallback
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
@@ -451,22 +636,57 @@ class AgentSpeakGenerator:
|
||||
|
||||
@singledispatchmethod
|
||||
def _astify(self, element: ProgramElement) -> AstExpression:
|
||||
"""
|
||||
Converts program elements to AgentSpeak expressions (base method).
|
||||
|
||||
This is the base method for the singledispatch mechanism that handles
|
||||
conversion of different program element types to their AgentSpeak
|
||||
representations. Specific implementations are provided for each
|
||||
element type through registered methods.
|
||||
|
||||
:param element: The program element to convert.
|
||||
:return: The corresponding AgentSpeak expression.
|
||||
:raises NotImplementedError: If no specific implementation exists for the element type.
|
||||
"""
|
||||
raise NotImplementedError(f"Cannot convert element {element} to an AgentSpeak expression.")
|
||||
|
||||
@_astify.register
|
||||
def _(self, kwb: KeywordBelief) -> AstExpression:
|
||||
"""
|
||||
Converts a KeywordBelief to an AgentSpeak expression.
|
||||
|
||||
Keyword beliefs are converted to keyword_said literals that check
|
||||
if the keyword was mentioned in user input.
|
||||
|
||||
:param kwb: The KeywordBelief to convert.
|
||||
:return: An AstLiteral representing the keyword detection.
|
||||
"""
|
||||
return AstLiteral("keyword_said", [AstString(kwb.keyword)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, sb: SemanticBelief) -> AstExpression:
|
||||
"""
|
||||
Converts a SemanticBelief to an AgentSpeak expression.
|
||||
|
||||
Semantic beliefs are converted to literals using their slugified names,
|
||||
which are used for LLM-based belief evaluation.
|
||||
|
||||
:param sb: The SemanticBelief to convert.
|
||||
:return: An AstLiteral representing the semantic belief.
|
||||
"""
|
||||
return AstLiteral(self.slugify(sb))
|
||||
|
||||
@_astify.register
|
||||
def _(self, eb: EmotionBelief) -> AstExpression:
|
||||
return AstLiteral("emotion_detected", [AstAtom(eb.emotion)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, ib: InferredBelief) -> AstExpression:
|
||||
"""
|
||||
Converts an InferredBelief to an AgentSpeak expression.
|
||||
|
||||
Inferred beliefs are converted to binary operations that combine
|
||||
their left and right operands using the appropriate logical operator.
|
||||
|
||||
:param ib: The InferredBelief to convert.
|
||||
:return: An AstBinaryOp representing the logical combination.
|
||||
"""
|
||||
return AstBinaryOp(
|
||||
self._astify(ib.left),
|
||||
BinaryOperatorType.AND if ib.operator == LogicalOperator.AND else BinaryOperatorType.OR,
|
||||
@@ -475,59 +695,187 @@ class AgentSpeakGenerator:
|
||||
|
||||
@_astify.register
|
||||
def _(self, norm: Norm) -> AstExpression:
|
||||
"""
|
||||
Converts a Norm to an AgentSpeak expression.
|
||||
|
||||
Norms are converted to literals with either 'norm' or 'critical_norm'
|
||||
functors depending on their critical flag, with the norm text as an argument.
|
||||
|
||||
Note that currently, critical norms are not yet functionally supported. They are possible
|
||||
to astify for future use.
|
||||
|
||||
:param norm: The Norm to convert.
|
||||
:return: An AstLiteral representing the norm.
|
||||
"""
|
||||
functor = "critical_norm" if norm.critical else "norm"
|
||||
return AstLiteral(functor, [AstString(norm.norm)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, phase: Phase) -> AstExpression:
|
||||
"""
|
||||
Converts a Phase to an AgentSpeak expression.
|
||||
|
||||
Phases are converted to phase literals with their unique identifier
|
||||
as an argument, which is used for phase tracking and transitions.
|
||||
|
||||
:param phase: The Phase to convert.
|
||||
:return: An AstLiteral representing the phase.
|
||||
"""
|
||||
return AstLiteral("phase", [AstString(str(phase.id))])
|
||||
|
||||
@_astify.register
|
||||
def _(self, goal: Goal, achieved: bool = False) -> AstExpression:
|
||||
"""
|
||||
Converts a Goal to an AgentSpeak expression.
|
||||
|
||||
Goals are converted to literals using their slugified names. If the
|
||||
achieved parameter is True, the literal is prefixed with 'achieved_'.
|
||||
|
||||
:param goal: The Goal to convert.
|
||||
:param achieved: Whether to represent this as an achieved goal.
|
||||
:return: An AstLiteral representing the goal.
|
||||
"""
|
||||
return AstLiteral(f"{'achieved_' if achieved else ''}{self._slugify_str(goal.name)}")
|
||||
|
||||
@_astify.register
|
||||
def _(self, trigger: Trigger) -> AstExpression:
|
||||
"""
|
||||
Converts a Trigger to an AgentSpeak expression.
|
||||
|
||||
Triggers are converted to literals using their slugified names,
|
||||
which are used to identify and execute trigger plans.
|
||||
|
||||
:param trigger: The Trigger to convert.
|
||||
:return: An AstLiteral representing the trigger.
|
||||
"""
|
||||
return AstLiteral(self.slugify(trigger))
|
||||
|
||||
@_astify.register
|
||||
def _(self, sa: SpeechAction) -> AstExpression:
|
||||
"""
|
||||
Converts a SpeechAction to an AgentSpeak expression.
|
||||
|
||||
Speech actions are converted to say literals with the text content
|
||||
as an argument, which are used for direct speech output.
|
||||
|
||||
:param sa: The SpeechAction to convert.
|
||||
:return: An AstLiteral representing the speech action.
|
||||
"""
|
||||
return AstLiteral("say", [AstString(sa.text)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, ga: GestureAction) -> AstExpression:
|
||||
"""
|
||||
Converts a GestureAction to an AgentSpeak expression.
|
||||
|
||||
Gesture actions are converted to gesture literals with the gesture
|
||||
type and name as arguments, which are used for physical robot gestures.
|
||||
|
||||
:param ga: The GestureAction to convert.
|
||||
:return: An AstLiteral representing the gesture action.
|
||||
"""
|
||||
gesture = ga.gesture
|
||||
return AstLiteral("gesture", [AstString(gesture.type), AstString(gesture.name)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, la: LLMAction) -> AstExpression:
|
||||
"""
|
||||
Converts an LLMAction to an AgentSpeak expression.
|
||||
|
||||
LLM actions are converted to reply_with_goal literals with the
|
||||
conversational goal as an argument, which are used for LLM-generated
|
||||
responses guided by specific goals.
|
||||
|
||||
:param la: The LLMAction to convert.
|
||||
:return: An AstLiteral representing the LLM action.
|
||||
"""
|
||||
return AstLiteral("reply_with_goal", [AstString(la.goal)])
|
||||
|
||||
@singledispatchmethod
|
||||
@staticmethod
|
||||
def slugify(element: ProgramElement) -> str:
|
||||
"""
|
||||
Converts program elements to slugs (base method).
|
||||
|
||||
This is the base method for the singledispatch mechanism that handles
|
||||
conversion of different program element types to their slug representations.
|
||||
Specific implementations are provided for each element type through
|
||||
registered methods.
|
||||
|
||||
Slugs are used outside of AgentSpeak, mostly for identifying what to send to the AgentSpeak
|
||||
program as beliefs.
|
||||
|
||||
:param element: The program element to convert to a slug.
|
||||
:return: The slug string representation.
|
||||
:raises NotImplementedError: If no specific implementation exists for the element type.
|
||||
"""
|
||||
raise NotImplementedError(f"Cannot convert element {element} to a slug.")
|
||||
|
||||
@slugify.register
|
||||
@staticmethod
|
||||
def _(n: Norm) -> str:
|
||||
"""
|
||||
Converts a Norm to a slug.
|
||||
|
||||
Norms are converted to slugs with the 'norm_' prefix followed by
|
||||
the slugified norm text.
|
||||
|
||||
:param n: The Norm to convert.
|
||||
:return: The slug string representation.
|
||||
"""
|
||||
return f"norm_{AgentSpeakGenerator._slugify_str(n.norm)}"
|
||||
|
||||
@slugify.register
|
||||
@staticmethod
|
||||
def _(sb: SemanticBelief) -> str:
|
||||
"""
|
||||
Converts a SemanticBelief to a slug.
|
||||
|
||||
Semantic beliefs are converted to slugs with the 'semantic_' prefix
|
||||
followed by the slugified belief name.
|
||||
|
||||
:param sb: The SemanticBelief to convert.
|
||||
:return: The slug string representation.
|
||||
"""
|
||||
return f"semantic_{AgentSpeakGenerator._slugify_str(sb.name)}"
|
||||
|
||||
@slugify.register
|
||||
@staticmethod
|
||||
def _(g: BaseGoal) -> str:
|
||||
"""
|
||||
Converts a BaseGoal to a slug.
|
||||
|
||||
Goals are converted to slugs using their slugified names directly.
|
||||
|
||||
:param g: The BaseGoal to convert.
|
||||
:return: The slug string representation.
|
||||
"""
|
||||
return AgentSpeakGenerator._slugify_str(g.name)
|
||||
|
||||
@slugify.register
|
||||
@staticmethod
|
||||
def _(t: Trigger):
|
||||
def _(t: Trigger) -> str:
|
||||
"""
|
||||
Converts a Trigger to a slug.
|
||||
|
||||
Triggers are converted to slugs with the 'trigger_' prefix followed by
|
||||
the slugified trigger name.
|
||||
|
||||
:param t: The Trigger to convert.
|
||||
:return: The slug string representation.
|
||||
"""
|
||||
return f"trigger_{AgentSpeakGenerator._slugify_str(t.name)}"
|
||||
|
||||
@staticmethod
|
||||
def _slugify_str(text: str) -> str:
|
||||
"""
|
||||
Converts a text string to a slug.
|
||||
|
||||
This helper method converts arbitrary text to a URL-friendly slug format
|
||||
by converting to lowercase, removing special characters, and replacing
|
||||
spaces with underscores. It also removes common stopwords.
