Compare commits
3 Commits
feat/pause
...
feat/agent
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
3406e9ac2f | ||
| a357b6990b | |||
| 9eea4ee345 |
@@ -1,9 +0,0 @@
|
||||
%{first_multiline_commit_description}
|
||||
|
||||
To verify:
|
||||
|
||||
- [ ] Style checks pass
|
||||
- [ ] Pipeline (tests) pass
|
||||
- [ ] Documentation is up to date
|
||||
- [ ] Tests are up to date (new code is covered)
|
||||
- [ ] ...
|
||||
@@ -28,7 +28,6 @@ class RobotGestureAgent(BaseAgent):
|
||||
address = ""
|
||||
bind = False
|
||||
gesture_data = []
|
||||
single_gesture_data = []
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -36,10 +35,8 @@ class RobotGestureAgent(BaseAgent):
|
||||
address=settings.zmq_settings.ri_command_address,
|
||||
bind=False,
|
||||
gesture_data=None,
|
||||
single_gesture_data=None,
|
||||
):
|
||||
self.gesture_data = gesture_data or []
|
||||
self.single_gesture_data = single_gesture_data or []
|
||||
super().__init__(name)
|
||||
self.address = address
|
||||
self.bind = bind
|
||||
@@ -102,13 +99,7 @@ class RobotGestureAgent(BaseAgent):
|
||||
gesture_command.data,
|
||||
)
|
||||
return
|
||||
elif gesture_command.endpoint == RIEndpoint.GESTURE_SINGLE:
|
||||
if gesture_command.data not in self.single_gesture_data:
|
||||
self.logger.warning(
|
||||
"Received gesture '%s' which is not in available gestures. Early returning",
|
||||
gesture_command.data,
|
||||
)
|
||||
return
|
||||
|
||||
await self.pubsocket.send_json(gesture_command.model_dump())
|
||||
except Exception:
|
||||
self.logger.exception("Error processing internal message.")
|
||||
|
||||
@@ -187,9 +187,10 @@ class StatementType(StrEnum):
|
||||
EMPTY = ""
|
||||
DO_ACTION = "."
|
||||
ACHIEVE_GOAL = "!"
|
||||
# TEST_GOAL = "?" # TODO
|
||||
TEST_GOAL = "?"
|
||||
ADD_BELIEF = "+"
|
||||
REMOVE_BELIEF = "-"
|
||||
REPLACE_BELIEF = "-+"
|
||||
|
||||
|
||||
@dataclass
|
||||
373
src/control_backend/agents/bdi/agentspeak_generator.py
Normal file
373
src/control_backend/agents/bdi/agentspeak_generator.py
Normal file
@@ -0,0 +1,373 @@
|
||||
from functools import singledispatchmethod
|
||||
|
||||
from slugify import slugify
|
||||
|
||||
from control_backend.agents.bdi.agentspeak_ast import (
|
||||
AstBinaryOp,
|
||||
AstExpression,
|
||||
AstLiteral,
|
||||
AstPlan,
|
||||
AstProgram,
|
||||
AstRule,
|
||||
AstStatement,
|
||||
AstString,
|
||||
AstVar,
|
||||
BinaryOperatorType,
|
||||
StatementType,
|
||||
TriggerType,
|
||||
)
|
||||
from control_backend.schemas.program import (
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
GestureAction,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
KeywordBelief,
|
||||
LLMAction,
|
||||
LogicalOperator,
|
||||
Norm,
|
||||
Phase,
|
||||
PlanElement,
|
||||
Program,
|
||||
ProgramElement,
|
||||
SemanticBelief,
|
||||
SpeechAction,
|
||||
Trigger,
|
||||
)
|
||||
|
||||
|
||||
class AgentSpeakGenerator:
|
||||
_asp: AstProgram
|
||||
|
||||
def generate(self, program: Program) -> str:
|
||||
self._asp = AstProgram()
|
||||
|
||||
self._asp.rules.append(AstRule(self._astify(program.phases[0])))
|
||||
self._add_keyword_inference()
|
||||
self._add_default_plans()
|
||||
|
||||
self._process_phases(program.phases)
|
||||
|
||||
self._add_fallbacks()
|
||||
|
||||
return str(self._asp)
|
||||
|
||||
def _add_keyword_inference(self) -> None:
|
||||
keyword = AstVar("Keyword")
|
||||
message = AstVar("Message")
|
||||
position = AstVar("Pos")
|
||||
|
||||
self._asp.rules.append(
|
||||
AstRule(
|
||||
AstLiteral("keyword_said", [keyword]),
|
||||
AstLiteral("user_said", [message])
|
||||
& AstLiteral(".substring", [keyword, message, position])
|
||||
& (position >= 0),
|
||||
)
|
||||
)
|
||||
|
||||
def _add_default_plans(self):
|
||||
self._add_reply_with_goal_plan()
|
||||
self._add_say_plan()
|
||||
self._add_reply_plan()
|
||||
|
||||
def _add_reply_with_goal_plan(self):
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("reply_with_goal", [AstVar("Goal")]),
|
||||
[AstLiteral("user_said", [AstVar("Message")])],
|
||||
[
|
||||
AstStatement(StatementType.ADD_BELIEF, AstLiteral("responded_this_turn")),
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral(
|
||||
"findall",
|
||||
[AstVar("Norm"), AstLiteral("norm", [AstVar("Norm")]), AstVar("Norms")],
|
||||
),
|
||||
),
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral(
|
||||
"reply_with_goal", [AstVar("Message"), AstVar("Norms"), AstVar("Goal")]
|
||||
),
|
||||
),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
def _add_say_plan(self):
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("say", [AstVar("Text")]),
|
||||
[],
|
||||
[
|
||||
AstStatement(StatementType.ADD_BELIEF, AstLiteral("responded_this_turn")),
|
||||
AstStatement(StatementType.DO_ACTION, AstLiteral("say", [AstVar("Text")])),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
def _add_reply_plan(self):
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("reply"),
|
||||
[AstLiteral("user_said", [AstVar("Message")])],
|
||||
[
|
||||
AstStatement(StatementType.ADD_BELIEF, AstLiteral("responded_this_turn")),
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral(
|
||||
"findall",
|
||||
[AstVar("Norm"), AstLiteral("norm", [AstVar("Norm")]), AstVar("Norms")],
|
||||
),
|
||||
),
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral("reply", [AstVar("Message"), AstVar("Norms")]),
|
||||
),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
def _process_phases(self, phases: list[Phase]) -> None:
|
||||
for curr_phase, next_phase in zip([None] + phases, phases + [None], strict=True):
|
||||
if curr_phase:
|
||||
self._process_phase(curr_phase)
|
||||
self._add_phase_transition(curr_phase, next_phase)
|
||||
|
||||
# End phase behavior
|
||||
# When deleting this, the entire `reply` plan and action can be deleted
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
type=TriggerType.ADDED_BELIEF,
|
||||
trigger_literal=AstLiteral("user_said", [AstVar("Message")]),
|
||||
context=[AstLiteral("phase", [AstString("end")])],
|
||||
body=[AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("reply"))],
|
||||
)
|
||||
)
|
||||
|
||||
def _process_phase(self, phase: Phase) -> None:
|
||||
for norm in phase.norms:
|
||||
self._process_norm(norm, phase)
|
||||
|
||||
self._add_default_loop(phase)
|
||||
|
||||
previous_goal = None
|
||||
for goal in phase.goals:
|
||||
self._process_goal(goal, phase, previous_goal)
|
||||
previous_goal = goal
|
||||
|
||||
for trigger in phase.triggers:
|
||||
self._process_trigger(trigger, phase)
|
||||
|
||||
def _add_phase_transition(self, from_phase: Phase | None, to_phase: Phase | None) -> None:
|
||||
if from_phase is None:
|
||||
return
|
||||
from_phase_ast = self._astify(from_phase)
|
||||
to_phase_ast = (
|
||||
self._astify(to_phase) if to_phase else AstLiteral("phase", [AstString("end")])
|
||||
)
|
||||
|
||||
context = [from_phase_ast, ~AstLiteral("responded_this_turn")]
|
||||
if from_phase and from_phase.goals:
|
||||
context.append(self._astify(from_phase.goals[-1], achieved=True))
|
||||
|
||||
body = [
|
||||
AstStatement(StatementType.REMOVE_BELIEF, from_phase_ast),
|
||||
AstStatement(StatementType.ADD_BELIEF, to_phase_ast),
|
||||
]
|
||||
|
||||
if from_phase:
|
||||
body.extend(
|
||||
[
|
||||
AstStatement(
|
||||
StatementType.TEST_GOAL, AstLiteral("user_said", [AstVar("Message")])
|
||||
),
|
||||
AstStatement(
|
||||
StatementType.REPLACE_BELIEF, AstLiteral("user_said", [AstVar("Message")])
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
self._asp.plans.append(
|
||||
AstPlan(TriggerType.ADDED_GOAL, AstLiteral("transition_phase"), context, body)
|
||||
)
|
||||
|
||||
def _process_norm(self, norm: Norm, phase: Phase) -> None:
|
||||
rule: AstRule | None = None
|
||||
|
||||
match norm:
|
||||
case ConditionalNorm(condition=cond):
|
||||
rule = AstRule(self._astify(norm), self._astify(phase) & self._astify(cond))
|
||||
case BasicNorm():
|
||||
rule = AstRule(self._astify(norm), self._astify(phase))
|
||||
|
||||
if not rule:
|
||||
return
|
||||
|
||||
self._asp.rules.append(rule)
|
||||
|
||||
def _add_default_loop(self, phase: Phase) -> None:
|
||||
actions = []
|
||||
|
||||
actions.append(AstStatement(StatementType.REMOVE_BELIEF, AstLiteral("responded_this_turn")))
|
||||
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("check_triggers")))
|
||||
|
||||
for goal in phase.goals:
|
||||
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, self._astify(goal)))
|
||||
|
||||
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("transition_phase")))
|
||||
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_BELIEF,
|
||||
AstLiteral("user_said", [AstVar("Message")]),
|
||||
[self._astify(phase)],
|
||||
actions,
|
||||
)
|
||||
)
|
||||
|
||||
def _process_goal(
|
||||
self,
|
||||
goal: Goal,
|
||||
phase: Phase,
|
||||
previous_goal: Goal | None = None,
|
||||
continues_response: bool = False,
|
||||
) -> None:
|
||||
context: list[AstExpression] = [self._astify(phase)]
|
||||
context.append(~self._astify(goal, achieved=True))
|
||||
if previous_goal and previous_goal.can_fail:
|
||||
context.append(self._astify(previous_goal, achieved=True))
|
||||
if not continues_response:
|
||||
context.append(~AstLiteral("responded_this_turn"))
|
||||
|
||||
body = []
|
||||
|
||||
subgoals = []
|
||||
for step in goal.plan.steps:
|
||||
body.append(self._step_to_statement(step))
|
||||
if isinstance(step, Goal):
|
||||
subgoals.append(step)
|
||||
|
||||
if not goal.can_fail and not continues_response:
|
||||
body.append(AstStatement(StatementType.ADD_BELIEF, self._astify(goal, achieved=True)))
|
||||
|
||||
self._asp.plans.append(AstPlan(TriggerType.ADDED_GOAL, self._astify(goal), context, body))
|
||||
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
self._astify(goal),
|
||||
context=[],
|
||||
body=[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
|
||||
)
|
||||
)
|
||||
|
||||
prev_goal = None
|
||||
for subgoal in subgoals:
|
||||
self._process_goal(subgoal, phase, prev_goal)
|
||||
prev_goal = subgoal
|
||||
|
||||
def _step_to_statement(self, step: PlanElement) -> AstStatement:
|
||||
match step:
|
||||
case Goal() | SpeechAction() | LLMAction() as a:
|
||||
return AstStatement(StatementType.ACHIEVE_GOAL, self._astify(a))
|
||||
case GestureAction() as a:
|
||||
return AstStatement(StatementType.DO_ACTION, self._astify(a))
|
||||
|
||||
# TODO: separate handling of keyword and others
|
||||
def _process_trigger(self, trigger: Trigger, phase: Phase) -> None:
|
||||
body = []
|
||||
subgoals = []
|
||||
|
||||
for step in trigger.plan.steps:
|
||||
body.append(self._step_to_statement(step))
|
||||
if isinstance(step, Goal):
|
||||
step.can_fail = False # triggers are continuous sequence
|
||||
subgoals.append(step)
|
||||
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("check_triggers"),
|
||||
[self._astify(phase), self._astify(trigger.condition)],
|
||||
body,
|
||||
)
|
||||
)
|
||||
|
||||
for subgoal in subgoals:
|
||||
self._process_goal(subgoal, phase, continues_response=True)
|
||||
|
||||
def _add_fallbacks(self):
|
||||
# Trigger fallback
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("check_triggers"),
|
||||
[],
|
||||
[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
|
||||
)
|
||||
)
|
||||
|
||||
# Phase transition fallback
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("transition_phase"),
|
||||
[],
|
||||
[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
|
||||
)
|
||||
)
|
||||
|
||||
@singledispatchmethod
|
||||
def _astify(self, element: ProgramElement) -> AstExpression:
|
||||
raise NotImplementedError(f"Cannot convert element {element} to an AgentSpeak expression.")