|
||||
|
||||
:param text: The text string to convert.
|
||||
:return: The slugified string.
|
||||
"""
|
||||
return slugify(text, separator="_", stopwords=["a", "an", "the", "we", "you", "I"])
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
import asyncio
|
||||
import copy
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
|
||||
@@ -19,6 +20,9 @@ from control_backend.schemas.ri_message import GestureCommand, RIEndpoint, Speec
|
||||
DELIMITER = ";\n" # TODO: temporary until we support lists in AgentSpeak
|
||||
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class BDICoreAgent(BaseAgent):
|
||||
"""
|
||||
BDI Core Agent.
|
||||
@@ -207,6 +211,9 @@ class BDICoreAgent(BaseAgent):
|
||||
else:
|
||||
term = agentspeak.Literal(name)
|
||||
|
||||
if name != "user_said":
|
||||
experiment_logger.observation(f"Formed new belief: {name}{f'={args}' if args else ''}")
|
||||
|
||||
self.bdi_agent.call(
|
||||
agentspeak.Trigger.addition,
|
||||
agentspeak.GoalType.belief,
|
||||
@@ -244,6 +251,9 @@ class BDICoreAgent(BaseAgent):
|
||||
new_args = (agentspeak.Literal(arg) for arg in args)
|
||||
term = agentspeak.Literal(name, new_args)
|
||||
|
||||
if name != "user_said":
|
||||
experiment_logger.observation(f"Removed belief: {name}{f'={args}' if args else ''}")
|
||||
|
||||
result = self.bdi_agent.call(
|
||||
agentspeak.Trigger.removal,
|
||||
agentspeak.GoalType.belief,
|
||||
@@ -386,6 +396,8 @@ class BDICoreAgent(BaseAgent):
|
||||
body=str(message_text),
|
||||
)
|
||||
|
||||
experiment_logger.chat(str(message_text), extra={"role": "assistant"})
|
||||
|
||||
self.add_behavior(self.send(chat_history_message))
|
||||
|
||||
yield
|
||||
|
||||
@@ -1,10 +1,12 @@
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
|
||||
import zmq
|
||||
from pydantic import ValidationError
|
||||
from zmq.asyncio import Context
|
||||
|
||||
import control_backend
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.config import settings
|
||||
@@ -19,17 +21,21 @@ from control_backend.schemas.program import (
|
||||
Program,
|
||||
)
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class BDIProgramManager(BaseAgent):
|
||||
"""
|
||||
BDI Program Manager Agent.
|
||||
|
||||
This agent is responsible for receiving high-level programs (sequences of instructions/goals)
|
||||
from the external HTTP API (via ZMQ) and translating them into core beliefs (norms and goals)
|
||||
for the BDI Core Agent. In the future, it will be responsible for determining when goals are
|
||||
met, and passing on new norms and goals accordingly.
|
||||
from the external HTTP API (via ZMQ), transforming it into an AgentSpeak program, sharing the
|
||||
program and its components to other agents, and keeping agents informed of the current state.
|
||||
|
||||
:ivar sub_socket: The ZMQ SUB socket used to receive program updates.
|
||||
:ivar _program: The current Program.
|
||||
:ivar _phase: The current Phase.
|
||||
:ivar _goal_mapping: A mapping of goal IDs to goals.
|
||||
"""
|
||||
|
||||
_program: Program
|
||||
@@ -38,16 +44,28 @@ class BDIProgramManager(BaseAgent):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.sub_socket = None
|
||||
self._goal_mapping: dict[str, Goal] = {}
|
||||
|
||||
def _initialize_internal_state(self, program: Program):
|
||||
"""
|
||||
Initialize the state of the program manager given a new Program. Reset the tracking of the
|
||||
current phase to the first phase, make a mapping of goal IDs to goals, used during the life
|
||||
of the program.
|
||||
:param program: The new program.
|
||||
"""
|
||||
self._program = program
|
||||
self._phase = program.phases[0] # start in first phase
|
||||
self._goal_mapping: dict[str, Goal] = {}
|
||||
self._goal_mapping = {}
|
||||
for phase in program.phases:
|
||||
for goal in phase.goals:
|
||||
self._populate_goal_mapping_with_goal(goal)
|
||||
|
||||
def _populate_goal_mapping_with_goal(self, goal: Goal):
|
||||
"""
|
||||
Recurse through the given goal and its subgoals and add all goals found to the
|
||||
``self._goal_mapping``.
|
||||
:param goal: The goal to add to the ``self._goal_mapping``, including subgoals.
|
||||
"""
|
||||
self._goal_mapping[str(goal.id)] = goal
|
||||
for step in goal.plan.steps:
|
||||
if isinstance(step, Goal):
|
||||
@@ -63,7 +81,7 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
asl_str = asg.generate(program)
|
||||
|
||||
file_name = "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
file_name = settings.behaviour_settings.agentspeak_file
|
||||
|
||||
with open(file_name, "w") as f:
|
||||
f.write(asl_str)
|
||||
@@ -88,6 +106,16 @@ class BDIProgramManager(BaseAgent):
|
||||
await self._send_achieved_goal_to_semantic_belief_extractor(goal_id)
|
||||
|
||||
async def _transition_phase(self, old: str, new: str):
|
||||
"""
|
||||
When receiving a signal from the BDI core that the phase has changed, apply this change to
|
||||
the current state and inform other agents about the change.
|
||||
|
||||
:param old: The ID of the old phase.
|
||||
:param new: The ID of the new phase.
|
||||
"""
|
||||
if self._phase is None:
|
||||
return
|
||||
|
||||
if old != str(self._phase.id):
|
||||
self.logger.warning(
|
||||
f"Phase transition desync detected! ASL requested move from '{old}', "
|
||||
@@ -126,6 +154,13 @@ class BDIProgramManager(BaseAgent):
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
def _extract_current_beliefs(self) -> list[Belief]:
|
||||
"""Extract beliefs from the current phase."""
|
||||
assert self._phase is not None, (
|
||||
"Invalid state, no phase set. Call this method only when "
|
||||
"a program has been received and the end-phase has not "
|
||||
"been reached."
|
||||
)
|
||||
|
||||
beliefs: list[Belief] = []
|
||||
|
||||
for norm in self._phase.norms:
|
||||
@@ -139,6 +174,7 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
@staticmethod
|
||||
def _extract_beliefs_from_belief(belief: Belief) -> list[Belief]:
|
||||
"""Recursively extract beliefs from the given belief."""
|
||||
if isinstance(belief, InferredBelief):
|
||||
return BDIProgramManager._extract_beliefs_from_belief(
|
||||
belief.left
|
||||
@@ -146,9 +182,7 @@ class BDIProgramManager(BaseAgent):
|
||||
return [belief]
|
||||
|
||||
async def _send_beliefs_to_semantic_belief_extractor(self):
|
||||
"""
|
||||
Extract beliefs from the program and send them to the Semantic Belief Extractor Agent.
|
||||
"""
|
||||
"""Extract beliefs from the program and send them to the Semantic Belief Extractor Agent."""
|
||||
beliefs = BeliefList(beliefs=self._extract_current_beliefs())
|
||||
|
||||
message = InternalMessage(
|
||||
@@ -168,9 +202,9 @@ class BDIProgramManager(BaseAgent):
|
||||
:return: All goals within and including the given goal.
|
||||
"""
|
||||
goals: list[Goal] = [goal]
|
||||
for plan in goal.plan:
|
||||
if isinstance(plan, Goal):
|
||||
goals.extend(BDIProgramManager._extract_goals_from_goal(plan))
|
||||
for step in goal.plan.steps:
|
||||
if isinstance(step, Goal):
|
||||
goals.extend(BDIProgramManager._extract_goals_from_goal(step))
|
||||
return goals
|
||||
|
||||
def _extract_current_goals(self) -> list[Goal]:
|
||||
@@ -179,6 +213,12 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
:return: A list of Goal objects.
|
||||
"""
|
||||
assert self._phase is not None, (
|
||||
"Invalid state, no phase set. Call this method only when "
|
||||
"a program has been received and the end-phase has not "
|
||||
"been reached."
|
||||
)
|
||||
|
||||
goals: list[Goal] = []
|
||||
|
||||
for goal in self._phase.goals:
|
||||
@@ -241,6 +281,18 @@ class BDIProgramManager(BaseAgent):
|
||||
await self.send(extractor_msg)
|
||||
self.logger.debug("Sent message to extractor agent to clear history.")
|
||||
|
||||
@staticmethod
|
||||
def _rollover_experiment_logs():
|
||||
"""
|
||||
A new experiment program started; make a new experiment log file.
|
||||
"""
|
||||
handlers = logging.getLogger(settings.logging_settings.experiment_logger_name).handlers
|
||||
for handler in handlers:
|
||||
if isinstance(handler, control_backend.logging.DatedFileHandler):
|
||||
experiment_logger.action("Doing rollover...")
|
||||
handler.do_rollover()
|
||||
experiment_logger.debug("Finished rollover.")
|
||||
|
||||
async def _receive_programs(self):
|
||||
"""
|
||||
Continuous loop that receives program updates from the HTTP endpoint.
|
||||
@@ -261,6 +313,7 @@ class BDIProgramManager(BaseAgent):
|
||||
self._initialize_internal_state(program)
|
||||
await self._send_program_to_user_interrupt(program)
|
||||
await self._send_clear_llm_history()
|
||||
self._rollover_experiment_logs()
|
||||
|
||||
await asyncio.gather(
|
||||
self._create_agentspeak_and_send_to_bdi(program),
|
||||
|
||||
@@ -134,6 +134,10 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
self.logger.warning("Received unexpected message from %s", msg.sender)
|
||||
|
||||
def _reset_phase(self):
|
||||
"""
|
||||
Delete all state about the current phase, such as what beliefs exist and which ones are
|
||||
true.
|
||||
"""
|
||||
self.conversation = ChatHistory(messages=[])
|
||||
self.belief_inferrer.available_beliefs.clear()
|
||||
self._current_beliefs = BeliefState()
|
||||
@@ -141,6 +145,11 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
self._current_goal_completions = {}
|
||||
|
||||
def _handle_beliefs_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle the message from the Program Manager agent containing the beliefs that exist for this
|
||||
phase.