|
||||
|
||||
@_astify.register
|
||||
def _(self, kwb: KeywordBelief) -> AstExpression:
|
||||
return AstLiteral("keyword_said", [AstString(kwb.keyword)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, sb: SemanticBelief) -> AstExpression:
|
||||
return AstLiteral(f"semantic_{self._slugify_str(sb.description)}")
|
||||
|
||||
@_astify.register
|
||||
def _(self, ib: InferredBelief) -> AstExpression:
|
||||
return AstBinaryOp(
|
||||
self._astify(ib.left),
|
||||
BinaryOperatorType.AND if ib.operator == LogicalOperator.AND else BinaryOperatorType.OR,
|
||||
self._astify(ib.right),
|
||||
)
|
||||
|
||||
@_astify.register
|
||||
def _(self, norm: Norm) -> AstExpression:
|
||||
functor = "critical_norm" if norm.critical else "norm"
|
||||
return AstLiteral(functor, [AstString(norm.norm)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, phase: Phase) -> AstExpression:
|
||||
return AstLiteral("phase", [AstString(str(phase.id))])
|
||||
|
||||
@_astify.register
|
||||
def _(self, goal: Goal, achieved: bool = False) -> AstExpression:
|
||||
return AstLiteral(f"{'achieved_' if achieved else ''}{self._slugify_str(goal.name)}")
|
||||
|
||||
@_astify.register
|
||||
def _(self, sa: SpeechAction) -> AstExpression:
|
||||
return AstLiteral("say", [AstString(sa.text)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, ga: GestureAction) -> AstExpression:
|
||||
gesture = ga.gesture
|
||||
return AstLiteral("gesture", [AstString(gesture.type), AstString(gesture.name)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, la: LLMAction) -> AstExpression:
|
||||
return AstLiteral("reply_with_goal", [AstString(la.goal)])
|
||||
|
||||
@staticmethod
|
||||
def _slugify_str(text: str) -> str:
|
||||
return slugify(text, separator="_", stopwords=["a", "an", "the", "we", "you", "I"])
|
||||
@@ -11,7 +11,7 @@ from pydantic import ValidationError
|
||||
from control_backend.agents.base import BaseAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
from control_backend.schemas.llm_prompt_message import LLMPromptMessage
|
||||
from control_backend.schemas.ri_message import SpeechCommand
|
||||
|
||||
@@ -42,13 +42,13 @@ class BDICoreAgent(BaseAgent):
|
||||
|
||||
bdi_agent: agentspeak.runtime.Agent
|
||||
|
||||
def __init__(self, name: str, asl: str):
|
||||
def __init__(self, name: str):
|
||||
super().__init__(name)
|
||||
self.asl_file = asl
|
||||
self.env = agentspeak.runtime.Environment()
|
||||
# Deep copy because we don't actually want to modify the standard actions globally
|
||||
self.actions = copy.deepcopy(agentspeak.stdlib.actions)
|
||||
self._wake_bdi_loop = asyncio.Event()
|
||||
self._bdi_loop_task = None
|
||||
|
||||
async def setup(self) -> None:
|
||||
"""
|
||||
@@ -65,19 +65,22 @@ class BDICoreAgent(BaseAgent):
|
||||
await self._load_asl()
|
||||
|
||||
# Start the BDI cycle loop
|
||||
self.add_behavior(self._bdi_loop())
|
||||
self._bdi_loop_task = self.add_behavior(self._bdi_loop())
|
||||
self._wake_bdi_loop.set()
|
||||
self.logger.debug("Setup complete.")
|
||||
|
||||
async def _load_asl(self):
|
||||
async def _load_asl(self, file_name: str | None = None) -> None:
|
||||
"""
|
||||
Load and parse the AgentSpeak source file.
|
||||
"""
|
||||
file_name = file_name or "src/control_backend/agents/bdi/default_behavior.asl"
|
||||
|
||||
try:
|
||||
with open(self.asl_file) as source:
|
||||
with open(file_name) as source:
|
||||
self.bdi_agent = self.env.build_agent(source, self.actions)
|
||||
self.logger.info(f"Loaded new ASL from {file_name}.")
|
||||
except FileNotFoundError:
|
||||
self.logger.warning(f"Could not find the specified ASL file at {self.asl_file}.")
|
||||
self.logger.warning(f"Could not find the specified ASL file at {file_name}.")
|
||||
self.bdi_agent = agentspeak.runtime.Agent(self.env, self.name)
|
||||
|
||||
async def _bdi_loop(self):
|
||||
@@ -116,6 +119,7 @@ class BDICoreAgent(BaseAgent):
|
||||
Handle incoming messages.
|
||||
|
||||
- **Beliefs**: Updates the internal belief base.
|
||||
- **Program**: Updates the internal agentspeak file to match the current program.
|
||||
- **LLM Responses**: Forwards the generated text to the Robot Speech Agent (actuation).
|
||||
|
||||
:param msg: The received internal message.
|
||||
@@ -124,12 +128,19 @@ class BDICoreAgent(BaseAgent):
|
||||
|
||||
if msg.thread == "beliefs":
|
||||
try:
|
||||
belief_changes = BeliefMessage.model_validate_json(msg.body)
|
||||
self._apply_belief_changes(belief_changes)
|
||||
beliefs = BeliefMessage.model_validate_json(msg.body).beliefs
|
||||
self._apply_beliefs(beliefs)
|
||||
except ValidationError:
|
||||
self.logger.exception("Error processing belief.")
|
||||
return
|
||||
|
||||
# New agentspeak file
|
||||
if msg.thread == "new_program":
|
||||
if self._bdi_loop_task:
|
||||
self._bdi_loop_task.cancel()
|
||||
await self._load_asl(msg.body)
|
||||
self.add_behavior(self._bdi_loop())
|
||||
|
||||
# The message was not a belief, handle special cases based on sender
|
||||
match msg.sender:
|
||||
case settings.agent_settings.llm_name:
|
||||
@@ -145,28 +156,21 @@ class BDICoreAgent(BaseAgent):
|
||||
)
|
||||
await self.send(out_msg)
|
||||
|
||||
def _apply_belief_changes(self, belief_changes: BeliefMessage):
|
||||
def _apply_beliefs(self, beliefs: list[Belief]):
|
||||
"""
|
||||
Update the belief base with a list of new beliefs.
|
||||
|
||||
For beliefs in ``belief_changes.replace``, it removes all existing beliefs with that name
|
||||
before adding one new one.
|
||||
|
||||
:param belief_changes: The changes in beliefs to apply.
|
||||
If ``replace=True`` is set on a belief, it removes all existing beliefs with that name
|
||||
before adding the new one.
|
||||
"""
|
||||
if not belief_changes.create and not belief_changes.replace and not belief_changes.delete:
|
||||
if not beliefs:
|
||||
return
|
||||
|
||||
for belief in belief_changes.create:
|
||||
for belief in beliefs:
|
||||
if belief.replace:
|
||||
self._remove_all_with_name(belief.name)
|
||||
self._add_belief(belief.name, belief.arguments)
|
||||
|
||||
for belief in belief_changes.replace:
|
||||
self._remove_all_with_name(belief.name)
|
||||
self._add_belief(belief.name, belief.arguments)
|
||||
|
||||
for belief in belief_changes.delete:
|
||||
self._remove_belief(belief.name, belief.arguments)
|
||||
|
||||
def _add_belief(self, name: str, args: list[str] = None):
|
||||
"""
|
||||
Add a single belief to the BDI agent.
|
||||
@@ -246,20 +250,18 @@ class BDICoreAgent(BaseAgent):
|
||||
the function expects (which will be located in `term.args`).
|
||||
"""
|
||||
|
||||
@self.actions.add(".reply", 3)
|
||||
@self.actions.add(".reply", 2)
|
||||
def _reply(agent: "BDICoreAgent", term, intention):
|
||||
"""
|
||||
Let the LLM generate a response to a user's utterance with the current norms and goals.
|
||||
"""
|
||||
message_text = agentspeak.grounded(term.args[0], intention.scope)
|
||||
norms = agentspeak.grounded(term.args[1], intention.scope)
|
||||
goals = agentspeak.grounded(term.args[2], intention.scope)
|
||||
|
||||
self.logger.debug("Norms: %s", norms)
|
||||
self.logger.debug("Goals: %s", goals)
|
||||
self.logger.debug("User text: %s", message_text)
|
||||
|
||||
asyncio.create_task(self._send_to_llm(str(message_text), str(norms), str(goals)))
|
||||
self.add_behavior(self._send_to_llm(str(message_text), str(norms), ""))
|
||||
yield
|
||||
|
||||
@self.actions.add(".reply_with_goal", 3)
|
||||
@@ -278,7 +280,7 @@ class BDICoreAgent(BaseAgent):
|
||||
norms,
|
||||
goal,
|
||||
)
|
||||
# asyncio.create_task(self._send_to_llm(str(message_text), norms, str(goal)))
|
||||
self.add_behavior(self._send_to_llm(str(message_text), str(norms), str(goal)))
|
||||
yield
|
||||
|
||||
@self.actions.add(".say", 1)
|
||||
@@ -290,13 +292,14 @@ class BDICoreAgent(BaseAgent):
|
||||
|
||||
self.logger.debug('"say" action called with text=%s', message_text)
|
||||
|
||||
# speech_command = SpeechCommand(data=message_text)
|
||||
# speech_message = InternalMessage(
|
||||
# to=settings.agent_settings.robot_speech_name,
|
||||
# sender=settings.agent_settings.bdi_core_name,
|
||||
# body=speech_command.model_dump_json(),
|
||||
# )
|
||||
# asyncio.create_task(agent.send(speech_message))
|
||||
speech_command = SpeechCommand(data=message_text)
|
||||
speech_message = InternalMessage(
|
||||
to=settings.agent_settings.robot_speech_name,
|
||||
sender=settings.agent_settings.bdi_core_name,
|
||||
body=speech_command.model_dump_json(),
|
||||
)
|
||||
# TODO: add to conversation history
|
||||
self.add_behavior(self.send(speech_message))
|
||||
yield
|
||||
|
||||
@self.actions.add(".gesture", 2)
|
||||
|
||||
@@ -1,598 +1,12 @@
|
||||
import uuid
|
||||
from collections.abc import Iterable
|
||||
|
||||
import zmq
|
||||
from pydantic import ValidationError
|
||||
from slugify import slugify
|
||||
from zmq.asyncio import Context
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.program import (
|
||||
Action,
|
||||
BasicBelief,
|
||||
BasicNorm,
|
||||
Belief,
|
||||
ConditionalNorm,
|
||||
GestureAction,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
KeywordBelief,
|
||||
LLMAction,
|
||||
LogicalOperator,
|
||||
Phase,
|
||||
Plan,
|
||||
Program,
|
||||
ProgramElement,
|
||||
SemanticBelief,
|
||||
SpeechAction,
|
||||
Trigger,
|
||||
)
|
||||
|
||||
test_program = Program(
|
||||
phases=[
|
||||
Phase(
|
||||
norms=[
|
||||
BasicNorm(norm="Talk like a pirate", id=uuid.uuid4()),
|
||||
ConditionalNorm(
|
||||
condition=InferredBelief(
|
||||
left=KeywordBelief(keyword="Arr", id=uuid.uuid4()),
|
||||
right=SemanticBelief(
|
||||
description="testing", name="semantic belief", id=uuid.uuid4()
|
||||
),
|
||||
operator=LogicalOperator.OR,
|
||||
name="Talking to a pirate",
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
norm="Use nautical terms",
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
ConditionalNorm(
|
||||
condition=SemanticBelief(
|
||||
description="We are talking to a child",
|
||||
name="talking to child",
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
norm="Do not use cuss words",
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
],
|
||||
triggers=[
|
||||
Trigger(
|
||||
condition=InferredBelief(
|
||||
left=KeywordBelief(keyword="key", id=uuid.uuid4()),
|
||||
right=InferredBelief(
|
||||
left=KeywordBelief(keyword="key2", id=uuid.uuid4()),
|
||||
right=SemanticBelief(
|
||||
description="Decode this", name="semantic belief 2", id=uuid.uuid4()
|
||||
),
|
||||
operator=LogicalOperator.OR,
|
||||
name="test trigger inferred inner",
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
operator=LogicalOperator.OR,
|
||||
name="test trigger inferred outer",
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
plan=Plan(
|
||||
steps=[
|
||||
SpeechAction(text="Testing trigger", id=uuid.uuid4()),
|
||||
Goal(
|
||||
name="Testing trigger",
|
||||
plan=Plan(
|
||||
steps=[LLMAction(goal="Do something", id=uuid.uuid4())],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
id=uuid.uuid4(),
|
||||
)
|
||||
],
|
||||
goals=[
|
||||
Goal(
|
||||
name="Determine user age",
|
||||
plan=Plan(
|
||||
steps=[LLMAction(goal="Determine the age of the user.", id=uuid.uuid4())],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
Goal(
|
||||
name="Find the user's name",
|
||||
plan=Plan(
|
||||
steps=[
|
||||
Goal(
|
||||
name="Greet the user",
|
||||
plan=Plan(
|
||||
steps=[LLMAction(goal="Greet the user.", id=uuid.uuid4())],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
can_fail=False,
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
Goal(
|
||||
name="Ask for name",
|
||||
plan=Plan(
|
||||
steps=[
|
||||
LLMAction(goal="Obtain the user's name.", id=uuid.uuid4())
|
||||
],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
Goal(
|
||||
name="Tell a joke",
|
||||
plan=Plan(
|
||||
steps=[LLMAction(goal="Tell a joke.", id=uuid.uuid4())], id=uuid.uuid4()
|
||||
),
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
Phase(
|
||||
id=uuid.uuid4(),
|
||||
norms=[
|
||||
BasicNorm(norm="Use very gentle speech.", id=uuid.uuid4()),
|
||||
ConditionalNorm(
|
||||
condition=SemanticBelief(
|
||||
description="We are talking to a child",
|
||||
name="talking to child",
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
norm="Do not use cuss words",
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
],
|
||||
triggers=[
|
||||
Trigger(
|
||||
condition=InferredBelief(
|
||||
left=KeywordBelief(keyword="help", id=uuid.uuid4()),
|
||||
right=SemanticBelief(
|
||||
description="User is stuck", name="stuck", id=uuid.uuid4()
|
||||
),
|
||||
operator=LogicalOperator.OR,
|
||||
name="help_or_stuck",
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
plan=Plan(
|
||||
steps=[
|
||||
Goal(
|
||||
name="Unblock user",
|
||||
plan=Plan(
|
||||
steps=[
|
||||
LLMAction(
|
||||
goal="Provide a step-by-step path to "
|
||||
"resolve the user's issue.",
|
||||
id=uuid.uuid4(),
|
||||
)
|
||||
],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
],
|
||||
goals=[
|
||||
Goal(
|
||||
name="Clarify intent",
|
||||
plan=Plan(
|
||||
steps=[
|
||||
LLMAction(
|
||||
goal="Ask 1-2 targeted questions to clarify the "
|
||||
"user's intent, then proceed.",
|
||||
id=uuid.uuid4(),
|
||||
)
|
||||
],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
Goal(
|
||||
name="Provide solution",
|
||||
plan=Plan(
|
||||
steps=[
|
||||
LLMAction(
|
||||
goal="Deliver a solution to complete the user's goal.",
|
||||
id=uuid.uuid4(),
|
||||
)
|
||||
],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
Goal(
|
||||
name="Summarize next steps",
|
||||
plan=Plan(
|
||||
steps=[
|
||||
LLMAction(
|
||||
goal="Summarize what the user should do next.", id=uuid.uuid4()
|
||||
)
|
||||
],
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
id=uuid.uuid4(),
|
||||
),
|
||||
],
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
|
||||
def do_things():
|
||||
print(AgentSpeakGenerator().generate(test_program))
|
||||
|
||||
|
||||
class AgentSpeakGenerator:
|
||||
"""
|
||||
Converts Pydantic representation of behavior programs into AgentSpeak(L) code string.
|
||||
"""
|
||||
|
||||
arrow_prefix = f"{' ' * 2}<-{' ' * 2}"
|
||||
colon_prefix = f"{' ' * 2}:{' ' * 3}"
|
||||
indent_prefix = " " * 6
|
||||
|
||||
def generate(self, program: Program) -> str:
|
||||
lines = []
|
||||
lines.append("")
|
||||
|
||||
lines += self._generate_initial_beliefs(program)
|
||||
|
||||
lines += self._generate_basic_flow(program)
|
||||
|
||||
lines += self._generate_phase_transitions(program)
|
||||
|
||||
lines += self._generate_norms(program)
|
||||
|
||||
lines += self._generate_belief_inference(program)
|
||||
|
||||
lines += self._generate_goals(program)
|
||||
|
||||
lines += self._generate_triggers(program)
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
def _generate_initial_beliefs(self, program: Program) -> Iterable[str]:
|
||||
yield "// --- Initial beliefs and agent startup ---"
|
||||
|
||||
yield "phase(start)."
|
||||
|
||||
yield ""
|
||||
|
||||
yield "+started"
|
||||
yield f"{self.colon_prefix}phase(start)"
|
||||
yield f"{self.arrow_prefix}phase({program.phases[0].id if program.phases else 'end'})."
|
||||
|
||||
yield from ["", ""]
|
||||
|
||||
def _generate_basic_flow(self, program: Program) -> Iterable[str]:
|
||||
yield "// --- Basic flow ---"
|
||||
|
||||
for phase in program.phases:
|
||||
yield from self._generate_basic_flow_per_phase(phase)
|
||||
|
||||
yield from ["", ""]
|
||||
|
||||
def _generate_basic_flow_per_phase(self, phase: Phase) -> Iterable[str]:
|
||||
yield "+user_said(Message)"
|
||||
yield f"{self.colon_prefix}phase({phase.id})"
|
||||
|
||||
goals = phase.goals
|
||||
if goals:
|
||||
yield f"{self.arrow_prefix}{self._slugify(goals[0], include_prefix=True)}"
|
||||
for goal in goals[1:]:
|
||||
yield f"{self.indent_prefix}{self._slugify(goal, include_prefix=True)}"
|
||||
|
||||
yield f"{self.indent_prefix if goals else self.arrow_prefix}!transition_phase."
|
||||
|
||||
def _generate_phase_transitions(self, program: Program) -> Iterable[str]:
|
||||
yield "// --- Phase transitions ---"
|
||||
|
||||
if len(program.phases) == 0:
|
||||
yield from ["", ""]
|
||||
return
|
||||
|
||||
# TODO: remove outdated things
|
||||
|
||||
for i in range(-1, len(program.phases)):
|
||||
predecessor = program.phases[i] if i >= 0 else None
|
||||
successor = program.phases[i + 1] if i < len(program.phases) - 1 else None
|
||||
yield from self._generate_phase_transition(predecessor, successor)
|
||||
|
||||
yield from self._generate_phase_transition(None, None) # to avoid failing plan
|
||||
|
||||
yield from ["", ""]
|
||||
|
||||
def _generate_phase_transition(
|
||||
self, phase: Phase | None = None, next_phase: Phase | None = None
|
||||
) -> Iterable[str]:
|
||||
yield "+!transition_phase"
|
||||
|
||||
if phase is None and next_phase is None: # base case true to avoid failing plan
|
||||
yield f"{self.arrow_prefix}true."
|
||||
return
|
||||
|
||||
yield f"{self.colon_prefix}phase({phase.id if phase else 'start'})"
|
||||
yield f"{self.arrow_prefix}-+phase({next_phase.id if next_phase else 'end'})."
|
||||
|
||||
def _generate_norms(self, program: Program) -> Iterable[str]:
|
||||
yield "// --- Norms ---"
|
||||
|
||||
for phase in program.phases:
|
||||
for norm in phase.norms:
|
||||
if type(norm) is BasicNorm:
|
||||
yield f"{self._slugify(norm)} :- phase({phase.id})."
|
||||
if type(norm) is ConditionalNorm:
|
||||
yield (
|
||||
f"{self._slugify(norm)} :- phase({phase.id}) & "
|
||||
f"{self._slugify(norm.condition)}."
|
||||
)
|
||||
|
||||
yield from ["", ""]
|
||||
|
||||
def _generate_belief_inference(self, program: Program) -> Iterable[str]:
|
||||
yield "// --- Belief inference rules ---"
|
||||
|
||||
for phase in program.phases:
|
||||
for norm in phase.norms:
|
||||
if not isinstance(norm, ConditionalNorm):
|
||||
continue
|
||||
|
||||
yield from self._belief_inference_recursive(norm.condition)
|
||||
|
||||
for trigger in phase.triggers:
|
||||
yield from self._belief_inference_recursive(trigger.condition)
|
||||
|
||||
yield from ["", ""]
|
||||
|
||||
def _belief_inference_recursive(self, belief: Belief) -> Iterable[str]:
|
||||
if type(belief) is KeywordBelief:
|
||||
yield (
|
||||
f"{self._slugify(belief)} :- user_said(Message) & "
|
||||
f'.substring(Message, "{belief.keyword}", Pos) & Pos >= 0.'
|
||||
)
|
||||
if type(belief) is InferredBelief:
|
||||
yield (
|
||||
f"{self._slugify(belief)} :- {self._slugify(belief.left)} "
|
||||
f"{'&' if belief.operator == LogicalOperator.AND else '|'} "
|
||||
f"{self._slugify(belief.right)}."
|
||||
)
|
||||
|
||||
yield from self._belief_inference_recursive(belief.left)
|
||||
yield from self._belief_inference_recursive(belief.right)
|
||||
|
||||
def _generate_goals(self, program: Program) -> Iterable[str]:
|
||||
yield "// --- Goals ---"
|
||||
|
||||
for phase in program.phases:
|
||||
previous_goal: Goal | None = None
|
||||
for goal in phase.goals:
|
||||
yield from self._generate_goal_plan_recursive(goal, phase, previous_goal)
|
||||
previous_goal = goal
|
||||
|
||||
yield from ["", ""]
|
||||
|
||||
def _generate_goal_plan_recursive(
|
||||
self, goal: Goal, phase: Phase, previous_goal: Goal | None = None
|
||||
) -> Iterable[str]:
|
||||
yield f"+{self._slugify(goal, include_prefix=True)}"
|
||||
|
||||
# Context
|
||||
yield f"{self.colon_prefix}phase({phase.id}) &"
|
||||
yield f"{self.indent_prefix}not responded_this_turn &"
|
||||
yield f"{self.indent_prefix}not achieved_{self._slugify(goal)} &"
|
||||
if previous_goal:
|
||||
yield f"{self.indent_prefix}achieved_{self._slugify(previous_goal)}"
|
||||
else:
|
||||
yield f"{self.indent_prefix}true"
|
||||
|
||||
extra_goals_to_generate = []
|
||||
|
||||
steps = goal.plan.steps
|
||||
|
||||
if len(steps) == 0:
|
||||
yield f"{self.arrow_prefix}true."
|
||||
return
|
||||
|
||||
first_step = steps[0]
|
||||
yield (
|
||||
f"{self.arrow_prefix}{self._slugify(first_step, include_prefix=True)}"
|
||||
f"{'.' if len(steps) == 1 and goal.can_fail else ';'}"
|
||||
)
|
||||
if isinstance(first_step, Goal):
|
||||
extra_goals_to_generate.append(first_step)
|
||||
|
||||
for step in steps[1:-1]:
|
||||
yield f"{self.indent_prefix}{self._slugify(step, include_prefix=True)};"
|
||||
if isinstance(step, Goal):
|
||||
extra_goals_to_generate.append(step)
|
||||
|
||||
if len(steps) > 1:
|
||||
last_step = steps[-1]
|
||||
yield (
|
||||
f"{self.indent_prefix}{self._slugify(last_step, include_prefix=True)}"
|
||||
f"{'.' if goal.can_fail else ';'}"
|
||||
)
|
||||
if isinstance(last_step, Goal):
|
||||
extra_goals_to_generate.append(last_step)
|
||||
|
||||
if not goal.can_fail:
|
||||
yield f"{self.indent_prefix}+achieved_{self._slugify(goal)}."
|
||||
|
||||
yield f"+{self._slugify(goal, include_prefix=True)}"
|
||||
yield f"{self.arrow_prefix}true."
|
||||
|
||||
yield ""
|
||||
|
||||
extra_previous_goal: Goal | None = None
|
||||
for extra_goal in extra_goals_to_generate:
|
||||
yield from self._generate_goal_plan_recursive(extra_goal, phase, extra_previous_goal)
|
||||
extra_previous_goal = extra_goal
|
||||
|
||||
def _generate_triggers(self, program: Program) -> Iterable[str]:
|
||||
yield "// --- Triggers ---"
|
||||
|
||||
for phase in program.phases:
|
||||
for trigger in phase.triggers:
|
||||
yield from self._generate_trigger_plan(trigger, phase)
|
||||
|
||||
yield from ["", ""]
|
||||
|
||||
def _generate_trigger_plan(self, trigger: Trigger, phase: Phase) -> Iterable[str]:
|
||||
belief_name = self._slugify(trigger.condition)
|
||||
|
||||
yield f"+{belief_name}"
|
||||
yield f"{self.colon_prefix}phase({phase.id})"
|
||||
|
||||
extra_goals_to_generate = []
|
||||
|
||||
steps = trigger.plan.steps
|
||||
|
||||
if len(steps) == 0:
|
||||
yield f"{self.arrow_prefix}true."
|
||||
return
|
||||
|
||||
first_step = steps[0]
|
||||
yield (
|
||||
f"{self.arrow_prefix}{self._slugify(first_step, include_prefix=True)}"
|
||||
f"{'.' if len(steps) == 1 else ';'}"
|
||||
)
|
||||
if isinstance(first_step, Goal):
|
||||
extra_goals_to_generate.append(first_step)
|
||||
|
||||
for step in steps[1:-1]:
|
||||
yield f"{self.indent_prefix}{self._slugify(step, include_prefix=True)};"
|
||||
if isinstance(step, Goal):
|
||||
extra_goals_to_generate.append(step)
|
||||
|
||||
if len(steps) > 1:
|
||||
last_step = steps[-1]
|
||||
yield f"{self.indent_prefix}{self._slugify(last_step, include_prefix=True)}."
|
||||
if isinstance(last_step, Goal):
|
||||
extra_goals_to_generate.append(last_step)
|
||||
|
||||
yield ""
|
||||
|
||||
extra_previous_goal: Goal | None = None
|
||||
for extra_goal in extra_goals_to_generate:
|
||||
yield from self._generate_trigger_plan_recursive(extra_goal, phase, extra_previous_goal)
|
||||
extra_previous_goal = extra_goal
|
||||
|
||||
def _generate_trigger_plan_recursive(
|
||||
self, goal: Goal, phase: Phase, previous_goal: Goal | None = None
|
||||
) -> Iterable[str]:
|
||||
yield f"+{self._slugify(goal, include_prefix=True)}"
|
||||
|
||||
extra_goals_to_generate = []
|
||||
|
||||
steps = goal.plan.steps
|
||||
|
||||
if len(steps) == 0:
|
||||
yield f"{self.arrow_prefix}true."
|
||||
return
|
||||
|
||||
first_step = steps[0]
|
||||
yield (
|
||||
f"{self.arrow_prefix}{self._slugify(first_step, include_prefix=True)}"
|
||||
f"{'.' if len(steps) == 1 and goal.can_fail else ';'}"
|
||||
)
|
||||
if isinstance(first_step, Goal):
|
||||
extra_goals_to_generate.append(first_step)
|
||||
|
||||
for step in steps[1:-1]:
|
||||
yield f"{self.indent_prefix}{self._slugify(step, include_prefix=True)};"
|
||||
if isinstance(step, Goal):
|
||||
extra_goals_to_generate.append(step)
|
||||
|
||||
if len(steps) > 1:
|
||||
last_step = steps[-1]
|
||||
yield (
|
||||
f"{self.indent_prefix}{self._slugify(last_step, include_prefix=True)}"
|
||||
f"{'.' if goal.can_fail else ';'}"
|
||||
)
|
||||
if isinstance(last_step, Goal):
|
||||
extra_goals_to_generate.append(last_step)
|
||||
|
||||
if not goal.can_fail:
|
||||
yield f"{self.indent_prefix}+achieved_{self._slugify(goal)}."
|
||||
|
||||
yield f"+{self._slugify(goal, include_prefix=True)}"
|
||||
yield f"{self.arrow_prefix}true."
|
||||
|
||||
yield ""
|
||||
|
||||
extra_previous_goal: Goal | None = None
|
||||
for extra_goal in extra_goals_to_generate:
|
||||
yield from self._generate_goal_plan_recursive(extra_goal, phase, extra_previous_goal)
|
||||
extra_previous_goal = extra_goal
|
||||
|
||||
def _slugify(self, element: ProgramElement, include_prefix: bool = False) -> str:
|
||||
def base_slugify_call(text: str):
|
||||
return slugify(text, separator="_", stopwords=["a", "the"])
|
||||
|
||||
if type(element) is KeywordBelief:
|
||||
return f'keyword_said("{element.keyword}")'
|
||||
|
||||
if type(element) is SemanticBelief:
|
||||
name = element.name
|
||||
return f"semantic_{base_slugify_call(name if name else element.description)}"
|
||||
|
||||
if isinstance(element, BasicNorm):
|
||||
return f'norm("{element.norm}")'
|
||||
|
||||
if isinstance(element, Goal):
|
||||
return f"{'!' if include_prefix else ''}{base_slugify_call(element.name)}"
|
||||
|
||||
if isinstance(element, SpeechAction):
|
||||
return f'.say("{element.text}")'
|
||||
|
||||
if isinstance(element, GestureAction):
|
||||
return f'.gesture("{element.gesture}")'
|
||||
|
||||
if isinstance(element, LLMAction):
|
||||
return f'!generate_response_with_goal("{element.goal}")'
|
||||
|
||||
if isinstance(element, Action.__value__):
|
||||
raise NotImplementedError(
|
||||
"Have not implemented an ASL string representation for this action."
|
||||
)
|
||||
|
||||
if element.name == "":
|
||||
raise ValueError("Name must be initialized for this type of ProgramElement.")