|
||||
:param msg: A list of beliefs.
|
||||
"""
|
||||
try:
|
||||
belief_list = BeliefList.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
@@ -158,6 +167,11 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
)
|
||||
|
||||
def _handle_goals_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle the message from the Program Manager agent containing the goals that exist for this
|
||||
phase.
|
||||
:param msg: A list of goals.
|
||||
"""
|
||||
try:
|
||||
goals_list = GoalList.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
@@ -177,6 +191,11 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
)
|
||||
|
||||
def _handle_goal_achieved_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle message that gets sent when goals are marked achieved from a user interrupt. This
|
||||
goal should then not be changed by this agent anymore.
|
||||
:param msg: List of goals that are marked achieved.
|
||||
"""
|
||||
# NOTE: When goals can be marked unachieved, remember to re-add them to the goal_inferrer
|
||||
try:
|
||||
goals_list = GoalList.model_validate_json(msg.body)
|
||||
@@ -210,6 +229,10 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
await self.send(belief_msg)
|
||||
|
||||
async def _infer_new_beliefs(self):
|
||||
"""
|
||||
Determine which beliefs hold and do not hold for the current conversation state. When
|
||||
beliefs change, a message is sent to the BDI core.
|
||||
"""
|
||||
conversation_beliefs = await self.belief_inferrer.infer_from_conversation(self.conversation)
|
||||
|
||||
new_beliefs = conversation_beliefs - self._current_beliefs
|
||||
@@ -233,6 +256,10 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
await self.send(message)
|
||||
|
||||
async def _infer_goal_completions(self):
|
||||
"""
|
||||
Determine which goals have been achieved given the current conversation state. When
|
||||
a goal's achieved state changes, a message is sent to the BDI core.
|
||||
"""
|
||||
goal_completions = await self.goal_inferrer.infer_from_conversation(self.conversation)
|
||||
|
||||
new_achieved = [
|
||||
@@ -377,19 +404,22 @@ class SemanticBeliefInferrer:
|
||||
for beliefs in self._split_into_chunks(self.available_beliefs, n_parallel)
|
||||
]
|
||||
)
|
||||
retval = BeliefState()
|
||||
new_beliefs = BeliefState()
|
||||
# Collect beliefs from all parallel calls
|
||||
for beliefs in all_beliefs:
|
||||
if beliefs is None:
|
||||
continue
|
||||
# For each, convert them to InternalBeliefs
|
||||
for belief_name, belief_holds in beliefs.items():
|
||||
# Skip beliefs that were marked not possible to determine
|
||||
if belief_holds is None:
|
||||
continue
|
||||
belief = InternalBelief(name=belief_name, arguments=None)
|
||||
if belief_holds:
|
||||
retval.true.add(belief)
|
||||
new_beliefs.true.add(belief)
|
||||
else:
|
||||
retval.false.add(belief)
|
||||
return retval
|
||||
new_beliefs.false.add(belief)
|
||||
return new_beliefs
|
||||
|
||||
@staticmethod
|
||||
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
|
||||
|
||||
@@ -8,9 +8,6 @@ from zmq.asyncio import Context
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.actuation.robot_gesture_agent import RobotGestureAgent
|
||||
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent import ( # noqa
|
||||
VisualEmotionRecognitionAgent,
|
||||
)
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.internal_message import InternalMessage
|
||||
from control_backend.schemas.ri_message import PauseCommand
|
||||
@@ -148,7 +145,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
|
||||
# At this point, we have a valid response
|
||||
try:
|
||||
self.logger.debug("Negotiation successful. Handling rn")
|
||||
self.logger.debug("Negotiation successful.")
|
||||
await self._handle_negotiation_response(received_message)
|
||||
# Let UI know that we're connected
|
||||
topic = b"ping"
|
||||
@@ -212,13 +209,6 @@ class RICommunicationAgent(BaseAgent):
|
||||
case "audio":
|
||||
vad_agent = VADAgent(audio_in_address=addr, audio_in_bind=bind)
|
||||
await vad_agent.start()
|
||||
case "video":
|
||||
visual_emotion_agent = VisualEmotionRecognitionAgent(
|
||||
settings.agent_settings.visual_emotion_recognition_name,
|
||||
socket_address=addr,
|
||||
bind=bind,
|
||||
)
|
||||
await visual_emotion_agent.start()
|
||||
case _:
|
||||
self.logger.warning("Unhandled negotiation id: %s", id)
|
||||
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import uuid
|
||||
from collections.abc import AsyncGenerator
|
||||
@@ -14,6 +15,8 @@ from control_backend.core.config import settings
|
||||
from ...schemas.llm_prompt_message import LLMPromptMessage
|
||||
from .llm_instructions import LLMInstructions
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class LLMAgent(BaseAgent):
|
||||
"""
|
||||
@@ -170,7 +173,7 @@ class LLMAgent(BaseAgent):
|
||||
*self.history,
|
||||
]
|
||||
|
||||
message_id = str(uuid.uuid4()) # noqa
|
||||
message_id = str(uuid.uuid4())
|
||||
|
||||
try:
|
||||
full_message = ""
|
||||
@@ -179,10 +182,9 @@ class LLMAgent(BaseAgent):
|
||||
full_message += token
|
||||
current_chunk += token
|
||||
|
||||
self.logger.llm(
|
||||
"Received token: %s",
|
||||
experiment_logger.chat(
|
||||
full_message,
|
||||
extra={"reference": message_id}, # Used in the UI to update old logs
|
||||
extra={"role": "assistant", "reference": message_id, "partial": True},
|
||||
)
|
||||
|
||||
# Stream the message in chunks separated by punctuation.
|
||||
@@ -197,6 +199,11 @@ class LLMAgent(BaseAgent):
|
||||
# Yield any remaining tail
|
||||
if current_chunk:
|
||||
yield current_chunk
|
||||
|
||||
experiment_logger.chat(
|
||||
full_message,
|
||||
extra={"role": "assistant", "reference": message_id, "partial": False},
|
||||
)
|
||||
except httpx.HTTPError as err:
|
||||
self.logger.error("HTTP error.", exc_info=err)
|
||||
yield "LLM service unavailable."
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import asyncio
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import zmq
|
||||
@@ -10,6 +11,8 @@ from control_backend.core.config import settings
|
||||
|
||||
from .speech_recognizer import SpeechRecognizer
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class TranscriptionAgent(BaseAgent):
|
||||
"""
|
||||
@@ -25,6 +28,8 @@ class TranscriptionAgent(BaseAgent):
|
||||
:ivar audio_in_socket: The ZMQ SUB socket instance.
|
||||
:ivar speech_recognizer: The speech recognition engine instance.
|
||||
:ivar _concurrency: Semaphore to limit concurrent transcriptions.
|
||||
:ivar _current_speech_reference: The reference of the current user utterance, for synchronising
|
||||
experiment logs.
|
||||
"""
|
||||
|
||||
def __init__(self, audio_in_address: str):
|
||||
@@ -39,6 +44,7 @@ class TranscriptionAgent(BaseAgent):
|
||||
self.audio_in_socket: azmq.Socket | None = None
|
||||
self.speech_recognizer = None
|
||||
self._concurrency = None
|
||||
self._current_speech_reference: str | None = None
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
@@ -63,6 +69,10 @@ class TranscriptionAgent(BaseAgent):
|
||||
|
||||
self.logger.info("Finished setting up %s", self.name)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
if msg.thread == "voice_activity":
|
||||
self._current_speech_reference = msg.body
|
||||
|
||||
async def stop(self):
|
||||
"""
|
||||
Stop the agent and close sockets.
|
||||
@@ -96,24 +106,25 @@ class TranscriptionAgent(BaseAgent):
|
||||
|
||||
async def _share_transcription(self, transcription: str):
|
||||
"""
|
||||
Share a transcription to the other agents that depend on it.
|
||||
Share a transcription to the other agents that depend on it, and to experiment logs.
|
||||
|
||||
Currently sends to:
|
||||
- :attr:`settings.agent_settings.text_belief_extractor_name`
|
||||
- The UI via the experiment logger
|
||||
|
||||
:param transcription: The transcribed text.
|
||||
"""
|
||||
receiver_names = [
|
||||
settings.agent_settings.text_belief_extractor_name,
|
||||
]
|
||||
experiment_logger.chat(
|
||||
transcription,
|
||||
extra={"role": "user", "reference": self._current_speech_reference, "partial": False},
|
||||
)
|
||||
|
||||
for receiver_name in receiver_names:
|
||||
message = InternalMessage(
|
||||
to=receiver_name,
|
||||
sender=self.name,
|
||||
body=transcription,
|
||||
)
|
||||
await self.send(message)
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=self.name,
|
||||
body=transcription,
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
async def _transcribing_loop(self) -> None:
|
||||
"""
|
||||
@@ -129,10 +140,9 @@ class TranscriptionAgent(BaseAgent):
|
||||
audio = np.frombuffer(audio_data, dtype=np.float32)
|
||||
speech = await self._transcribe(audio)
|
||||
if not speech:
|
||||
self.logger.info("Nothing transcribed.")
|
||||
self.logger.debug("Nothing transcribed.")
|
||||
continue
|
||||
|
||||
self.logger.info("Transcribed speech: %s", speech)
|
||||
await self._share_transcription(speech)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in transcription loop: {e}")
|
||||
|
||||
@@ -1,4 +1,6 @@
|
||||
import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -12,6 +14,8 @@ from control_backend.schemas.internal_message import InternalMessage
|
||||
from ...schemas.program_status import PROGRAM_STATUS, ProgramStatus
|
||||
from .transcription_agent.transcription_agent import TranscriptionAgent
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class SocketPoller[T]:
|
||||
"""
|
||||
@@ -252,6 +256,18 @@ class VADAgent(BaseAgent):
|
||||
if prob > prob_threshold:
|
||||
if self.i_since_speech > non_speech_patience + begin_silence_length:
|
||||
self.logger.debug("Speech started.")
|
||||
reference = str(uuid.uuid4())
|
||||
experiment_logger.chat(
|
||||
"...",
|
||||
extra={"role": "user", "reference": reference, "partial": True},
|
||||
)
|
||||
await self.send(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.transcription_name,
|
||||
body=reference,
|
||||
thread="voice_activity",
|
||||
)
|
||||
)
|
||||
self.audio_buffer = np.append(self.audio_buffer, chunk)
|
||||
self.i_since_speech = 0
|
||||
continue
|
||||
@@ -269,9 +285,10 @@ class VADAgent(BaseAgent):
|
||||
assert self.audio_out_socket is not None
|
||||
await self.audio_out_socket.send(self.audio_buffer[: -2 * len(chunk)].tobytes())
|
||||
|
||||
# At this point, we know that the speech has ended.
|
||||
# Prepend the last chunk that had no speech, for a more fluent boundary
|
||||
self.audio_buffer = chunk
|
||||
# At this point, we know that there is no speech.
|
||||
# Prepend the last few chunks that had no speech, for a more fluent boundary.
|
||||
self.audio_buffer = np.append(self.audio_buffer, chunk)
|
||||
self.audio_buffer = self.audio_buffer[-begin_silence_length * len(chunk) :]
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
|
||||
@@ -1,166 +0,0 @@
|
||||
import json
|
||||
import time
|
||||
from collections import Counter, defaultdict
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
from pydantic_core import ValidationError
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognizer import ( # noqa
|
||||
DeepFaceEmotionRecognizer,
|
||||
)
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief
|
||||
|
||||
|
||||
class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
socket_address: str,
|
||||
bind: bool = False,
|
||||
timeout_ms: int = 1000,
|
||||
window_duration: int = settings.behaviour_settings.visual_emotion_recognition_window_duration_s, # noqa
|
||||
min_frames_required: int = settings.behaviour_settings.visual_emotion_recognition_min_frames_per_face, # noqa
|
||||
):
|
||||
"""
|
||||
Initialize the Visual Emotion Recognition Agent.
|
||||
|
||||
:param name: Name of the agent
|
||||
:param socket_address: Address of the socket to connect or bind to
|
||||
:param bind: Whether to bind to the socket address (True) or connect (False)
|
||||
:param timeout_ms: Timeout for socket receive operations in milliseconds
|
||||
:param window_duration: Duration in seconds over which to aggregate emotions
|
||||
:param min_frames_required: Minimum number of frames per face required to consider a face
|
||||
valid
|
||||
"""
|
||||
super().__init__(name)
|
||||
self.socket_address = socket_address
|
||||
self.socket_bind = bind
|
||||
self.timeout_ms = timeout_ms
|
||||
self.window_duration = window_duration
|
||||
self.min_frames_required = min_frames_required
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent resources.
|
||||
1. Initializes the :class:`VisualEmotionRecognizer`.
|
||||
2. Connects to the video input ZMQ socket.
|
||||
3. Starts the background emotion recognition loop.
|
||||
"""
|
||||
self.logger.info("Setting up %s.", self.name)
|
||||
|
||||
self.emotion_recognizer = DeepFaceEmotionRecognizer()
|
||||
|
||||
self.video_in_socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
|
||||
if self.socket_bind:
|
||||
self.video_in_socket.bind(self.socket_address)
|
||||
else:
|
||||
self.video_in_socket.connect(self.socket_address)
|
||||
|
||||
self.video_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
self.video_in_socket.setsockopt(zmq.RCVTIMEO, self.timeout_ms)
|
||||
self.video_in_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
|
||||
self.add_behavior(self.emotion_update_loop())
|
||||
|
||||
async def emotion_update_loop(self):
|
||||
"""
|
||||
Background loop to receive video frames, recognize emotions, and update beliefs.
|
||||
1. Receives video frames from the ZMQ socket.
|
||||
2. Uses the :class:`VisualEmotionRecognizer` to detect emotions.
|
||||
3. Aggregates emotions over a time window.
|
||||
4. Sends updates to the BDI Core Agent about detected emotions.
|
||||
"""
|
||||
# Next time to process the window and update emotions
|
||||
next_window_time = time.time() + self.window_duration
|
||||
|
||||
# Tracks counts of detected emotions per face index
|
||||
face_stats = defaultdict(Counter)
|
||||
|
||||
prev_dominant_emotions = set()
|
||||
|
||||
while self._running:
|
||||
try:
|
||||
frame_bytes = await self.video_in_socket.recv()
|
||||
|
||||
# Convert bytes to a numpy buffer
|
||||
nparr = np.frombuffer(frame_bytes, np.uint8)
|
||||
|
||||
# Decode image into the generic Numpy Array DeepFace expects
|
||||
frame_image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
|
||||
if frame_image is None:
|
||||
# Could not decode image, skip this frame
|
||||
continue
|
||||
|
||||
# Get the dominant emotion from each face
|
||||
current_emotions = self.emotion_recognizer.sorted_dominant_emotions(frame_image)
|
||||
# Update emotion counts for each detected face
|
||||
for i, emotion in enumerate(current_emotions):
|
||||
face_stats[i][emotion] += 1
|
||||
|
||||
# If window duration has passed, process the collected stats
|
||||
if time.time() >= next_window_time:
|
||||
window_dominant_emotions = set()
|
||||
# Determine dominant emotion for each face in the window
|
||||
for _, counter in face_stats.items():
|
||||
total_detections = sum(counter.values())
|
||||
|
||||
if total_detections >= self.min_frames_required:
|
||||
dominant_emotion = counter.most_common(1)[0][0]
|
||||
window_dominant_emotions.add(dominant_emotion)
|
||||
|
||||
await self.update_emotions(prev_dominant_emotions, window_dominant_emotions)
|
||||
prev_dominant_emotions = window_dominant_emotions
|
||||
face_stats.clear()
|
||||
next_window_time = time.time() + self.window_duration
|
||||
|
||||
except zmq.Again:
|
||||
self.logger.warning("No video frame received within timeout.")
|
||||
|
||||
async def update_emotions(self, prev_emotions: set[str], emotions: set[str]):
|
||||
"""
|
||||
Compare emotions from previous window and current emotions,
|
||||
send updates to BDI Core Agent.
|
||||
"""
|
||||
emotions_to_remove = prev_emotions - emotions
|
||||
emotions_to_add = emotions - prev_emotions
|
||||
|
||||
if not emotions_to_add and not emotions_to_remove:
|
||||
return
|
||||
|
||||
emotion_beliefs_remove = []
|
||||
for emotion in emotions_to_remove:
|
||||
self.logger.info(f"Emotion '{emotion}' has disappeared.")
|
||||
try:
|
||||
emotion_beliefs_remove.append(
|
||||
Belief(name="emotion_detected", arguments=[emotion], remove=True)
|
||||
)
|
||||
except ValidationError:
|
||||
self.logger.warning("Invalid belief for emotion removal: %s", emotion)
|
||||
|
||||
emotion_beliefs_add = []
|
||||
for emotion in emotions_to_add:
|
||||
self.logger.info(f"New emotion detected: '{emotion}'")
|
||||
try:
|
||||
emotion_beliefs_add.append(Belief(name="emotion_detected", arguments=[emotion]))
|
||||
except ValidationError:
|
||||
self.logger.warning("Invalid belief for new emotion: %s", emotion)
|
||||
|
||||
beliefs_list_add = [b.model_dump() for b in emotion_beliefs_add]
|
||||
beliefs_list_remove = [b.model_dump() for b in emotion_beliefs_remove]
|
||||
payload = {"create": beliefs_list_add, "delete": beliefs_list_remove}
|
||||
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=json.dumps(payload),
|
||||
thread="beliefs",
|
||||
)
|
||||
await self.send(message)
|
||||
@@ -1,55 +0,0 @@
|
||||
import abc
|
||||
|
||||
import numpy as np
|
||||
from deepface import DeepFace
|
||||
|
||||
|
||||
class VisualEmotionRecognizer(abc.ABC):
|
||||
@abc.abstractmethod
|
||||
def load_model(self):
|
||||
"""Load the visual emotion recognition model into memory."""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def sorted_dominant_emotions(self, image) -> list[str]:
|
||||
"""
|
||||
Recognize dominant emotions from faces in the given image.
|
||||
Emotions can be one of ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'].
|
||||
To minimize false positives, consider filtering faces with low confidence.
|
||||
|
||||
:param image: The input image for emotion recognition.
|
||||
:return: List of dominant emotion detected for each face in the image,
|
||||
sorted per face.
|
||||
"""
|
||||
pass
|
||||
|
||||
class DeepFaceEmotionRecognizer(VisualEmotionRecognizer):
|
||||
"""
|
||||
DeepFace-based implementation of VisualEmotionRecognizer.
|
||||
DeepFape has proven to be quite a pessimistic model, so expect sad, fear and neutral
|
||||
emotions to be over-represented.
|
||||
"""
|
||||
def __init__(self):
|
||||
self.load_model()
|
||||
|
||||
def load_model(self):
|
||||
print("Loading Deepface Emotion Model...")
|
||||
dummy_img = np.zeros((224, 224, 3), dtype=np.uint8)
|
||||
# analyze does not take a model as an argument, calling it once on a dummy image to load
|
||||
# the model
|
||||
DeepFace.analyze(dummy_img, actions=['emotion'], enforce_detection=False)
|
||||
print("Deepface Emotion Model loaded.")
|
||||
|
||||
def sorted_dominant_emotions(self, image) -> list[str]:
|
||||
analysis = DeepFace.analyze(image,
|
||||
actions=['emotion'],
|
||||
enforce_detection=False
|
||||
)
|
||||
|
||||
# Sort faces by x coordinate to maintain left-to-right order
|
||||
analysis.sort(key=lambda face: face['region']['x'])
|
||||
|
||||
analysis = [face for face in analysis if face['face_confidence'] >= 0.90]
|
||||
|
||||
dominant_emotions = [face['dominant_emotion'] for face in analysis]
|
||||
return dominant_emotions
|
||||
@@ -1,4 +1,5 @@
|
||||
import json
|
||||
import logging
|
||||
|
||||
import zmq
|
||||
from zmq.asyncio import Context
|
||||
@@ -8,7 +9,7 @@ from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
from control_backend.schemas.program import ConditionalNorm, Program
|
||||
from control_backend.schemas.program import ConditionalNorm, Goal, Program
|
||||
from control_backend.schemas.ri_message import (
|
||||
GestureCommand,
|
||||
PauseCommand,
|
||||
@@ -16,6 +17,8 @@ from control_backend.schemas.ri_message import (
|
||||
SpeechCommand,
|
||||
)
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class UserInterruptAgent(BaseAgent):
|
||||
"""
|
||||
@@ -246,6 +249,16 @@ class UserInterruptAgent(BaseAgent):
|
||||
self._cond_norm_map = {}
|
||||
self._cond_norm_reverse_map = {}
|
||||
|
||||
def _register_goal(goal: Goal):
|
||||
"""Recursively register goals and their subgoals."""