|
||||
|
||||
return base_slugify_call(element.name)
|
||||
|
||||
def _extract_basic_beliefs_from_program(self, program: Program) -> list[BasicBelief]:
|
||||
beliefs = []
|
||||
|
||||
for phase in program.phases:
|
||||
for norm in phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
beliefs += self._extract_basic_beliefs_from_belief(norm.condition)
|
||||
|
||||
for trigger in phase.triggers:
|
||||
beliefs += self._extract_basic_beliefs_from_belief(trigger.condition)
|
||||
|
||||
return beliefs
|
||||
|
||||
def _extract_basic_beliefs_from_belief(self, belief: Belief) -> list[BasicBelief]:
|
||||
if isinstance(belief, InferredBelief):
|
||||
return self._extract_basic_beliefs_from_belief(
|
||||
belief.left
|
||||
) + self._extract_basic_beliefs_from_belief(belief.right)
|
||||
return [belief]
|
||||
from control_backend.schemas.internal_message import InternalMessage
|
||||
from control_backend.schemas.program import Program
|
||||
|
||||
|
||||
class BDIProgramManager(BaseAgent):
|
||||
@@ -611,40 +25,36 @@ class BDIProgramManager(BaseAgent):
|
||||
super().__init__(**kwargs)
|
||||
self.sub_socket = None
|
||||
|
||||
# async def _send_to_bdi(self, program: Program):
|
||||
# """
|
||||
# Convert a received program into BDI beliefs and send them to the BDI Core Agent.
|
||||
#
|
||||
# Currently, it takes the **first phase** of the program and extracts:
|
||||
# - **Norms**: Constraints or rules the agent must follow.
|
||||
# - **Goals**: Objectives the agent must achieve.
|
||||
#
|
||||
# These are sent as a ``BeliefMessage`` with ``replace=True``, meaning they will
|
||||
# overwrite any existing norms/goals of the same name in the BDI agent.
|
||||
#
|
||||
# :param program: The program object received from the API.
|
||||
# """
|
||||
# first_phase = program.phases[0]
|
||||
# norms_belief = Belief(
|
||||
# name="norms",
|
||||
# arguments=[norm.norm for norm in first_phase.norms],
|
||||
# replace=True,
|
||||
# )
|
||||
# goals_belief = Belief(
|
||||
# name="goals",
|
||||
# arguments=[goal.description for goal in first_phase.goals],
|
||||
# replace=True,
|
||||
# )
|
||||
# program_beliefs = BeliefMessage(beliefs=[norms_belief, goals_belief])
|
||||
#
|
||||
# message = InternalMessage(
|
||||
# to=settings.agent_settings.bdi_core_name,
|
||||
# sender=self.name,
|
||||
# body=program_beliefs.model_dump_json(),
|
||||
# thread="beliefs",
|
||||
# )
|
||||
# await self.send(message)
|
||||
# self.logger.debug("Sent new norms and goals to the BDI agent.")
|
||||
async def _create_agentspeak_and_send_to_bdi(self, program: Program):
|
||||
"""
|
||||
Convert a received program into BDI beliefs and send them to the BDI Core Agent.
|
||||
|
||||
Currently, it takes the **first phase** of the program and extracts:
|
||||
- **Norms**: Constraints or rules the agent must follow.
|
||||
- **Goals**: Objectives the agent must achieve.
|
||||
|
||||
These are sent as a ``BeliefMessage`` with ``replace=True``, meaning they will
|
||||
overwrite any existing norms/goals of the same name in the BDI agent.
|
||||
|
||||
:param program: The program object received from the API.
|
||||
"""
|
||||
asg = AgentSpeakGenerator()
|
||||
|
||||
asl_str = asg.generate(program)
|
||||
|
||||
file_name = "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
|
||||
with open(file_name, "w") as f:
|
||||
f.write(asl_str)
|
||||
|
||||
msg = InternalMessage(
|
||||
sender=self.name,
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
body=file_name,
|
||||
thread="new_program",
|
||||
)
|
||||
|
||||
await self.send(msg)
|
||||
|
||||
async def _receive_programs(self):
|
||||
"""
|
||||
@@ -662,7 +72,7 @@ class BDIProgramManager(BaseAgent):
|
||||
self.logger.exception("Received an invalid program.")
|
||||
continue
|
||||
|
||||
await self._send_to_bdi(program)
|
||||
await self._create_agentspeak_and_send_to_bdi(program)
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
@@ -678,7 +88,3 @@ class BDIProgramManager(BaseAgent):
|
||||
self.sub_socket.subscribe("program")
|
||||
|
||||
self.add_behavior(self._receive_programs())
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
do_things()
|
||||
|
||||
@@ -101,7 +101,7 @@ class BDIBeliefCollectorAgent(BaseAgent):
|
||||
:return: A Belief object if the input is valid or None.
|
||||
"""
|
||||
try:
|
||||
return Belief(name=name, arguments=arguments)
|
||||
return Belief(name=name, arguments=arguments, replace=name == "user_said")
|
||||
except ValidationError:
|
||||
return None
|
||||
|
||||
@@ -144,7 +144,7 @@ class BDIBeliefCollectorAgent(BaseAgent):
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=BeliefMessage(create=beliefs).model_dump_json(),
|
||||
body=BeliefMessage(beliefs=beliefs).model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
|
||||
|
||||
5
src/control_backend/agents/bdi/default_behavior.asl
Normal file
5
src/control_backend/agents/bdi/default_behavior.asl
Normal file
@@ -0,0 +1,5 @@
|
||||
norms("").
|
||||
|
||||
+user_said(Message) : norms(Norms) <-
|
||||
-user_said(Message);
|
||||
.reply(Message, Norms).
|
||||
@@ -1,6 +0,0 @@
|
||||
norms("").
|
||||
goals("").
|
||||
|
||||
+user_said(Message) : norms(Norms) & goals(Goals) <-
|
||||
-user_said(Message);
|
||||
.reply(Message, Norms, Goals).
|
||||
@@ -1,23 +1,8 @@
|
||||
import asyncio
|
||||
import json
|
||||
|
||||
import httpx
|
||||
from pydantic import ValidationError
|
||||
from slugify import slugify
|
||||
|
||||
from control_backend.agents.base import BaseAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief as InternalBelief
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
|
||||
from control_backend.schemas.program import (
|
||||
Belief,
|
||||
ConditionalNorm,
|
||||
InferredBelief,
|
||||
Program,
|
||||
SemanticBelief,
|
||||
)
|
||||
|
||||
|
||||
class TextBeliefExtractorAgent(BaseAgent):
|
||||
@@ -27,110 +12,46 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
This agent is responsible for processing raw text (e.g., from speech transcription) and
|
||||
extracting semantic beliefs from it.
|
||||
|
||||
It uses the available beliefs received from the program manager to try to extract beliefs from a
|
||||
user's message, sends and updated beliefs to the BDI core, and forms a ``user_said`` belief from
|
||||
the message itself.
|
||||
In the current demonstration version, it performs a simple wrapping of the user's input
|
||||
into a ``user_said`` belief. In a full implementation, this agent would likely interact
|
||||
with an LLM or NLU engine to extract intent, entities, and other structured information.
|
||||
"""
|
||||
|
||||
def __init__(self, name: str):
|
||||
super().__init__(name)
|
||||
self.beliefs: dict[str, bool] = {}
|
||||
self.available_beliefs: list[SemanticBelief] = []
|
||||
self.conversation = ChatHistory(messages=[])
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent and its resources.
|
||||
"""
|
||||
self.logger.info("Setting up %s.", self.name)
|
||||
self.logger.info("Settting up %s.", self.name)
|
||||
# Setup LLM belief context if needed (currently demo is just passthrough)
|
||||
self.beliefs = {"mood": ["X"], "car": ["Y"]}
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming messages. Expect messages from the Transcriber agent, LLM agent, and the
|
||||
Program manager agent.
|
||||
Handle incoming messages, primarily from the Transcription Agent.
|
||||
|
||||
:param msg: The received message.
|
||||
:param msg: The received message containing transcribed text.
|
||||
"""
|
||||
sender = msg.sender
|
||||
if sender == settings.agent_settings.transcription_name:
|
||||
self.logger.debug("Received text from transcriber: %s", msg.body)
|
||||
await self._process_transcription_demo(msg.body)
|
||||
else:
|
||||
self.logger.info("Discarding message from %s", sender)
|
||||
|
||||
match sender:
|
||||
case settings.agent_settings.transcription_name:
|
||||
self.logger.debug("Received text from transcriber: %s", msg.body)
|
||||
self._apply_conversation_message(ChatMessage(role="user", content=msg.body))
|
||||
await self._infer_new_beliefs()
|
||||
await self._user_said(msg.body)
|
||||
case settings.agent_settings.llm_name:
|
||||
self.logger.debug("Received text from LLM: %s", msg.body)
|
||||
self._apply_conversation_message(ChatMessage(role="assistant", content=msg.body))
|
||||
case settings.agent_settings.bdi_program_manager_name:
|
||||
self._handle_program_manager_message(msg)
|
||||
case _:
|
||||
self.logger.info("Discarding message from %s", sender)
|
||||
return
|
||||
|
||||
def _apply_conversation_message(self, message: ChatMessage):
|
||||
async def _process_transcription_demo(self, txt: str):
|
||||
"""
|
||||
Save the chat message to our conversation history, taking into account the conversation
|
||||
length limit.
|
||||
Process the transcribed text and generate beliefs.
|
||||
|
||||
:param message: The chat message to add to the conversation history.
|
||||
**Demo Implementation:**
|
||||
Currently, this method takes the raw text ``txt`` and wraps it into a belief structure:
|
||||
``user_said("txt")``.
|
||||
|
||||
This belief is then sent to the :class:`BDIBeliefCollectorAgent`.
|
||||
|
||||
:param txt: The raw transcribed text string.
|
||||
"""
|
||||
length_limit = settings.behaviour_settings.conversation_history_length_limit
|
||||
self.conversation.messages = (self.conversation.messages + [message])[-length_limit:]
|
||||
|
||||
def _handle_program_manager_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle a message from the program manager: extract available beliefs from it.
|
||||
|
||||
:param msg: The received message from the program manager.
|
||||
"""
|
||||
try:
|
||||
program = Program.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
self.logger.warning(
|
||||
"Received message from program manager but it is not a valid program."
|
||||
)
|
||||
return
|
||||
|
||||
self.logger.debug("Received a program from the program manager.")
|
||||
|
||||
self.available_beliefs = self._extract_basic_beliefs_from_program(program)
|
||||
|
||||
# TODO Copied from an incomplete version of the program manager. Use that one instead.
|
||||
@staticmethod
|
||||
def _extract_basic_beliefs_from_program(program: Program) -> list[SemanticBelief]:
|
||||
beliefs = []
|
||||
|
||||
for phase in program.phases:
|
||||
for norm in phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
beliefs += TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(
|
||||
norm.condition
|
||||
)
|
||||
|
||||
for trigger in phase.triggers:
|
||||
beliefs += TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(
|
||||
trigger.condition
|
||||
)
|
||||
|
||||
return beliefs
|
||||
|
||||
# TODO Copied from an incomplete version of the program manager. Use that one instead.
|
||||
@staticmethod
|
||||
def _extract_basic_beliefs_from_belief(belief: Belief) -> list[SemanticBelief]:
|
||||
if isinstance(belief, InferredBelief):
|
||||
return TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(
|
||||
belief.left
|
||||
) + TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(belief.right)
|
||||
return [belief]
|
||||
|
||||
async def _user_said(self, text: str):
|
||||
"""
|
||||
Create a belief for the user's full speech.
|
||||
|
||||
:param text: User's transcribed text.
|
||||
"""
|
||||
belief = {"beliefs": {"user_said": [text]}, "type": "belief_extraction_text"}
|
||||
# For demo, just wrapping user text as user_said belief
|
||||
belief = {"beliefs": {"user_said": [txt]}, "type": "belief_extraction_text"}
|
||||
payload = json.dumps(belief)
|
||||
|
||||
belief_msg = InternalMessage(
|
||||
@@ -139,207 +60,6 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
body=payload,
|
||||
thread="beliefs",
|
||||
)
|
||||
|
||||
await self.send(belief_msg)
|
||||
|
||||
async def _infer_new_beliefs(self):
|
||||
"""
|
||||
Process conversation history to extract beliefs, semantically. Any changed beliefs are sent
|
||||
to the BDI core.
|
||||
"""
|
||||
# Return instantly if there are no beliefs to infer
|
||||
if not self.available_beliefs:
|
||||
return
|
||||
|
||||
candidate_beliefs = await self._infer_turn()
|
||||
belief_changes = BeliefMessage()
|
||||
for belief_key, belief_value in candidate_beliefs.items():
|
||||
if belief_value is None:
|
||||
continue
|
||||
old_belief_value = self.beliefs.get(belief_key)
|
||||
if belief_value == old_belief_value:
|
||||
continue
|
||||
|
||||
self.beliefs[belief_key] = belief_value
|
||||
|
||||
belief = InternalBelief(name=belief_key, arguments=None)
|
||||
if belief_value:
|
||||
belief_changes.create.append(belief)
|
||||
else:
|
||||
belief_changes.delete.append(belief)
|
||||
|
||||
# Return if there were no changes in beliefs
|
||||
if not belief_changes.has_values():
|
||||
return
|
||||
|
||||
beliefs_message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=belief_changes.model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
await self.send(beliefs_message)
|
||||
|
||||
@staticmethod
|
||||
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
|
||||
k, m = divmod(len(items), n)
|
||||
return [items[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)]
|
||||
|
||||
async def _infer_turn(self) -> dict:
|
||||
"""
|
||||
Process the stored conversation history to extract semantic beliefs. Returns a list of
|
||||
beliefs that have been set to ``True``, ``False`` or ``None``.
|
||||
|
||||
:return: A dict mapping belief names to a value ``True``, ``False`` or ``None``.
|
||||
"""
|
||||
n_parallel = max(1, min(settings.llm_settings.n_parallel - 1, len(self.available_beliefs)))
|
||||
all_beliefs = await asyncio.gather(
|
||||
*[
|
||||
self._infer_beliefs(self.conversation, beliefs)
|
||||
for beliefs in self._split_into_chunks(self.available_beliefs, n_parallel)
|
||||
]
|
||||
)
|
||||
retval = {}
|
||||
for beliefs in all_beliefs:
|
||||
if beliefs is None:
|
||||
continue
|
||||
retval.update(beliefs)
|
||||
return retval
|
||||
|
||||
@staticmethod
|
||||
def _create_belief_schema(belief: SemanticBelief) -> tuple[str, dict]:
|
||||
# TODO: use real belief names
|
||||
return belief.name or slugify(belief.description), {
|
||||
"type": ["boolean", "null"],
|
||||
"description": belief.description,
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _create_beliefs_schema(beliefs: list[SemanticBelief]) -> dict:
|
||||
belief_schemas = [
|
||||
TextBeliefExtractorAgent._create_belief_schema(belief) for belief in beliefs
|
||||
]
|
||||
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": dict(belief_schemas),
|
||||
"required": [name for name, _ in belief_schemas],
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _format_message(message: ChatMessage):
|
||||
return f"{message.role.upper()}:\n{message.content}"
|
||||
|
||||
@staticmethod
|
||||
def _format_conversation(conversation: ChatHistory):
|
||||
return "\n\n".join(
|
||||
[TextBeliefExtractorAgent._format_message(message) for message in conversation.messages]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _format_beliefs(beliefs: list[SemanticBelief]):
|
||||
# TODO: use real belief names
|
||||
return "\n".join(
|
||||
[
|
||||
f"- {belief.name or slugify(belief.description)}: {belief.description}"
|
||||
for belief in beliefs
|
||||
]
|
||||
)
|
||||
|
||||
async def _infer_beliefs(
|
||||
self,
|
||||
conversation: ChatHistory,
|
||||
beliefs: list[SemanticBelief],
|
||||
) -> dict | None:
|
||||
"""
|
||||
Infer given beliefs based on the given conversation.
|
||||
:param conversation: The conversation to infer beliefs from.
|
||||
:param beliefs: The beliefs to infer.
|
||||
:return: A dict containing belief names and a boolean whether they hold, or None if the
|
||||
belief cannot be inferred based on the given conversation.
|
||||
"""
|
||||
example = {
|
||||
"example_belief": True,
|
||||
}
|
||||
|
||||
prompt = f"""{self._format_conversation(conversation)}
|
||||
|
||||
Given the above conversation, what beliefs can be inferred?
|
||||
If there is no relevant information about a belief belief, give null.
|
||||
In case messages conflict, prefer using the most recent messages for inference.
|
||||
|
||||
Choose from the following list of beliefs, formatted as (belief_name, description):
|
||||
{self._format_beliefs(beliefs)}
|
||||
|
||||
Respond with a JSON similar to the following, but with the property names as given above:
|
||||
{json.dumps(example, indent=2)}
|
||||
"""
|
||||
|
||||
schema = self._create_beliefs_schema(beliefs)
|
||||
|
||||
return await self._retry_query_llm(prompt, schema)
|
||||
|
||||
async def _retry_query_llm(self, prompt: str, schema: dict, tries: int = 3) -> dict | None:
|
||||
"""
|
||||
Query the LLM with the given prompt and schema, return an instance of a dict conforming
|
||||
to this schema. Try ``tries`` times, or return None.
|
||||
|
||||
:param prompt: Prompt to be queried.
|
||||
:param schema: Schema to be queried.
|
||||
:return: An instance of a dict conforming to this schema, or None if failed.
|
||||
"""
|
||||
try_count = 0
|
||||
while try_count < tries:
|
||||
try_count += 1
|
||||
|
||||
try:
|
||||
return await self._query_llm(prompt, schema)
|
||||
except (httpx.HTTPError, json.JSONDecodeError, KeyError) as e:
|
||||
if try_count < tries:
|
||||
continue
|
||||
self.logger.exception(
|
||||
"Failed to get LLM response after %d tries.",
|
||||
try_count,
|
||||
exc_info=e,
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
async def _query_llm(prompt: str, schema: dict) -> dict:
|
||||
"""
|
||||
Query an LLM with the given prompt and schema, return an instance of a dict conforming to
|
||||
that schema.
|
||||
|
||||
:param prompt: The prompt to be queried.
|
||||
:param schema: Schema to use during response.
|
||||
:return: A dict conforming to this schema.
|
||||
:raises httpx.HTTPStatusError: If the LLM server responded with an error.
|
||||
:raises json.JSONDecodeError: If the LLM response was not valid JSON. May happen if the
|
||||
response was cut off early due to length limitations.
|
||||
:raises KeyError: If the LLM server responded with no error, but the response was invalid.
|
||||
"""
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
settings.llm_settings.local_llm_url,
|
||||
json={
|
||||
"model": settings.llm_settings.local_llm_model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"response_format": {
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": "Beliefs",
|
||||
"strict": True,
|
||||
"schema": schema,
|
||||
},
|
||||
},
|
||||
"reasoning_effort": "low",
|
||||
"temperature": settings.llm_settings.code_temperature,
|
||||
"stream": False,
|
||||
},
|
||||
timeout=None,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
response_json = response.json()
|
||||
json_message = response_json["choices"][0]["message"]["content"]
|
||||
return json.loads(json_message)
|
||||
self.logger.info("Sent %d beliefs to the belief collector.", len(belief["beliefs"]))
|
||||
|
||||
@@ -3,14 +3,11 @@ import json
|
||||
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
from pydantic import ValidationError
|
||||
from zmq.asyncio import Context
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.actuation.robot_gesture_agent import RobotGestureAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.ri_message import PauseCommand
|
||||
|
||||
from ..actuation.robot_speech_agent import RobotSpeechAgent
|
||||
from ..perception import VADAgent
|
||||
@@ -185,7 +182,6 @@ class RICommunicationAgent(BaseAgent):
|
||||
self._req_socket.bind(addr)
|
||||
case "actuation":
|
||||
gesture_data = port_data.get("gestures", [])
|
||||
single_gesture_data = port_data.get("single_gestures", [])
|
||||
robot_speech_agent = RobotSpeechAgent(
|
||||
settings.agent_settings.robot_speech_name,
|
||||
address=addr,
|
||||
@@ -196,7 +192,6 @@ class RICommunicationAgent(BaseAgent):
|
||||
address=addr,
|
||||
bind=bind,
|
||||
gesture_data=gesture_data,
|
||||
single_gesture_data=single_gesture_data,
|
||||
)
|
||||
await robot_speech_agent.start()
|
||||
await asyncio.sleep(0.1) # Small delay
|
||||
@@ -301,11 +296,3 @@ class RICommunicationAgent(BaseAgent):
|
||||
self.logger.debug("Restarting communication negotiation.")
|
||||
if await self._negotiate_connection(max_retries=1):
|
||||
self.connected = True
|
||||
|
||||
async def handle_message(self, msg : InternalMessage):
|
||||
try:
|
||||
pause_command = PauseCommand.model_validate_json(msg.body)
|
||||
self._req_socket.send_json(pause_command.model_dump())
|
||||
self.logger.debug(self._req_socket.recv_json())
|
||||
except ValidationError:
|
||||
self.logger.warning("Incorrect message format for PauseCommand.")
|
||||
|
||||
@@ -64,12 +64,11 @@ class LLMAgent(BaseAgent):
|
||||
|
||||
:param message: The parsed prompt message containing text, norms, and goals.
|
||||
"""
|
||||
full_message = ""
|
||||
async for chunk in self._query_llm(message.text, message.norms, message.goals):
|
||||
await self._send_reply(chunk)
|
||||
full_message += chunk
|
||||
self.logger.debug("Finished processing BDI message. Response sent in chunks to BDI core.")
|
||||
await self._send_full_reply(full_message)
|
||||
self.logger.debug(
|
||||
"Finished processing BDI message. Response sent in chunks to BDI core."
|
||||
)
|
||||
|
||||
async def _send_reply(self, msg: str):
|
||||
"""
|
||||
@@ -84,19 +83,6 @@ class LLMAgent(BaseAgent):
|
||||
)
|
||||
await self.send(reply)
|
||||
|
||||
async def _send_full_reply(self, msg: str):
|
||||
"""
|
||||
Sends a response message (full) to agents that need it.
|
||||
|
||||
:param msg: The text content of the message.
|
||||
"""
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=self.name,
|
||||
body=msg,
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
async def _query_llm(
|
||||
self, prompt: str, norms: list[str], goals: list[str]
|
||||
) -> AsyncGenerator[str]:
|
||||
@@ -186,7 +172,7 @@ class LLMAgent(BaseAgent):
|
||||
json={
|
||||
"model": settings.llm_settings.local_llm_model,
|
||||
"messages": messages,
|
||||
"temperature": settings.llm_settings.chat_temperature,
|
||||
"temperature": 0.3,
|
||||
"stream": True,
|
||||
},
|
||||
) as response:
|
||||
|
||||
@@ -1,68 +0,0 @@
|
||||
import asyncio
|
||||
import json
|
||||
|
||||
import zmq
|
||||
from zmq.asyncio import Context
|
||||
|
||||
from control_backend.agents.base import BaseAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
|
||||
|
||||
class TestPauseAgent(BaseAgent):
|
||||
def __init__(self, name: str):
|
||||
super().__init__(name)
|
||||
|
||||
async def setup(self):
|
||||
context = Context.instance()
|
||||
self.pub_socket = context.socket(zmq.PUB)
|
||||
self.pub_socket.connect(settings.zmq_settings.internal_pub_address)
|
||||
|
||||
self.add_behavior(self._pause_command_loop())
|
||||
self.logger.debug("TestPauseAgent setup complete.")
|
||||
|
||||
async def _pause_command_loop(self):
|
||||
print("Starting Pause command test loop.")
|
||||
while True:
|
||||
pause_command = {
|
||||
"endpoint": "pause",
|
||||
"data": True,
|
||||
}
|
||||
|
||||
message = InternalMessage(
|
||||
to="ri_communication_agent",
|
||||
sender=self.name,
|
||||
body=json.dumps(pause_command),
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
# User interrupt message
|
||||
data = {
|
||||
"type": "pause",
|
||||
"context": True,
|
||||
}
|
||||
await self.pub_socket.send_multipart([b"button_pressed", json.dumps(data).encode()])
|
||||
|
||||
self.logger.info("Pausing robot actions.")
|
||||
await asyncio.sleep(15) # Simulate delay between messages
|
||||
|
||||
pause_command = {
|
||||
"endpoint": "pause",
|
||||
"data": False,
|
||||
}
|
||||
message = InternalMessage(
|
||||
to="ri_communication_agent",
|
||||
sender=self.name,
|
||||
body=json.dumps(pause_command),
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
# User interrupt message
|
||||
data = {
|
||||
"type": "pause",
|
||||
"context": False,
|
||||
}
|
||||
await self.pub_socket.send_multipart([b"button_pressed", json.dumps(data).encode()])
|
||||
|
||||
self.logger.info("Resuming robot actions.")
|
||||
await asyncio.sleep(15) # Simulate delay between messages
|
||||
@@ -7,7 +7,6 @@ import zmq.asyncio as azmq
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.internal_message import InternalMessage
|
||||
|
||||
from ...schemas.program_status import PROGRAM_STATUS, ProgramStatus
|
||||
from .transcription_agent.transcription_agent import TranscriptionAgent
|
||||
@@ -87,12 +86,6 @@ class VADAgent(BaseAgent):
|
||||
self.audio_buffer = np.array([], dtype=np.float32)
|
||||
self.i_since_speech = settings.behaviour_settings.vad_initial_since_speech
|
||||
self._ready = asyncio.Event()
|
||||
|
||||
# Pause control
|
||||
self._reset_needed = False
|
||||
self._paused = asyncio.Event()
|
||||
self._paused.set() # Not paused at start
|
||||
|
||||
self.model = None
|
||||
|
||||
async def setup(self):
|
||||
@@ -220,16 +213,6 @@ class VADAgent(BaseAgent):
|
||||
"""
|
||||
await self._ready.wait()
|
||||
while self._running:
|
||||
await self._paused.wait()
|
||||
|
||||
# After being unpaused, reset stream and buffers
|
||||
if self._reset_needed:
|
||||
self.logger.debug("Resuming: resetting stream and buffers.")
|
||||
await self._reset_stream()
|
||||
self.audio_buffer = np.array([], dtype=np.float32)
|
||||
self.i_since_speech = settings.behaviour_settings.vad_initial_since_speech
|
||||
self._reset_needed = False
|
||||
|
||||
assert self.audio_in_poller is not None
|
||||
data = await self.audio_in_poller.poll()
|
||||
if data is None:
|
||||
@@ -271,27 +254,3 @@ class VADAgent(BaseAgent):
|
||||
# At this point, we know that the speech has ended.
|
||||
# Prepend the last chunk that had no speech, for a more fluent boundary
|
||||
self.audio_buffer = chunk
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming messages.
|
||||
|
||||
Expects messages to pause or resume the VAD processing from User Interrupt Agent.
|
||||
|
||||
:param msg: The received internal message.
|
||||
"""
|
||||
sender = msg.sender
|
||||
|
||||
if sender == settings.agent_settings.user_interrupt_name:
|
||||
if msg.body == "PAUSE":
|
||||
self.logger.info("Pausing VAD processing.")
|
||||
self._paused.clear()
|
||||
# If the robot needs to pick up speaking where it left off, do not set _reset_needed
|
||||
self._reset_needed = True
|
||||
elif msg.body == "RESUME":
|
||||
self.logger.info("Resuming VAD processing.")
|
||||
self._paused.set()
|
||||
else:
|
||||
self.logger.warning(f"Unknown command from User Interrupt Agent: {msg.body}")
|
||||
else:
|
||||
self.logger.debug(f"Ignoring message from unknown sender: {sender}")
|
||||
@@ -1,189 +0,0 @@
|
||||
import json
|
||||
|
||||
import zmq
|
||||
from zmq.asyncio import Context
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.ri_message import (
|
||||
GestureCommand,
|
||||
PauseCommand,
|
||||
RIEndpoint,
|
||||
SpeechCommand,
|
||||
)
|
||||
|
||||
|
||||
class UserInterruptAgent(BaseAgent):
|
||||
"""
|
||||
User Interrupt Agent.
|
||||
|
||||
This agent receives button_pressed events from the external HTTP API
|
||||
(via ZMQ) and uses the associated context to trigger one of the following actions:
|
||||
|
||||
- Send a prioritized message to the `RobotSpeechAgent`
|
||||
- Send a prioritized gesture to the `RobotGestureAgent`
|
||||
- Send a belief override to the `BDIProgramManager`in order to activate a
|
||||
trigger/conditional norm or complete a goal.
|
||||
|
||||
Prioritized actions clear the current RI queue before inserting the new item,
|
||||
ensuring they are executed immediately after Pepper's current action has been fulfilled.
|
||||
|
||||
:ivar sub_socket: The ZMQ SUB socket used to receive user intterupts.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.sub_socket = None
|
||||
|
||||
async def _receive_button_event(self):
|
||||
"""
|
||||
The behaviour of the UserInterruptAgent.