|
||||
slug = AgentSpeakGenerator.slugify(goal)
|
||||
self._goal_map[str(goal.id)] = slug
|
||||
self._goal_reverse_map[slug] = str(goal.id)
|
||||
|
||||
for step in goal.plan.steps:
|
||||
if isinstance(step, Goal):
|
||||
_register_goal(step)
|
||||
|
||||
for phase in program.phases:
|
||||
for trigger in phase.triggers:
|
||||
slug = AgentSpeakGenerator.slugify(trigger)
|
||||
@@ -253,8 +266,7 @@ class UserInterruptAgent(BaseAgent):
|
||||
self._trigger_reverse_map[slug] = str(trigger.id)
|
||||
|
||||
for goal in phase.goals:
|
||||
self._goal_map[str(goal.id)] = AgentSpeakGenerator.slugify(goal)
|
||||
self._goal_reverse_map[AgentSpeakGenerator.slugify(goal)] = str(goal.id)
|
||||
_register_goal(goal)
|
||||
|
||||
for goal, id in self._goal_reverse_map.items():
|
||||
self.logger.debug(f"Goal mapping: UI ID {goal} -> {id}")
|
||||
@@ -296,6 +308,7 @@ class UserInterruptAgent(BaseAgent):
|
||||
|
||||
:param text_to_say: The string that the robot has to say.
|
||||
"""
|
||||
experiment_logger.chat(text_to_say, extra={"role": "assistant"})
|
||||
cmd = SpeechCommand(data=text_to_say, is_priority=True)
|
||||
out_msg = InternalMessage(
|
||||
to=settings.agent_settings.robot_speech_name,
|
||||
@@ -335,6 +348,7 @@ class UserInterruptAgent(BaseAgent):
|
||||
belief_name = f"force_{asl}"
|
||||
else:
|
||||
self.logger.warning("Tried to send belief with unknown type")
|
||||
return
|
||||
belief = Belief(name=belief_name, arguments=None)
|
||||
self.logger.debug(f"Sending belief to BDI Core: {belief_name}")
|
||||
# Conditional norms are unachieved by removing the belief
|
||||
|
||||
@@ -50,7 +50,6 @@ class AgentSettings(BaseModel):
|
||||
# agent names
|
||||
bdi_core_name: str = "bdi_core_agent"
|
||||
bdi_program_manager_name: str = "bdi_program_manager_agent"
|
||||
visual_emotion_recognition_name: str = "visual_emotion_recognition_agent"
|
||||
text_belief_extractor_name: str = "text_belief_extractor_agent"
|
||||
vad_name: str = "vad_agent"
|
||||
llm_name: str = "llm_agent"
|
||||
@@ -78,10 +77,8 @@ class BehaviourSettings(BaseModel):
|
||||
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
|
||||
:ivar transcription_token_buffer: Buffer for transcription tokens.
|
||||
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
|
||||
:ivar visual_emotion_recognition_window_duration_s: Duration in seconds over which to aggregate
|
||||
emotions and update emotion beliefs.
|
||||
:ivar visual_emotion_recognition_min_frames_per_face: Minimum number of frames per face required
|
||||
to consider a face valid.
|
||||
:ivar trigger_time_to_wait: Amount of milliseconds to wait before informing the UI about trigger
|
||||
completion.
|
||||
"""
|
||||
|
||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||
@@ -105,9 +102,10 @@ class BehaviourSettings(BaseModel):
|
||||
# Text belief extractor settings
|
||||
conversation_history_length_limit: int = 10
|
||||
|
||||
# Visual Emotion Recognition settings
|
||||
visual_emotion_recognition_window_duration_s: int = 5
|
||||
visual_emotion_recognition_min_frames_per_face: int = 3
|
||||
# AgentSpeak related settings
|
||||
trigger_time_to_wait: int = 2000
|
||||
agentspeak_file: str = "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
|
||||
|
||||
class LLMSettings(BaseModel):
|
||||
"""
|
||||
|
||||
@@ -22,21 +22,36 @@ class ProgramElement(BaseModel):
|
||||
class LogicalOperator(Enum):
|
||||
"""
|
||||
Logical operators for combining beliefs.
|
||||
|
||||
These operators define how beliefs can be combined to form more complex
|
||||
logical conditions. They are used in inferred beliefs to create compound
|
||||
beliefs from simpler ones.
|
||||
|
||||
AND: Both operands must be true for the result to be true.
|
||||
OR: At least one operand must be true for the result to be true.
|
||||
"""
|
||||
|
||||
AND = "AND"
|
||||
OR = "OR"
|
||||
|
||||
|
||||
type Belief = KeywordBelief | SemanticBelief | InferredBelief | EmotionBelief
|
||||
type BasicBelief = KeywordBelief | SemanticBelief | EmotionBelief
|
||||
type Belief = KeywordBelief | SemanticBelief | InferredBelief
|
||||
type BasicBelief = KeywordBelief | SemanticBelief
|
||||
|
||||
|
||||
class KeywordBelief(ProgramElement):
|
||||
"""
|
||||
Represents a belief that is activated when a specific keyword is detected in the user's speech.
|
||||
|
||||
Keyword beliefs provide a simple but effective way to detect specific topics
|
||||
or intentions in user speech. They are triggered when the exact keyword
|
||||
string appears in the transcribed user input.
|
||||
|
||||
:ivar keyword: The string to look for in the transcription.
|
||||
|
||||
Example:
|
||||
A keyword belief with keyword="robot" would be activated when the user
|
||||
says "I like the robot" or "Tell me about robots".
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
@@ -48,8 +63,18 @@ class SemanticBelief(ProgramElement):
|
||||
Represents a belief whose truth value is determined by an LLM analyzing the conversation
|
||||
context.
|
||||
|
||||
Semantic beliefs provide more sophisticated belief detection by using
|
||||
an LLM to analyze the conversation context and determine
|
||||
if the belief should be considered true. This allows for more nuanced
|
||||
and context-aware belief evaluation.
|
||||
|
||||
:ivar description: A natural language description of what this belief represents,
|
||||
used as a prompt for the LLM.
|
||||
|
||||
Example:
|
||||
A semantic belief with description="The user is expressing frustration"
|
||||
would be activated when the LLM determines that the user's statements
|
||||
indicate frustration, even if no specific keywords are used.
|
||||
"""
|
||||
|
||||
description: str
|
||||
@@ -59,6 +84,11 @@ class InferredBelief(ProgramElement):
|
||||
"""
|
||||
Represents a belief derived from other beliefs using logical operators.
|
||||
|
||||
Inferred beliefs allow for the creation of complex belief structures by
|
||||
combining simpler beliefs using logical operators. This enables the
|
||||
representation of sophisticated conditions and relationships between
|
||||
different aspects of the conversation or context.
|
||||
|
||||
:ivar operator: The :class:`LogicalOperator` (AND/OR) to apply.
|
||||
:ivar left: The left operand (another belief).
|
||||
:ivar right: The right operand (another belief).
|
||||
@@ -69,22 +99,21 @@ class InferredBelief(ProgramElement):
|
||||
left: Belief
|
||||
right: Belief
|
||||
|
||||
class EmotionBelief(ProgramElement):
|
||||
"""
|
||||
Represents a belief that is set when a certain emotion is detected.
|
||||
|
||||
:ivar emotion: The emotion on which this belief gets set.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
emotion: str
|
||||
|
||||
class Norm(ProgramElement):
|
||||
"""
|
||||
Base class for behavioral norms that guide the robot's interactions.
|
||||
|
||||
Norms represent guidelines, principles, or rules that should govern the
|
||||
robot's behavior during interactions. They can be either basic (always
|
||||
active in their phase) or conditional (active only when specific beliefs
|
||||
are true).
|
||||
|
||||
:ivar norm: The textual description of the norm.
|
||||
:ivar critical: Whether this norm is considered critical and should be strictly enforced.
|
||||
|
||||
Critical norms are currently not supported yet, but are intended for norms that should
|
||||
ABSOLUTELY NOT be violated, possible cheched by additional validator agents.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
@@ -95,6 +124,13 @@ class Norm(ProgramElement):
|
||||
class BasicNorm(Norm):
|
||||
"""
|
||||
A simple behavioral norm that is always considered for activation when its phase is active.
|
||||
|
||||
Basic norms are the most straightforward type of norms. They are active
|
||||
throughout their assigned phase and provide consistent behavioral guidance
|
||||
without any additional conditions.
|
||||
|
||||
These norms are suitable for general principles that should always apply
|
||||
during a particular interaction phase.
|
||||
"""
|
||||
|
||||
pass
|
||||
@@ -104,7 +140,20 @@ class ConditionalNorm(Norm):
|
||||
"""
|
||||
A behavioral norm that is only active when a specific condition (belief) is met.
|
||||
|
||||
Conditional norms provide context-sensitive behavioral guidance. They are
|
||||
only active and considered for activation when their associated condition
|
||||
(belief) is true. This allows for more nuanced and adaptive behavior that
|
||||
responds to the specific context of the interaction.
|
||||
|
||||
An important note, is that the current implementation of these norms for keyword-based beliefs
|
||||
is that they only hold for 1 turn, as keyword-based conditions often express temporary
|
||||
conditions.
|
||||
|
||||
:ivar condition: The :class:`Belief` that must hold for this norm to be active.
|
||||
|
||||
Example:
|
||||
A conditional norm with the condition "user is frustrated" might specify
|
||||
that the robot should use more empathetic language and avoid complex topics.
|
||||
"""
|
||||
|
||||
condition: Belief
|
||||
@@ -116,7 +165,12 @@ type PlanElement = Goal | Action
|
||||
class Plan(ProgramElement):
|
||||
"""
|
||||
Represents a list of steps to execute. Each of these steps can be a goal (with its own plan)
|
||||
or a simple action.
|
||||
or a simple action.
|
||||
|
||||
Plans define sequences of actions and subgoals that the robot should execute
|
||||
to achieve a particular objective. They form the procedural knowledge of
|
||||
the behavior program, specifying what the robot should do in different
|
||||
situations.
|
||||
|
||||
:ivar steps: The actions or subgoals to execute, in order.
|
||||
"""
|
||||
@@ -132,6 +186,10 @@ class BaseGoal(ProgramElement):
|
||||
|
||||
:ivar description: A description of the goal, used to determine if it has been achieved.
|
||||
:ivar can_fail: Whether we can fail to achieve the goal after executing the plan.
|
||||
|
||||
The can_fail attribute determines whether goal achievement is binary
|
||||
(success/failure) or whether it can be determined through conversation
|
||||
analysis.
|
||||
"""
|
||||
|
||||
description: str = ""
|
||||
@@ -141,9 +199,13 @@ class BaseGoal(ProgramElement):
|
||||
class Goal(BaseGoal):
|
||||
"""
|
||||
Represents an objective to be achieved. To reach the goal, we should execute the corresponding
|
||||
plan. It inherits from the BaseGoal a variable `can_fail`, which if true will cause the
|
||||
plan. It inherits from the BaseGoal a variable `can_fail`, which, if true, will cause the
|
||||
completion to be determined based on the conversation.
|
||||
|
||||
Goals extend base goals by including a specific plan to achieve the objective.
|
||||
They form the core of the robot's proactive behavior, defining both what
|
||||
should be accomplished and how to accomplish it.
|
||||
|
||||
Instances of this goal are not hashable because a plan is not hashable.
|
||||
|
||||
:ivar plan: The plan to execute.
|
||||
@@ -172,6 +234,10 @@ class Gesture(BaseModel):
|
||||
|
||||
:ivar type: Whether to use a specific "single" gesture or a random one from a "tag" category.
|
||||
:ivar name: The identifier for the gesture or tag.
|
||||
|
||||
The type field determines how the gesture is selected:
|
||||
- "single": Use the specific gesture identified by name
|
||||
- "tag": Select a random gesture from the category identified by name
|
||||
"""
|
||||
|
||||
type: Literal["tag", "single"]
|
||||
@@ -194,6 +260,10 @@ class LLMAction(ProgramElement):
|
||||
An action that triggers an LLM-generated conversational response.
|
||||
|
||||
:ivar goal: A temporary conversational goal to guide the LLM's response generation.
|
||||
|
||||
The goal parameter provides high-level guidance to the LLM about what
|
||||
the response should aim to achieve, while allowing the LLM flexibility
|
||||
in how to express it.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
@@ -231,13 +301,11 @@ class Program(BaseModel):
|
||||
"""
|
||||
The top-level container for a complete robot behavior definition.
|
||||
|
||||
The Program class represents the complete specification of a robot's
|
||||
behavioral logic. It contains all the phases, norms, goals, triggers,
|
||||
and actions that define how the robot should behave during interactions.
|
||||
|
||||
:ivar phases: An ordered list of :class:`Phase` objects defining the interaction flow.
|
||||
"""
|
||||
|
||||
phases: list[Phase]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
input = input("Enter program JSON: ")
|
||||
program = Program.model_validate_json(input)
|
||||
print(program)
|
||||
@@ -1,5 +1,5 @@
|
||||
import json
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
import zmq
|
||||
@@ -19,6 +19,12 @@ def zmq_context(mocker):
|
||||
return mock_context
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch("control_backend.agents.actuation.robot_gesture_agent.experiment_logger") as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup_bind(zmq_context, mocker):
|
||||
"""Setup binds and subscribes to internal commands."""
|
||||
|
||||
@@ -26,6 +26,12 @@ def agent():
|
||||
return agent
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch("control_backend.agents.bdi.bdi_core_agent.experiment_logger") as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup_loads_asl(mock_agentspeak_env, agent):
|
||||
# Mock file opening
|
||||
|
||||
@@ -8,7 +8,17 @@ import pytest
|
||||
|
||||
from control_backend.agents.bdi.bdi_program_manager import BDIProgramManager
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.schemas.program import BasicNorm, Goal, Phase, Plan, Program
|
||||
from control_backend.schemas.program import (
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
KeywordBelief,
|
||||
Phase,
|
||||
Plan,
|
||||
Program,
|
||||
Trigger,
|
||||
)
|
||||
|
||||
# Fix Windows Proactor loop for zmq
|
||||
if sys.platform.startswith("win"):
|
||||
@@ -59,7 +69,7 @@ async def test_create_agentspeak_and_send_to_bdi(mock_settings):
|
||||
await manager._create_agentspeak_and_send_to_bdi(program)
|
||||
|
||||
# Check file writing
|
||||
mock_file.assert_called_with("src/control_backend/agents/bdi/agentspeak.asl", "w")
|
||||
mock_file.assert_called_with(mock_settings.behaviour_settings.agentspeak_file, "w")
|
||||
handle = mock_file()
|
||||
handle.write.assert_called()
|
||||
|
||||
@@ -67,7 +77,7 @@ async def test_create_agentspeak_and_send_to_bdi(mock_settings):
|
||||
msg: InternalMessage = manager.send.await_args[0][0]
|
||||
assert msg.thread == "new_program"
|
||||
assert msg.to == mock_settings.agent_settings.bdi_core_name
|
||||
assert msg.body == "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
assert msg.body == mock_settings.behaviour_settings.agentspeak_file
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -295,3 +305,98 @@ async def test_setup(mock_settings):
|
||||
|
||||
# 3. Adds behavior
|
||||
manager.add_behavior.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_program_to_user_interrupt(mock_settings):
|
||||
"""Test directly sending the program to the user interrupt agent."""
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
program = Program.model_validate_json(make_valid_program_json())
|
||||
|
||||
await manager._send_program_to_user_interrupt(program)
|
||||
|
||||
assert manager.send.await_count == 1
|
||||
msg = manager.send.await_args[0][0]
|
||||
assert msg.to == "user_interrupt_agent"
|
||||
assert msg.thread == "new_program"
|
||||
assert "Basic Phase" in msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_complex_program_extraction():
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
|
||||
# 1. Create Complex Components
|
||||
|
||||
# Inferred Belief (A & B)
|
||||
belief_left = KeywordBelief(id=uuid.uuid4(), name="b1", keyword="hot")
|
||||
belief_right = KeywordBelief(id=uuid.uuid4(), name="b2", keyword="sunny")
|
||||
inferred_belief = InferredBelief(
|
||||
id=uuid.uuid4(), name="b_inf", operator="AND", left=belief_left, right=belief_right
|
||||
)
|
||||
|
||||
# Conditional Norm
|
||||
cond_norm = ConditionalNorm(
|
||||
id=uuid.uuid4(), name="norm_cond", norm="wear_hat", condition=inferred_belief
|
||||
)
|
||||
|
||||
# Trigger with Inferred Belief condition
|
||||
dummy_plan = Plan(id=uuid.uuid4(), name="dummy_plan", steps=[])
|
||||
trigger = Trigger(id=uuid.uuid4(), name="trigger_1", condition=inferred_belief, plan=dummy_plan)
|
||||
|
||||
# Nested Goal
|
||||
sub_goal = Goal(
|
||||
id=uuid.uuid4(),
|
||||
name="sub_goal",
|
||||
description="desc",
|
||||
plan=Plan(id=uuid.uuid4(), name="empty", steps=[]),
|
||||
can_fail=True,
|
||||
)
|
||||
|
||||
parent_goal = Goal(
|
||||
id=uuid.uuid4(),
|
||||
name="parent_goal",
|
||||
description="desc",
|
||||
# The plan contains the sub_goal as a step
|
||||
plan=Plan(id=uuid.uuid4(), name="parent_plan", steps=[sub_goal]),
|
||||
can_fail=False,
|
||||
)
|
||||
|
||||
# 2. Assemble Program
|
||||
phase = Phase(
|
||||
id=uuid.uuid4(),
|
||||
name="Complex Phase",
|
||||
norms=[cond_norm],
|
||||
goals=[parent_goal],
|
||||
triggers=[trigger],
|
||||
)
|
||||
program = Program(phases=[phase])
|
||||
|
||||
# 3. Initialize Internal State (Triggers _populate_goal_mapping -> Nested Goal logic)
|
||||
manager._initialize_internal_state(program)
|
||||
|
||||
# Assertion for Line 53-54 (Mapping population)
|
||||
# Both parent and sub-goal should be mapped
|
||||
assert str(parent_goal.id) in manager._goal_mapping
|
||||
assert str(sub_goal.id) in manager._goal_mapping
|
||||
|
||||
# 4. Test Belief Extraction (Triggers lines 132-133, 142-146)
|
||||
beliefs = manager._extract_current_beliefs()
|
||||
|
||||
# Should extract recursive beliefs from cond_norm and trigger
|
||||
# Inferred belief splits into Left + Right. Since we use it twice, we get duplicates
|
||||
# checking existence is enough.
|
||||
belief_names = [b.name for b in beliefs]
|
||||
assert "b1" in belief_names
|
||||
assert "b2" in belief_names
|
||||
|
||||
# 5. Test Goal Extraction (Triggers lines 173, 185)
|
||||
goals = manager._extract_current_goals()
|
||||
|
||||
goal_names = [g.name for g in goals]
|
||||
assert "parent_goal" in goal_names
|
||||
assert "sub_goal" in goal_names
|
||||
|
||||
@@ -18,6 +18,12 @@ def mock_httpx_client():
|
||||
yield mock_client
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch("control_backend.agents.llm.llm_agent.experiment_logger") as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_llm_processing_success(mock_httpx_client, mock_settings):
|
||||
# Setup the mock response for the stream
|
||||
|
||||
@@ -14,6 +14,15 @@ from control_backend.agents.perception.transcription_agent.transcription_agent i
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch(
|
||||
"control_backend.agents.perception"
|
||||
".transcription_agent.transcription_agent.experiment_logger"
|
||||
) as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_transcription_agent_flow(mock_zmq_context):
|
||||
mock_sub = MagicMock()
|
||||
|
||||
@@ -24,7 +24,9 @@ def audio_out_socket():
|
||||
|
||||
@pytest.fixture
|
||||
def vad_agent(audio_out_socket):
|
||||
return VADAgent("tcp://localhost:5555", False)
|
||||
agent = VADAgent("tcp://localhost:5555", False)
|
||||
agent._internal_pub_socket = AsyncMock()
|
||||
return agent
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
@@ -44,6 +46,12 @@ def patch_settings(monkeypatch):
|
||||
monkeypatch.setattr(vad_agent.settings.vad_settings, "sample_rate_hz", 16_000, raising=False)
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch("control_backend.agents.perception.vad_agent.experiment_logger") as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
async def simulate_streaming_with_probabilities(streaming, probabilities: list[float]):
|
||||
"""
|
||||
Simulates a streaming scenario with given VAD model probabilities for testing purposes.