|
||||
Continuous loop that receives button_pressed events from the button_pressed HTTP endpoint.
|
||||
These events contain a type and a context.
|
||||
|
||||
These are the different types and contexts:
|
||||
- type: "speech", context: string that the robot has to say.
|
||||
- type: "gesture", context: single gesture name that the robot has to perform.
|
||||
- type: "override", context: belief_id that overrides the goal/trigger/conditional norm.
|
||||
"""
|
||||
while True:
|
||||
topic, body = await self.sub_socket.recv_multipart()
|
||||
|
||||
try:
|
||||
event_data = json.loads(body)
|
||||
event_type = event_data.get("type") # e.g., "speech", "gesture"
|
||||
event_context = event_data.get("context") # e.g., "Hello, I am Pepper!"
|
||||
except json.JSONDecodeError:
|
||||
self.logger.error("Received invalid JSON payload on topic %s", topic)
|
||||
continue
|
||||
|
||||
if event_type == "speech":
|
||||
await self._send_to_speech_agent(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (speech) with context '%s' to RobotSpeechAgent.",
|
||||
event_context,
|
||||
)
|
||||
elif event_type == "gesture":
|
||||
await self._send_to_gesture_agent(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (gesture) with context '%s' to RobotGestureAgent.",
|
||||
event_context,
|
||||
)
|
||||
elif event_type == "override":
|
||||
await self._send_to_program_manager(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDIProgramManager.",
|
||||
event_context,
|
||||
)
|
||||
elif event_type == "pause":
|
||||
await self._send_pause_command(event_context)
|
||||
if event_context:
|
||||
self.logger.info("Sent pause command.")
|
||||
else:
|
||||
self.logger.info("Sent resume command.")
|
||||
else:
|
||||
self.logger.warning(
|
||||
"Received button press with unknown type '%s' (context: '%s').",
|
||||
event_type,
|
||||
event_context,
|
||||
)
|
||||
|
||||
async def _send_to_speech_agent(self, text_to_say: str):
|
||||
"""
|
||||
method to send prioritized speech command to RobotSpeechAgent.
|
||||
|
||||
:param text_to_say: The string that the robot has to say.
|
||||
"""
|
||||
cmd = SpeechCommand(data=text_to_say, is_priority=True)
|
||||
out_msg = InternalMessage(
|
||||
to=settings.agent_settings.robot_speech_name,
|
||||
sender=self.name,
|
||||
body=cmd.model_dump_json(),
|
||||
)
|
||||
await self.send(out_msg)
|
||||
|
||||
async def _send_to_gesture_agent(self, single_gesture_name: str):
|
||||
"""
|
||||
method to send prioritized gesture command to RobotGestureAgent.
|
||||
|
||||
:param single_gesture_name: The gesture tag that the robot has to perform.
|
||||
"""
|
||||
# the endpoint is set to always be GESTURE_SINGLE for user interrupts
|
||||
cmd = GestureCommand(
|
||||
endpoint=RIEndpoint.GESTURE_SINGLE, data=single_gesture_name, is_priority=True
|
||||
)
|
||||
out_msg = InternalMessage(
|
||||
to=settings.agent_settings.robot_gesture_name,
|
||||
sender=self.name,
|
||||
body=cmd.model_dump_json(),
|
||||
)
|
||||
await self.send(out_msg)
|
||||
|
||||
async def _send_to_program_manager(self, belief_id: str):
|
||||
"""
|
||||
Send a button_override belief to the BDIProgramManager.
|
||||
|
||||
:param belief_id: The belief_id that overrides the goal/trigger/conditional norm.
|
||||
this id can belong to a basic belief or an inferred belief.
|
||||
See also: https://utrechtuniversity.youtrack.cloud/articles/N25B-A-27/UI-components
|
||||
"""
|
||||
data = {"belief": belief_id}
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_program_manager_name,
|
||||
sender=self.name,
|
||||
body=json.dumps(data),
|
||||
thread="belief_override_id",
|
||||
)
|
||||
await self.send(message)
|
||||
self.logger.info(
|
||||
"Sent button_override belief with id '%s' to Program manager.",
|
||||
belief_id,
|
||||
)
|
||||
|
||||
async def _send_pause_command(self, pause : bool):
|
||||
"""
|
||||
Send a pause command to the Robot Interface via the RI Communication Agent.
|
||||
Send a pause command to the other internal agents; for now just VAD agent.
|
||||
"""
|
||||
cmd = PauseCommand(data=pause)
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.ri_communication_name,
|
||||
sender=self.name,
|
||||
body=cmd.model_dump_json(),
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
if pause:
|
||||
# Send pause to VAD agent
|
||||
vad_message = InternalMessage(
|
||||
to=settings.agent_settings.vad_name,
|
||||
sender=self.name,
|
||||
body="PAUSE",
|
||||
)
|
||||
await self.send(vad_message)
|
||||
self.logger.info("Sent pause command to VAD Agent and RI Communication Agent.")
|
||||
else:
|
||||
# Send resume to VAD agent
|
||||
vad_message = InternalMessage(
|
||||
to=settings.agent_settings.vad_name,
|
||||
sender=self.name,
|
||||
body="RESUME",
|
||||
)
|
||||
await self.send(vad_message)
|
||||
self.logger.info("Sent resume command to VAD Agent and RI Communication Agent.")
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent.
|
||||
|
||||
Connects the internal ZMQ SUB socket and subscribes to the 'button_pressed' topic.
|
||||
Starts the background behavior to receive the user interrupts.
|
||||
"""
|
||||
context = Context.instance()
|
||||
|
||||
self.sub_socket = context.socket(zmq.SUB)
|
||||
self.sub_socket.connect(settings.zmq_settings.internal_sub_address)
|
||||
self.sub_socket.subscribe("button_pressed")
|
||||
|
||||
self.add_behavior(self._receive_button_event())
|
||||
@@ -1,31 +0,0 @@
|
||||
import logging
|
||||
|
||||
from fastapi import APIRouter, Request
|
||||
|
||||
from control_backend.schemas.events import ButtonPressedEvent
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.post("/button_pressed", status_code=202)
|
||||
async def receive_button_event(event: ButtonPressedEvent, request: Request):
|
||||
"""
|
||||
Endpoint to handle external button press events.
|
||||
|
||||
Validates the event payload and publishes it to the internal 'button_pressed' topic.
|
||||
Subscribers (in this case user_interrupt_agent) will pick this up to trigger
|
||||
specific behaviors or state changes.
|
||||
|
||||
:param event: The parsed ButtonPressedEvent object.
|
||||
:param request: The FastAPI request object.
|
||||
"""
|
||||
logger.debug("Received button event: %s | %s", event.type, event.context)
|
||||
|
||||
topic = b"button_pressed"
|
||||
body = event.model_dump_json().encode()
|
||||
|
||||
pub_socket = request.app.state.endpoints_pub_socket
|
||||
await pub_socket.send_multipart([topic, body])
|
||||
|
||||
return {"status": "Event received"}
|
||||
@@ -1,6 +1,6 @@
|
||||
from fastapi.routing import APIRouter
|
||||
|
||||
from control_backend.api.v1.endpoints import button_pressed, logs, message, program, robot, sse
|
||||
from control_backend.api.v1.endpoints import logs, message, program, robot, sse
|
||||
|
||||
api_router = APIRouter()
|
||||
|
||||
@@ -13,5 +13,3 @@ api_router.include_router(robot.router, prefix="/robot", tags=["Pings", "Command
|
||||
api_router.include_router(logs.router, tags=["Logs"])
|
||||
|
||||
api_router.include_router(program.router, tags=["Program"])
|
||||
|
||||
api_router.include_router(button_pressed.router, tags=["Button Pressed Events"])
|
||||
|
||||
@@ -48,7 +48,6 @@ class AgentSettings(BaseModel):
|
||||
ri_communication_name: str = "ri_communication_agent"
|
||||
robot_speech_name: str = "robot_speech_agent"
|
||||
robot_gesture_name: str = "robot_gesture_agent"
|
||||
user_interrupt_name: str = "user_interrupt_agent"
|
||||
|
||||
|
||||
class BehaviourSettings(BaseModel):
|
||||
@@ -65,7 +64,6 @@ class BehaviourSettings(BaseModel):
|
||||
:ivar transcription_words_per_minute: Estimated words per minute for transcription timing.
|
||||
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
|
||||
:ivar transcription_token_buffer: Buffer for transcription tokens.
|
||||
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
|
||||
"""
|
||||
|
||||
sleep_s: float = 1.0
|
||||
@@ -83,9 +81,6 @@ class BehaviourSettings(BaseModel):
|
||||
transcription_words_per_token: float = 0.75 # (3 words = 4 tokens)
|
||||
transcription_token_buffer: int = 10
|
||||
|
||||
# Text belief extractor settings
|
||||
conversation_history_length_limit: int = 10
|
||||
|
||||
|
||||
class LLMSettings(BaseModel):
|
||||
"""
|
||||
@@ -93,17 +88,10 @@ class LLMSettings(BaseModel):
|
||||
|
||||
:ivar local_llm_url: URL for the local LLM API.
|
||||
:ivar local_llm_model: Name of the local LLM model to use.
|
||||
:ivar chat_temperature: The temperature to use while generating chat responses.
|
||||
:ivar code_temperature: The temperature to use while generating code-like responses like during
|
||||
belief inference.
|
||||
:ivar n_parallel: The number of parallel calls allowed to be made to the LLM.
|
||||
"""
|
||||
|
||||
local_llm_url: str = "http://localhost:1234/v1/chat/completions"
|
||||
local_llm_model: str = "gpt-oss"
|
||||
chat_temperature: float = 1.0
|
||||
code_temperature: float = 0.3
|
||||
n_parallel: int = 4
|
||||
|
||||
|
||||
class VADSettings(BaseModel):
|
||||
|
||||
@@ -40,10 +40,6 @@ from control_backend.agents.communication import RICommunicationAgent
|
||||
from control_backend.agents.llm import LLMAgent
|
||||
|
||||
# Other backend imports
|
||||
from control_backend.agents.mock_agents.test_pause_ri import TestPauseAgent
|
||||
|
||||
# User Interrupt Agent
|
||||
from control_backend.agents.user_interrupt.user_interrupt_agent import UserInterruptAgent
|
||||
from control_backend.api.v1.router import api_router
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.logging import setup_logging
|
||||
@@ -121,7 +117,6 @@ async def lifespan(app: FastAPI):
|
||||
BDICoreAgent,
|
||||
{
|
||||
"name": settings.agent_settings.bdi_core_name,
|
||||
"asl": "src/control_backend/agents/bdi/rules.asl",
|
||||
},
|
||||
),
|
||||
"BeliefCollectorAgent": (
|
||||
@@ -142,18 +137,6 @@ async def lifespan(app: FastAPI):
|
||||
"name": settings.agent_settings.bdi_program_manager_name,
|
||||
},
|
||||
),
|
||||
"TestPauseAgent": (
|
||||
TestPauseAgent,
|
||||
{
|
||||
"name": "pause_test_agent",
|
||||
},
|
||||
),
|
||||
"UserInterruptAgent": (
|
||||
UserInterruptAgent,
|
||||
{
|
||||
"name": settings.agent_settings.user_interrupt_name,
|
||||
},
|
||||
),
|
||||
}
|
||||
|
||||
agents = []
|
||||
|
||||
@@ -6,27 +6,18 @@ class Belief(BaseModel):
|
||||
Represents a single belief in the BDI system.
|
||||
|
||||
:ivar name: The functor or name of the belief (e.g., 'user_said').
|
||||
:ivar arguments: A list of string arguments for the belief, or None if the belief has no
|
||||
arguments.
|
||||
:ivar arguments: A list of string arguments for the belief.
|
||||
:ivar replace: If True, existing beliefs with this name should be replaced by this one.
|
||||
"""
|
||||
|
||||
name: str
|
||||
arguments: list[str] | None
|
||||
arguments: list[str]
|
||||
replace: bool = False
|
||||
|
||||
|
||||
class BeliefMessage(BaseModel):
|
||||
"""
|
||||
A container for communicating beliefs between agents.
|
||||
|
||||
:ivar create: Beliefs to create.
|
||||
:ivar delete: Beliefs to delete.
|
||||
:ivar replace: Beliefs to replace. Deletes all beliefs with the same name, replacing them with
|
||||
one new belief.
|
||||
A container for transporting a list of beliefs between agents.
|
||||
"""
|
||||
|
||||
create: list[Belief] = []
|
||||
delete: list[Belief] = []
|
||||
replace: list[Belief] = []
|
||||
|
||||
def has_values(self) -> bool:
|
||||
return len(self.create) > 0 or len(self.delete) > 0 or len(self.replace) > 0
|
||||
beliefs: list[Belief]
|
||||
|
||||
@@ -1,10 +0,0 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
role: str
|
||||
content: str
|
||||
|
||||
|
||||
class ChatHistory(BaseModel):
|
||||
messages: list[ChatMessage]
|
||||
@@ -1,6 +0,0 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ButtonPressedEvent(BaseModel):
|
||||
type: str
|
||||
context: str
|
||||
@@ -14,7 +14,6 @@ class RIEndpoint(str, Enum):
|
||||
GESTURE_TAG = "actuate/gesture/tag"
|
||||
PING = "ping"
|
||||
NEGOTIATE_PORTS = "negotiate/ports"
|
||||
PAUSE = "pause"
|
||||
|
||||
|
||||
class RIMessage(BaseModel):
|
||||
@@ -39,7 +38,6 @@ class SpeechCommand(RIMessage):
|
||||
|
||||
endpoint: RIEndpoint = RIEndpoint(RIEndpoint.SPEECH)
|
||||
data: str
|
||||
is_priority: bool = False
|
||||
|
||||
|
||||
class GestureCommand(RIMessage):
|
||||
@@ -54,7 +52,6 @@ class GestureCommand(RIMessage):
|
||||
RIEndpoint.GESTURE_SINGLE, RIEndpoint.GESTURE_TAG
|
||||
]
|
||||
data: str
|
||||
is_priority: bool = False
|
||||
|
||||
@model_validator(mode="after")
|
||||
def check_endpoint(self):
|
||||
@@ -65,14 +62,3 @@ class GestureCommand(RIMessage):
|
||||
if self.endpoint not in allowed:
|
||||
raise ValueError("endpoint must be GESTURE_SINGLE or GESTURE_TAG")
|
||||
return self
|
||||
|
||||
class PauseCommand(RIMessage):
|
||||
"""
|
||||
A specific command to pause or unpause the robot's actions.
|
||||
|
||||
:ivar endpoint: Fixed to ``RIEndpoint.PAUSE``.
|
||||
:ivar data: A boolean indicating whether to pause (True) or unpause (False).
|
||||
"""
|
||||
|
||||
endpoint: RIEndpoint = RIEndpoint(RIEndpoint.PAUSE)
|
||||
data: bool
|
||||
@@ -64,7 +64,7 @@ async def test_handle_message_sends_command():
|
||||
agent = mock_speech_agent()
|
||||
agent.pubsocket = pubsocket
|
||||
|
||||
payload = {"endpoint": "actuate/speech", "data": "hello", "is_priority": False}
|
||||
payload = {"endpoint": "actuate/speech", "data": "hello"}
|
||||
msg = InternalMessage(to="robot", sender="tester", body=json.dumps(payload))
|
||||
|
||||
await agent.handle_message(msg)
|
||||
@@ -75,7 +75,7 @@ async def test_handle_message_sends_command():
|
||||
@pytest.mark.asyncio
|
||||
async def test_zmq_command_loop_valid_payload(zmq_context):
|
||||
"""UI command is read from SUB and published."""
|
||||
command = {"endpoint": "actuate/speech", "data": "hello", "is_priority": False}
|
||||
command = {"endpoint": "actuate/speech", "data": "hello"}
|
||||
fake_socket = AsyncMock()
|
||||
|
||||
async def recv_once():
|
||||
|
||||
@@ -51,7 +51,7 @@ async def test_handle_belief_collector_message(agent, mock_settings):
|
||||
msg = InternalMessage(
|
||||
to="bdi_agent",
|
||||
sender=mock_settings.agent_settings.bdi_belief_collector_name,
|
||||
body=BeliefMessage(create=beliefs).model_dump_json(),
|
||||
body=BeliefMessage(beliefs=beliefs).model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
|
||||
@@ -64,26 +64,6 @@ async def test_handle_belief_collector_message(agent, mock_settings):
|
||||
assert args[2] == agentspeak.Literal("user_said", (agentspeak.Literal("Hello"),))
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_delete_belief_message(agent, mock_settings):
|
||||
"""Test that incoming beliefs to be deleted are removed from the BDI agent"""
|
||||
beliefs = [Belief(name="user_said", arguments=["Hello"])]
|
||||
|
||||
msg = InternalMessage(
|
||||
to="bdi_agent",
|
||||
sender=mock_settings.agent_settings.bdi_belief_collector_name,
|
||||
body=BeliefMessage(delete=beliefs).model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# Expect bdi_agent.call to be triggered to remove belief
|
||||
args = agent.bdi_agent.call.call_args.args
|
||||
assert args[0] == agentspeak.Trigger.removal
|
||||
assert args[1] == agentspeak.GoalType.belief
|
||||
assert args[2] == agentspeak.Literal("user_said", (agentspeak.Literal("Hello"),))
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_incorrect_belief_collector_message(agent, mock_settings):
|
||||
"""Test that incorrect message format triggers an exception."""
|
||||
@@ -148,8 +128,7 @@ def test_add_belief_sets_event(agent):
|
||||
agent._wake_bdi_loop = MagicMock()
|
||||
|
||||
belief = Belief(name="test_belief", arguments=["a", "b"])
|
||||
belief_changes = BeliefMessage(replace=[belief])
|
||||
agent._apply_belief_changes(belief_changes)
|
||||
agent._apply_beliefs([belief])
|
||||
|
||||
assert agent.bdi_agent.call.called
|
||||
agent._wake_bdi_loop.set.assert_called()
|
||||
@@ -158,7 +137,7 @@ def test_add_belief_sets_event(agent):
|
||||
def test_apply_beliefs_empty_returns(agent):
|
||||
"""Line: if not beliefs: return"""
|
||||
agent._wake_bdi_loop = MagicMock()
|
||||
agent._apply_belief_changes(BeliefMessage())
|
||||
agent._apply_beliefs([])
|
||||
agent.bdi_agent.call.assert_not_called()
|
||||
agent._wake_bdi_loop.set.assert_not_called()
|
||||
|
||||
@@ -241,9 +220,8 @@ def test_replace_belief_calls_remove_all(agent):
|
||||
agent._remove_all_with_name = MagicMock()
|
||||
agent._wake_bdi_loop = MagicMock()
|
||||
|
||||
belief = Belief(name="user_said", arguments=["Hello"])
|
||||
belief_changes = BeliefMessage(replace=[belief])
|
||||
agent._apply_belief_changes(belief_changes)
|
||||
belief = Belief(name="user_said", arguments=["Hello"], replace=True)
|
||||
agent._apply_beliefs([belief])
|
||||
|
||||
agent._remove_all_with_name.assert_called_with("user_said")
|
||||
|
||||
|
||||
@@ -1,6 +1,6 @@
|
||||
import asyncio
|
||||
import json
|
||||
import sys
|
||||
import uuid
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
import pytest
|
||||
@@ -8,52 +8,38 @@ import pytest
|
||||
from control_backend.agents.bdi.bdi_program_manager import BDIProgramManager
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.program import BasicNorm, Goal, Phase, Plan, Program
|
||||
from control_backend.schemas.program import Program
|
||||
|
||||
# Fix Windows Proactor loop for zmq
|
||||
if sys.platform.startswith("win"):
|
||||
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
||||
|
||||
|
||||
def make_valid_program_json(norm="N1", goal="G1") -> str:
|
||||
return Program(
|
||||
phases=[
|
||||
Phase(
|
||||
id=uuid.uuid4(),
|
||||
name="Basic Phase",
|
||||
norms=[
|
||||
BasicNorm(
|
||||
id=uuid.uuid4(),
|
||||
name=norm,
|
||||
norm=norm,
|
||||
),
|
||||
],
|
||||
goals=[
|
||||
Goal(
|
||||
id=uuid.uuid4(),
|
||||
name=goal,
|
||||
plan=Plan(
|
||||
id=uuid.uuid4(),
|
||||
name="Goal Plan",
|
||||
steps=[],
|
||||
),
|
||||
can_fail=False,
|
||||
),
|
||||
],
|
||||
triggers=[],
|
||||
),
|
||||
],
|
||||
).model_dump_json()
|
||||
def make_valid_program_json(norm="N1", goal="G1"):
|
||||
return json.dumps(
|
||||
{
|
||||
"phases": [
|
||||
{
|
||||
"id": "phase1",
|
||||
"label": "Phase 1",
|
||||
"triggers": [],
|
||||
"norms": [{"id": "n1", "label": "Norm 1", "norm": norm}],
|
||||
"goals": [
|
||||
{"id": "g1", "label": "Goal 1", "description": goal, "achieved": False}
|
||||
],
|
||||
}
|
||||
]
|
||||
}
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Functionality being rebuilt.")
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_bdi():
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
program = Program.model_validate_json(make_valid_program_json())
|
||||
await manager._send_to_bdi(program)
|
||||
await manager._create_agentspeak_and_send_to_bdi(program)
|
||||
|
||||
assert manager.send.await_count == 1
|
||||
msg: InternalMessage = manager.send.await_args[0][0]
|
||||
@@ -76,7 +62,7 @@ async def test_receive_programs_valid_and_invalid():
|
||||
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.sub_socket = sub
|
||||
manager._send_to_bdi = AsyncMock()
|
||||
manager._create_agentspeak_and_send_to_bdi = AsyncMock()
|
||||
|
||||
try:
|
||||
# Will give StopAsyncIteration when the predefined `sub.recv_multipart` side-effects run out
|
||||
@@ -85,7 +71,7 @@ async def test_receive_programs_valid_and_invalid():
|
||||
pass
|
||||
|
||||
# Only valid Program should have triggered _send_to_bdi
|
||||
assert manager._send_to_bdi.await_count == 1
|
||||
forwarded: Program = manager._send_to_bdi.await_args[0][0]
|
||||
assert forwarded.phases[0].norms[0].name == "N1"
|
||||
assert forwarded.phases[0].goals[0].name == "G1"
|
||||
assert manager._create_agentspeak_and_send_to_bdi.await_count == 1
|
||||
forwarded: Program = manager._create_agentspeak_and_send_to_bdi.await_args[0][0]
|
||||
assert forwarded.phases[0].norms[0].norm == "N1"
|
||||
assert forwarded.phases[0].goals[0].description == "G1"
|
||||
|
||||
@@ -86,7 +86,7 @@ async def test_send_beliefs_to_bdi(agent):
|
||||
sent: InternalMessage = agent.send.call_args.args[0]
|
||||
assert sent.to == settings.agent_settings.bdi_core_name
|
||||
assert sent.thread == "beliefs"
|
||||
assert json.loads(sent.body)["create"] == [belief.model_dump() for belief in beliefs]
|
||||
assert json.loads(sent.body)["beliefs"] == [belief.model_dump() for belief in beliefs]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
||||
@@ -1,346 +0,0 @@
|
||||
import json
|
||||
import uuid
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import httpx
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.bdi import TextBeliefExtractorAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.program import (
|
||||
ConditionalNorm,
|
||||
LLMAction,
|
||||
Phase,
|
||||
Plan,
|
||||
Program,
|
||||
SemanticBelief,
|
||||
Trigger,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
agent = TextBeliefExtractorAgent("text_belief_agent")
|
||||
agent.send = AsyncMock()
|
||||
agent._query_llm = AsyncMock()
|
||||
return agent
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def sample_program():
|
||||
return Program(
|
||||
phases=[
|
||||
Phase(
|
||||
name="Some phase",
|
||||
id=uuid.uuid4(),
|
||||
norms=[
|
||||
ConditionalNorm(
|
||||
name="Some norm",
|
||||
id=uuid.uuid4(),
|
||||
norm="Use nautical terms.",
|
||||
critical=False,
|
||||
condition=SemanticBelief(
|
||||
name="is_pirate",
|
||||
id=uuid.uuid4(),
|
||||
description="The user is a pirate. Perhaps because they say "
|
||||
"they are, or because they speak like a pirate "
|
||||
'with terms like "arr".',
|
||||
),
|
||||
),
|
||||
],
|
||||
goals=[],
|
||||
triggers=[
|
||||
Trigger(
|
||||
name="Some trigger",
|
||||
id=uuid.uuid4(),
|
||||
condition=SemanticBelief(
|
||||
name="no_more_booze",
|
||||
id=uuid.uuid4(),
|
||||
description="There is no more alcohol.",
|
||||
),
|
||||
plan=Plan(
|
||||
name="Some plan",
|
||||
id=uuid.uuid4(),
|
||||
steps=[
|
||||
LLMAction(
|
||||
name="Some action",
|
||||
id=uuid.uuid4(),
|
||||
goal="Suggest eating chocolate instead.",
|
||||
),
|
||||
],
|
||||
),
|
||||
),
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
def make_msg(sender: str, body: str, thread: str | None = None) -> InternalMessage:
|
||||
return InternalMessage(to="unused", sender=sender, body=body, thread=thread)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_ignores_other_agents(agent):
|
||||
msg = make_msg("unknown", "some data", None)
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.send.assert_not_called() # noqa # `agent.send` has no such property, but we mock it.
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_from_transcriber(agent, mock_settings):
|
||||
transcription = "hello world"
|
||||
msg = make_msg(mock_settings.agent_settings.transcription_name, transcription, None)
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
|
||||
sent: InternalMessage = agent.send.call_args.args[0] # noqa
|
||||
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
|
||||
assert sent.thread == "beliefs"
|
||||
parsed = json.loads(sent.body)
|
||||
assert parsed == {"beliefs": {"user_said": [transcription]}, "type": "belief_extraction_text"}
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_user_said(agent, mock_settings):
|
||||
transcription = "this is a test"
|
||||
|
||||
await agent._user_said(transcription)
|
||||
|
||||
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
|
||||
sent: InternalMessage = agent.send.call_args.args[0] # noqa
|
||||
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
|
||||
assert sent.thread == "beliefs"
|
||||
parsed = json.loads(sent.body)
|
||||
assert parsed["beliefs"]["user_said"] == [transcription]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_query_llm():
|
||||
mock_response = MagicMock()
|
||||
mock_response.json.return_value = {
|
||||
"choices": [
|
||||
{
|
||||
"message": {
|
||||
"content": "null",
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
mock_client = AsyncMock()
|
||||
mock_client.post.return_value = mock_response
|
||||
mock_async_client = MagicMock()
|
||||
mock_async_client.__aenter__.return_value = mock_client
|
||||
mock_async_client.__aexit__.return_value = None
|
||||
|
||||
with patch(
|
||||
"control_backend.agents.bdi.text_belief_extractor_agent.httpx.AsyncClient",
|
||||
return_value=mock_async_client,
|
||||
):
|
||||
agent = TextBeliefExtractorAgent("text_belief_agent")
|
||||
|
||||
res = await agent._query_llm("hello world", {"type": "null"})
|
||||
# Response content was set as "null", so should be deserialized as None
|
||||
assert res is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_retry_query_llm_success(agent):
|
||||
agent._query_llm.return_value = None
|
||||
res = await agent._retry_query_llm("hello world", {"type": "null"})
|
||||
|
||||
agent._query_llm.assert_called_once()
|
||||
assert res is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_retry_query_llm_success_after_failure(agent):
|
||||
agent._query_llm.side_effect = [KeyError(), "real value"]
|
||||
res = await agent._retry_query_llm("hello world", {"type": "string"})
|
||||
|
||||
assert agent._query_llm.call_count == 2
|
||||
assert res == "real value"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_retry_query_llm_failures(agent):
|
||||
agent._query_llm.side_effect = [KeyError(), KeyError(), KeyError(), "real value"]
|
||||
res = await agent._retry_query_llm("hello world", {"type": "string"})
|
||||
|
||||
assert agent._query_llm.call_count == 3
|
||||
assert res is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_retry_query_llm_fail_immediately(agent):
|
||||
agent._query_llm.side_effect = [KeyError(), "real value"]
|
||||
res = await agent._retry_query_llm("hello world", {"type": "string"}, tries=1)
|
||||
|
||||
assert agent._query_llm.call_count == 1
|
||||
assert res is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_extracting_beliefs_from_program(agent, sample_program):
|
||||
assert len(agent.available_beliefs) == 0
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=settings.agent_settings.bdi_program_manager_name,
|
||||
body=sample_program.model_dump_json(),
|
||||
),
|
||||
)
|
||||
assert len(agent.available_beliefs) == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_invalid_program(agent, sample_program):
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
assert len(agent.available_beliefs) == 2
|
||||
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=settings.agent_settings.bdi_program_manager_name,
|
||||
body=json.dumps({"phases": "Invalid"}),
|
||||
),
|
||||
)
|
||||
|
||||
assert len(agent.available_beliefs) == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_robot_response(agent):
|
||||
initial_length = len(agent.conversation.messages)
|
||||
response = "Hi, I'm Pepper. What's your name?"
|
||||
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=settings.agent_settings.llm_name,
|
||||
body=response,
|
||||
),
|
||||
)
|
||||
|
||||
assert len(agent.conversation.messages) == initial_length + 1
|
||||
assert agent.conversation.messages[-1].role == "assistant"
|
||||
assert agent.conversation.messages[-1].content == response
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_simulated_real_turn_with_beliefs(agent, sample_program):
|
||||
"""Test sending user message to extract beliefs from."""