|
||||
@@ -84,14 +92,15 @@ async def test_voice_activity_detected(audio_out_socket, vad_agent):
|
||||
Test a scenario where there is voice activity detected between silences.
|
||||
"""
|
||||
speech_chunk_count = 5
|
||||
probabilities = [0.0] * 5 + [1.0] * speech_chunk_count + [0.0] * 5
|
||||
begin_silence_chunks = settings.behaviour_settings.vad_begin_silence_chunks
|
||||
probabilities = [0.0] * 15 + [1.0] * speech_chunk_count + [0.0] * 5
|
||||
vad_agent.audio_out_socket = audio_out_socket
|
||||
await simulate_streaming_with_probabilities(vad_agent, probabilities)
|
||||
|
||||
audio_out_socket.send.assert_called_once()
|
||||
data = audio_out_socket.send.call_args[0][0]
|
||||
assert isinstance(data, bytes)
|
||||
assert len(data) == 512 * 4 * (speech_chunk_count + 1)
|
||||
assert len(data) == 512 * 4 * (begin_silence_chunks + speech_chunk_count)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -101,8 +110,9 @@ async def test_voice_activity_short_pause(audio_out_socket, vad_agent):
|
||||
short pause.
|
||||
"""
|
||||
speech_chunk_count = 5
|
||||
begin_silence_chunks = settings.behaviour_settings.vad_begin_silence_chunks
|
||||
probabilities = (
|
||||
[0.0] * 5 + [1.0] * speech_chunk_count + [0.0] + [1.0] * speech_chunk_count + [0.0] * 5
|
||||
[0.0] * 15 + [1.0] * speech_chunk_count + [0.0] + [1.0] * speech_chunk_count + [0.0] * 5
|
||||
)
|
||||
vad_agent.audio_out_socket = audio_out_socket
|
||||
await simulate_streaming_with_probabilities(vad_agent, probabilities)
|
||||
@@ -110,8 +120,8 @@ async def test_voice_activity_short_pause(audio_out_socket, vad_agent):
|
||||
audio_out_socket.send.assert_called_once()
|
||||
data = audio_out_socket.send.call_args[0][0]
|
||||
assert isinstance(data, bytes)
|
||||
# Expecting 13 chunks (2*5 with speech, 1 pause between, 1 as padding)
|
||||
assert len(data) == 512 * 4 * (speech_chunk_count * 2 + 1 + 1)
|
||||
# Expecting 13 chunks (2*5 with speech, 1 pause between, begin_silence_chunks as padding)
|
||||
assert len(data) == 512 * 4 * (speech_chunk_count * 2 + 1 + begin_silence_chunks)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
||||
@@ -1,12 +1,13 @@
|
||||
import asyncio
|
||||
import json
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.user_interrupt.user_interrupt_agent import UserInterruptAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.program import (
|
||||
ConditionalNorm,
|
||||
Goal,
|
||||
@@ -29,6 +30,14 @@ def agent():
|
||||
return agent
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch(
|
||||
"control_backend.agents.user_interrupt.user_interrupt_agent.experiment_logger"
|
||||
) as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_speech_agent(agent):
|
||||
"""Verify speech command format."""
|
||||
@@ -309,3 +318,375 @@ async def test_send_pause_command(agent):
|
||||
m for m in agent.send.call_args_list if m.args[0].to == settings.agent_settings.vad_name
|
||||
).args[0]
|
||||
assert vad_msg.body == "RESUME"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup(agent):
|
||||
"""Test the setup method initializes sockets correctly."""
|
||||
with patch("control_backend.agents.user_interrupt.user_interrupt_agent.Context") as MockContext:
|
||||
mock_ctx_instance = MagicMock()
|
||||
MockContext.instance.return_value = mock_ctx_instance
|
||||
|
||||
mock_sub = MagicMock()
|
||||
mock_pub = MagicMock()
|
||||
mock_ctx_instance.socket.side_effect = [mock_sub, mock_pub]
|
||||
|
||||
# MOCK add_behavior so we don't rely on internal attributes
|
||||
agent.add_behavior = MagicMock()
|
||||
|
||||
await agent.setup()
|
||||
|
||||
# Check sockets
|
||||
mock_sub.connect.assert_called_with(settings.zmq_settings.internal_sub_address)
|
||||
mock_pub.connect.assert_called_with(settings.zmq_settings.internal_pub_address)
|
||||
|
||||
# Verify add_behavior was called
|
||||
agent.add_behavior.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_json_error(agent):
|
||||
"""Verify that malformed JSON is caught and logged without crashing the loop."""
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
(b"topic", b"INVALID{JSON"),
|
||||
asyncio.CancelledError,
|
||||
]
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent.logger.error.assert_called_with("Received invalid JSON payload on topic %s", b"topic")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_override_trigger(agent):
|
||||
"""Verify routing 'override' to a Trigger."""
|
||||
agent._trigger_map["101"] = "trigger_slug"
|
||||
payload = json.dumps({"type": "override", "context": "101"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [(b"topic", payload), asyncio.CancelledError]
|
||||
agent._send_to_bdi = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent._send_to_bdi.assert_awaited_once_with("force_trigger", "trigger_slug")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_override_norm(agent):
|
||||
"""Verify routing 'override' to a Conditional Norm."""
|
||||
agent._cond_norm_map["202"] = "norm_slug"
|
||||
payload = json.dumps({"type": "override", "context": "202"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [(b"topic", payload), asyncio.CancelledError]
|
||||
agent._send_to_bdi_belief = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent._send_to_bdi_belief.assert_awaited_once_with("norm_slug", "cond_norm")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_override_missing(agent):
|
||||
"""Verify warning log when an override ID is not found in any map."""
|
||||
payload = json.dumps({"type": "override", "context": "999"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [(b"topic", payload), asyncio.CancelledError]
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent.logger.warning.assert_called_with("Could not determine which element to override.")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_unachieve_logic(agent):
|
||||
"""Verify success and failure paths for override_unachieve."""
|
||||
agent._cond_norm_map["202"] = "norm_slug"
|
||||
|
||||
success_payload = json.dumps({"type": "override_unachieve", "context": "202"}).encode()
|
||||
fail_payload = json.dumps({"type": "override_unachieve", "context": "999"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
(b"topic", success_payload),
|
||||
(b"topic", fail_payload),
|
||||
asyncio.CancelledError,
|
||||
]
|
||||
agent._send_to_bdi_belief = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
# Assert success call (True flag for unachieve)
|
||||
agent._send_to_bdi_belief.assert_any_call("norm_slug", "cond_norm", True)
|
||||
# Assert failure log
|
||||
agent.logger.warning.assert_called_with(
|
||||
"Could not determine which conditional norm to unachieve."
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_pause_resume(agent):
|
||||
"""Verify pause and resume toggle logic and logging."""
|
||||
pause_payload = json.dumps({"type": "pause", "context": "true"}).encode()
|
||||
resume_payload = json.dumps({"type": "pause", "context": ""}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
(b"topic", pause_payload),
|
||||
(b"topic", resume_payload),
|
||||
asyncio.CancelledError,
|
||||
]
|
||||
agent._send_pause_command = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent._send_pause_command.assert_any_call("true")
|
||||
agent._send_pause_command.assert_any_call("")
|
||||
agent.logger.info.assert_any_call("Sent pause command.")
|
||||
agent.logger.info.assert_any_call("Sent resume command.")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_phase_control(agent):
|
||||
"""Verify experiment flow control (next_phase)."""
|
||||
payload = json.dumps({"type": "next_phase", "context": ""}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [(b"topic", payload), asyncio.CancelledError]
|
||||
agent._send_experiment_control_to_bdi_core = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent._send_experiment_control_to_bdi_core.assert_awaited_once_with("next_phase")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_unknown_thread(agent):
|
||||
"""Test handling of an unknown message thread (lines 213-214)."""
|
||||
msg = InternalMessage(to="me", thread="unknown_thread", body="test")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.logger.debug.assert_called_with(
|
||||
"Received internal message on unhandled thread: unknown_thread"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_bdi_belief_edge_cases(agent):
|
||||
"""
|
||||
Covers:
|
||||
- Unknown asl_type warning (lines 326-328)
|
||||
- unachieve=True logic (lines 334-337)
|
||||
"""
|
||||
# 1. Unknown Type
|
||||
await agent._send_to_bdi_belief("slug", "unknown_type")
|
||||
|
||||
agent.logger.warning.assert_called_with("Tried to send belief with unknown type")
|
||||
agent.send.assert_not_called()
|
||||
|
||||
# Reset mock for part 2
|
||||
agent.send.reset_mock()
|
||||
|
||||
# 2. Unachieve = True
|
||||
await agent._send_to_bdi_belief("slug", "cond_norm", unachieve=True)
|
||||
|
||||
agent.send.assert_awaited()
|
||||
sent_msg = agent.send.call_args.args[0]
|
||||
|
||||
# Verify it is a delete operation
|
||||
body_obj = BeliefMessage.model_validate_json(sent_msg.body)
|
||||
|
||||
# Verify 'delete' has content
|
||||
assert body_obj.delete is not None
|
||||
assert len(body_obj.delete) == 1
|
||||
assert body_obj.delete[0].name == "force_slug"
|
||||
|
||||
# Verify 'create' is empty (handling both None and [])
|
||||
assert not body_obj.create
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_experiment_control_unknown(agent):
|
||||
"""Test sending an unknown experiment control type (lines 366-367)."""
|
||||
await agent._send_experiment_control_to_bdi_core("invalid_command")
|
||||
|
||||
agent.logger.warning.assert_called_with(
|
||||
"Received unknown experiment control type '%s' to send to BDI Core.", "invalid_command"
|
||||
)
|
||||
|
||||
# Ensure it still sends an empty message (as per code logic, though thread is empty)
|
||||
agent.send.assert_awaited()
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == ""
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_mapping_recursive_goals(agent):
|
||||
"""Verify that nested subgoals are correctly registered in the mapping."""
|
||||
import uuid
|
||||
|
||||
# 1. Setup IDs
|
||||
parent_goal_id = uuid.uuid4()
|
||||
child_goal_id = uuid.uuid4()
|
||||
|
||||
# 2. Create the child goal
|
||||
child_goal = Goal(
|
||||
id=child_goal_id,
|
||||
name="child_goal",
|
||||
description="I am a subgoal",
|
||||
plan=Plan(id=uuid.uuid4(), name="p_child", steps=[]),
|
||||
)
|
||||
|
||||
# 3. Create the parent goal and put the child goal inside its plan steps
|
||||
parent_goal = Goal(
|
||||
id=parent_goal_id,
|
||||
name="parent_goal",
|
||||
description="I am a parent",
|
||||
plan=Plan(id=uuid.uuid4(), name="p_parent", steps=[child_goal]), # Nested here
|
||||
)
|
||||
|
||||
# 4. Build the program
|
||||
phase = Phase(
|
||||
id=uuid.uuid4(),
|
||||
name="phase1",
|
||||
norms=[],
|
||||
goals=[parent_goal], # Only the parent is top-level
|
||||
triggers=[],
|
||||
)
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
# 5. Execute mapping
|
||||
msg = InternalMessage(to="me", thread="new_program", body=prog.model_dump_json())
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# 6. Assertions
|
||||
# Check parent
|
||||
assert str(parent_goal_id) in agent._goal_map
|
||||
assert agent._goal_map[str(parent_goal_id)] == "parent_goal"
|
||||
|
||||
# Check child (This confirms the recursion worked)
|
||||
assert str(child_goal_id) in agent._goal_map
|
||||
assert agent._goal_map[str(child_goal_id)] == "child_goal"
|
||||
assert agent._goal_reverse_map["child_goal"] == str(child_goal_id)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_advanced_scenarios(agent):
|
||||
"""
|
||||
Covers:
|
||||
- JSONDecodeError (lines 86-88)
|
||||
- Override: Trigger found (lines 108-109)
|
||||
- Override: Norm found (lines 114-115)
|
||||
- Override: Nothing found (line 134)
|
||||
- Override Unachieve: Success & Fail (lines 136-145)
|
||||
- Pause: Context true/false logs (lines 150-157)
|
||||
- Next Phase (line 160)
|
||||
"""
|
||||
# 1. Setup Data Maps
|
||||
agent._trigger_map["101"] = "trigger_slug"
|
||||
agent._cond_norm_map["202"] = "norm_slug"
|
||||
|
||||
# 2. Define Payloads
|
||||
# A. Invalid JSON
|
||||
bad_json = b"INVALID{JSON"
|
||||
|
||||
# B. Override -> Trigger
|
||||
override_trigger = json.dumps({"type": "override", "context": "101"}).encode()
|
||||
|
||||
# C. Override -> Norm
|
||||
override_norm = json.dumps({"type": "override", "context": "202"}).encode()
|
||||
|
||||
# D. Override -> Unknown
|
||||
override_fail = json.dumps({"type": "override", "context": "999"}).encode()
|
||||
|
||||
# E. Unachieve -> Success
|
||||
unachieve_success = json.dumps({"type": "override_unachieve", "context": "202"}).encode()
|
||||
|
||||
# F. Unachieve -> Fail
|
||||
unachieve_fail = json.dumps({"type": "override_unachieve", "context": "999"}).encode()
|
||||
|
||||
# G. Pause (True)
|
||||
pause_true = json.dumps({"type": "pause", "context": "true"}).encode()
|
||||
|
||||
# H. Pause (False/Resume)
|
||||
pause_false = json.dumps({"type": "pause", "context": ""}).encode()
|
||||
|
||||
# I. Next Phase
|
||||
next_phase = json.dumps({"type": "next_phase", "context": ""}).encode()
|
||||
|
||||
# 3. Setup Socket
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
(b"topic", bad_json),
|
||||
(b"topic", override_trigger),
|
||||
(b"topic", override_norm),
|
||||
(b"topic", override_fail),
|
||||
(b"topic", unachieve_success),
|
||||
(b"topic", unachieve_fail),
|
||||
(b"topic", pause_true),
|
||||
(b"topic", pause_false),
|
||||
(b"topic", next_phase),
|
||||
asyncio.CancelledError, # End loop
|
||||
]
|
||||
|
||||
# Mock internal helpers to verify calls
|
||||
agent._send_to_bdi = AsyncMock()
|
||||
agent._send_to_bdi_belief = AsyncMock()
|
||||
agent._send_pause_command = AsyncMock()
|
||||
agent._send_experiment_control_to_bdi_core = AsyncMock()
|
||||
|
||||
# 4. Run Loop
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
# 5. Assertions
|
||||
|
||||
# JSON Error
|
||||
agent.logger.error.assert_called_with("Received invalid JSON payload on topic %s", b"topic")
|
||||
|
||||
# Override Trigger
|
||||
agent._send_to_bdi.assert_awaited_with("force_trigger", "trigger_slug")
|
||||
|
||||
# Override Norm
|
||||
# We expect _send_to_bdi_belief to be called for the norm
|
||||
# Note: The loop calls _send_to_bdi_belief(asl_cond_norm, "cond_norm")
|
||||
agent._send_to_bdi_belief.assert_any_call("norm_slug", "cond_norm")
|
||||
|
||||
# Override Fail (Warning log)
|
||||
agent.logger.warning.assert_any_call("Could not determine which element to override.")
|
||||
|
||||
# Unachieve Success
|
||||
# Loop calls _send_to_bdi_belief(asl_cond_norm, "cond_norm", True)
|
||||
agent._send_to_bdi_belief.assert_any_call("norm_slug", "cond_norm", True)
|
||||
|
||||
# Unachieve Fail
|
||||
agent.logger.warning.assert_any_call("Could not determine which conditional norm to unachieve.")
|
||||
|
||||
# Pause Logic
|
||||
agent._send_pause_command.assert_any_call("true")
|
||||
agent.logger.info.assert_any_call("Sent pause command.")
|
||||
|
||||
# Resume Logic
|
||||
agent._send_pause_command.assert_any_call("")
|
||||
agent.logger.info.assert_any_call("Sent resume command.")
|
||||
|
||||
# Next Phase
|
||||
agent._send_experiment_control_to_bdi_core.assert_awaited_with("next_phase")
|
||||
|
||||
@@ -94,3 +94,55 @@ async def test_experiment_stream_direct_call():
|
||||
mock_socket.connect.assert_called()
|
||||
mock_socket.subscribe.assert_called_with(b"experiment")
|
||||
mock_socket.close.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_status_stream_direct_call():
|
||||
"""
|
||||
Test the status stream, ensuring it handles messages and sends pings on timeout.
|
||||
"""
|
||||
mock_socket = AsyncMock()
|
||||
|
||||
# Define the sequence of events for the socket:
|
||||
# 1. Successfully receive a message
|
||||
# 2. Timeout (which should trigger the ': ping' yield)
|
||||
# 3. Another message (which won't be reached because we'll simulate disconnect)
|
||||
mock_socket.recv_multipart.side_effect = [
|
||||
(b"topic", b"status_update"),
|
||||
TimeoutError(),
|
||||
(b"topic", b"ignored_msg"),
|
||||
]
|
||||
|
||||
mock_socket.close = MagicMock()
|
||||
mock_socket.connect = MagicMock()
|
||||
mock_socket.subscribe = MagicMock()
|
||||
|
||||
mock_context = MagicMock()
|
||||
mock_context.socket.return_value = mock_socket
|
||||
|
||||
# Mock the ZMQ Context to return our mock_socket
|
||||
with patch(
|
||||
"control_backend.api.v1.endpoints.user_interact.Context.instance", return_value=mock_context
|
||||
):
|
||||
mock_request = AsyncMock()
|
||||
|
||||
# is_disconnected sequence:
|
||||
# 1. False -> Process "status_update"
|
||||
# 2. False -> Process TimeoutError (yield ping)
|
||||
# 3. True -> Break loop (client disconnected)
|
||||
mock_request.is_disconnected.side_effect = [False, False, True]
|
||||
|
||||
# Call the status_stream function explicitly
|
||||
response = await user_interact.status_stream(mock_request)
|
||||
|
||||
lines = []
|
||||
async for line in response.body_iterator:
|
||||
lines.append(line)
|
||||
|
||||
# Assertions
|
||||
assert "data: status_update\n\n" in lines
|
||||
assert ": ping\n\n" in lines # Verify lines 91-92 (ping logic)
|
||||
|
||||
mock_socket.connect.assert_called()
|
||||
mock_socket.subscribe.assert_called_with(b"status")
|
||||
mock_socket.close.assert_called()
|
||||
|
||||
@@ -32,6 +32,7 @@ def mock_settings():
|
||||
mock.agent_settings.vad_name = "vad_agent"
|
||||
mock.behaviour_settings.sleep_s = 0.01 # Speed up tests
|
||||
mock.behaviour_settings.comm_setup_max_retries = 1
|
||||
mock.behaviour_settings.agentspeak_file = "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
yield mock
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user