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
|
||||
# Send a user message with the belief that there's no more booze
|
||||
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": True}
|
||||
assert len(agent.conversation.messages) == 0
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=settings.agent_settings.transcription_name,
|
||||
body="We're all out of schnaps.",
|
||||
),
|
||||
)
|
||||
assert len(agent.conversation.messages) == 1
|
||||
|
||||
# There should be a belief set and sent to the BDI core, as well as the user_said belief
|
||||
assert agent.send.call_count == 2
|
||||
|
||||
# First should be the beliefs message
|
||||
message: InternalMessage = agent.send.call_args_list[0].args[0]
|
||||
beliefs = BeliefMessage.model_validate_json(message.body)
|
||||
assert len(beliefs.create) == 1
|
||||
assert beliefs.create[0].name == "no_more_booze"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_simulated_real_turn_no_beliefs(agent, sample_program):
|
||||
"""Test a user message to extract beliefs from, but no beliefs are formed."""
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
|
||||
# Send a user message with no new beliefs
|
||||
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": None}
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=settings.agent_settings.transcription_name,
|
||||
body="Hello there!",
|
||||
),
|
||||
)
|
||||
|
||||
# Only the user_said belief should've been sent
|
||||
agent.send.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_simulated_real_turn_no_new_beliefs(agent, sample_program):
|
||||
"""
|
||||
Test a user message to extract beliefs from, but no new beliefs are formed because they already
|
||||
existed.
|
||||
"""
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
agent.beliefs["is_pirate"] = True
|
||||
|
||||
# Send a user message with the belief the user is a pirate, still
|
||||
agent._query_llm.return_value = {"is_pirate": True, "no_more_booze": None}
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=settings.agent_settings.transcription_name,
|
||||
body="Arr, nice to meet you, matey.",
|
||||
),
|
||||
)
|
||||
|
||||
# Only the user_said belief should've been sent, as no beliefs have changed
|
||||
agent.send.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_simulated_real_turn_remove_belief(agent, sample_program):
|
||||
"""
|
||||
Test a user message to extract beliefs from, but an existing belief is determined no longer to
|
||||
hold.
|
||||
"""
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
agent.beliefs["no_more_booze"] = True
|
||||
|
||||
# Send a user message with the belief the user is a pirate, still
|
||||
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": False}
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=settings.agent_settings.transcription_name,
|
||||
body="I found an untouched barrel of wine!",
|
||||
),
|
||||
)
|
||||
|
||||
# Both user_said and belief change should've been sent
|
||||
assert agent.send.call_count == 2
|
||||
|
||||
# Agent's current beliefs should've changed
|
||||
assert not agent.beliefs["no_more_booze"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_llm_failure_handling(agent, sample_program):
|
||||
"""
|
||||
Check that the agent handles failures gracefully without crashing.
|
||||
"""
|
||||
agent._query_llm.side_effect = httpx.HTTPError("")
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
|
||||
belief_changes = await agent._infer_turn()
|
||||
|
||||
assert len(belief_changes) == 0
|
||||
65
test/unit/agents/bdi/test_text_extractor.py
Normal file
65
test/unit/agents/bdi/test_text_extractor.py
Normal file
@@ -0,0 +1,65 @@
|
||||
import json
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.bdi import (
|
||||
TextBeliefExtractorAgent,
|
||||
)
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
agent = TextBeliefExtractorAgent("text_belief_agent")
|
||||
agent.send = AsyncMock()
|
||||
return agent
|
||||
|
||||
|
||||
def make_msg(sender: str, body: str, thread: str | None = None) -> InternalMessage:
|
||||
return InternalMessage(to="unused", sender=sender, body=body, thread=thread)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_ignores_other_agents(agent):
|
||||
msg = make_msg("unknown", "some data", None)
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.send.assert_not_called() # noqa # `agent.send` has no such property, but we mock it.
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_from_transcriber(agent, mock_settings):
|
||||
transcription = "hello world"
|
||||
msg = make_msg(mock_settings.agent_settings.transcription_name, transcription, None)
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
|
||||
sent: InternalMessage = agent.send.call_args.args[0] # noqa
|
||||
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
|
||||
assert sent.thread == "beliefs"
|
||||
parsed = json.loads(sent.body)
|
||||
assert parsed == {"beliefs": {"user_said": [transcription]}, "type": "belief_extraction_text"}
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_transcription_demo(agent, mock_settings):
|
||||
transcription = "this is a test"
|
||||
|
||||
await agent._process_transcription_demo(transcription)
|
||||
|
||||
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
|
||||
sent: InternalMessage = agent.send.call_args.args[0] # noqa
|
||||
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
|
||||
assert sent.thread == "beliefs"
|
||||
parsed = json.loads(sent.body)
|
||||
assert parsed["beliefs"]["user_said"] == [transcription]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup_initializes_beliefs(agent):
|
||||
"""Covers the setup method and ensures beliefs are initialized."""
|
||||
await agent.setup()
|
||||
assert agent.beliefs == {"mood": ["X"], "car": ["Y"]}
|
||||
@@ -67,7 +67,6 @@ async def test_setup_success_connects_and_starts_robot(zmq_context):
|
||||
address="tcp://localhost:5556",
|
||||
bind=False,
|
||||
gesture_data=[],
|
||||
single_gesture_data=[],
|
||||
)
|
||||
agent.add_behavior.assert_called_once()
|
||||
|
||||
|
||||
@@ -66,7 +66,7 @@ async def test_llm_processing_success(mock_httpx_client, mock_settings):
|
||||
# "Hello world." constitutes one sentence/chunk based on punctuation split
|
||||
# The agent should call send once with the full sentence
|
||||
assert agent.send.called
|
||||
args = agent.send.call_args_list[0][0][0]
|
||||
args = agent.send.call_args[0][0]
|
||||
assert args.to == mock_settings.agent_settings.bdi_core_name
|
||||
assert "Hello world." in args.body
|
||||
|
||||
@@ -197,9 +197,6 @@ async def test_query_llm_yields_final_tail_chunk(mock_settings):
|
||||
agent = LLMAgent("llm_agent")
|
||||
agent.send = AsyncMock()
|
||||
|
||||
agent.logger = MagicMock()
|
||||
agent.logger.llm = MagicMock()
|
||||
|
||||
# Patch _stream_query_llm to yield tokens that do NOT end with punctuation
|
||||
async def fake_stream(messages):
|
||||
yield "Hello"
|
||||
|
||||
@@ -1,146 +0,0 @@
|
||||
import asyncio
|
||||
import json
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.user_interrupt.user_interrupt_agent import UserInterruptAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.ri_message import RIEndpoint
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
agent = UserInterruptAgent(name="user_interrupt_agent")
|
||||
agent.send = AsyncMock()
|
||||
agent.logger = MagicMock()
|
||||
agent.sub_socket = AsyncMock()
|
||||
return agent
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_speech_agent(agent):
|
||||
"""Verify speech command format."""
|
||||
await agent._send_to_speech_agent("Hello World")
|
||||
|
||||
agent.send.assert_awaited_once()
|
||||
sent_msg: InternalMessage = agent.send.call_args.args[0]
|
||||
|
||||
assert sent_msg.to == settings.agent_settings.robot_speech_name
|
||||
body = json.loads(sent_msg.body)
|
||||
assert body["data"] == "Hello World"
|
||||
assert body["is_priority"] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_gesture_agent(agent):
|
||||
"""Verify gesture command format."""
|
||||
await agent._send_to_gesture_agent("wave_hand")
|
||||
|
||||
agent.send.assert_awaited_once()
|
||||
sent_msg: InternalMessage = agent.send.call_args.args[0]
|
||||
|
||||
assert sent_msg.to == settings.agent_settings.robot_gesture_name
|
||||
body = json.loads(sent_msg.body)
|
||||
assert body["data"] == "wave_hand"
|
||||
assert body["is_priority"] is True
|
||||
assert body["endpoint"] == RIEndpoint.GESTURE_SINGLE.value
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_program_manager(agent):
|
||||
"""Verify belief update format."""
|
||||
context_str = "2"
|
||||
|
||||
await agent._send_to_program_manager(context_str)
|
||||
|
||||
agent.send.assert_awaited_once()
|
||||
sent_msg: InternalMessage = agent.send.call_args.args[0]
|
||||
|
||||
assert sent_msg.to == settings.agent_settings.bdi_program_manager_name
|
||||
assert sent_msg.thread == "belief_override_id"
|
||||
|
||||
body = json.loads(sent_msg.body)
|
||||
|
||||
assert body["belief"] == context_str
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_routing_success(agent):
|
||||
"""
|
||||
Test that the loop correctly:
|
||||
1. Receives 'button_pressed' topic from ZMQ
|
||||
2. Parses the JSON payload to find 'type' and 'context'
|
||||
3. Calls the correct handler method based on 'type'
|
||||
"""
|
||||
# Prepare JSON payloads as bytes
|
||||
payload_speech = json.dumps({"type": "speech", "context": "Hello Speech"}).encode()
|
||||
payload_gesture = json.dumps({"type": "gesture", "context": "Hello Gesture"}).encode()
|
||||
payload_override = json.dumps({"type": "override", "context": "Hello Override"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
(b"button_pressed", payload_speech),
|
||||
(b"button_pressed", payload_gesture),
|
||||
(b"button_pressed", payload_override),
|
||||
asyncio.CancelledError, # Stop the infinite loop
|
||||
]
|
||||
|
||||
agent._send_to_speech_agent = AsyncMock()
|
||||
agent._send_to_gesture_agent = AsyncMock()
|
||||
agent._send_to_program_manager = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
await asyncio.sleep(0)
|
||||
|
||||
# Speech
|
||||
agent._send_to_speech_agent.assert_awaited_once_with("Hello Speech")
|
||||
|
||||
# Gesture
|
||||
agent._send_to_gesture_agent.assert_awaited_once_with("Hello Gesture")
|
||||
|
||||
# Override
|
||||
agent._send_to_program_manager.assert_awaited_once_with("Hello Override")
|
||||
|
||||
assert agent._send_to_speech_agent.await_count == 1
|
||||
assert agent._send_to_gesture_agent.await_count == 1
|
||||
assert agent._send_to_program_manager.await_count == 1
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_unknown_type(agent):
|
||||
"""Test that unknown 'type' values in the JSON log a warning and do not crash."""
|
||||
|
||||
# Prepare a payload with an unknown type
|
||||
payload_unknown = json.dumps({"type": "unknown_thing", "context": "some_data"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
(b"button_pressed", payload_unknown),
|
||||
asyncio.CancelledError,
|
||||
]
|
||||
|
||||
agent._send_to_speech_agent = AsyncMock()
|
||||
agent._send_to_gesture_agent = AsyncMock()
|
||||
agent._send_to_belief_collector = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
await asyncio.sleep(0)
|
||||
|
||||
# Ensure no handlers were called
|
||||
agent._send_to_speech_agent.assert_not_called()
|
||||
agent._send_to_gesture_agent.assert_not_called()
|
||||
agent._send_to_belief_collector.assert_not_called()
|
||||
|
||||
agent.logger.warning.assert_called_with(
|
||||
"Received button press with unknown type '%s' (context: '%s').",
|
||||
"unknown_thing",
|
||||
"some_data",
|
||||
)
|
||||
@@ -1,5 +1,4 @@
|
||||
import json
|
||||
import uuid
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
import pytest
|
||||
@@ -7,7 +6,7 @@ from fastapi import FastAPI
|
||||
from fastapi.testclient import TestClient
|
||||
|
||||
from control_backend.api.v1.endpoints import program
|
||||
from control_backend.schemas.program import BasicNorm, Goal, Phase, Plan, Program
|
||||
from control_backend.schemas.program import Program
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@@ -26,37 +25,29 @@ def client(app):
|
||||
|
||||
def make_valid_program_dict():
|
||||
"""Helper to create a valid Program JSON structure."""
|
||||
# Converting to JSON using Pydantic because it knows how to convert a UUID object
|
||||
program_json_str = Program(
|
||||
phases=[
|
||||
Phase(
|
||||
id=uuid.uuid4(),
|
||||
name="Basic Phase",
|
||||
norms=[
|
||||
BasicNorm(
|
||||
id=uuid.uuid4(),
|
||||
name="Some norm",
|
||||
norm="Do normal.",
|
||||
),
|
||||
return {
|
||||
"phases": [
|
||||
{
|
||||
"id": "phase1",
|
||||
"label": "basephase",
|
||||
"norms": [{"id": "n1", "label": "norm", "norm": "be nice"}],
|
||||
"goals": [
|
||||
{"id": "g1", "label": "goal", "description": "test goal", "achieved": False}
|
||||
],
|
||||
goals=[
|
||||
Goal(
|
||||
id=uuid.uuid4(),
|
||||
name="Some goal",
|
||||
plan=Plan(
|
||||
id=uuid.uuid4(),
|
||||
name="Goal Plan",
|
||||
steps=[],
|
||||
),
|
||||
can_fail=False,
|
||||
),
|
||||
"triggers": [
|
||||
{
|
||||
"id": "t1",
|
||||
"label": "trigger",
|
||||
"type": "keywords",
|
||||
"keywords": [
|
||||
{"id": "kw1", "keyword": "keyword1"},
|
||||
{"id": "kw2", "keyword": "keyword2"},
|
||||
],
|
||||
},
|
||||
],
|
||||
triggers=[],
|
||||
),
|
||||
],
|
||||
).model_dump_json()
|
||||
# Converting back to a dict because that's what's expected
|
||||
return json.loads(program_json_str)
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
def test_receive_program_success(client):
|
||||
@@ -80,8 +71,7 @@ def test_receive_program_success(client):
|
||||
sent_bytes = args[0][1]
|
||||
sent_obj = json.loads(sent_bytes.decode())
|
||||
|
||||
# Converting to JSON using Pydantic because it knows how to handle UUIDs
|
||||
expected_obj = json.loads(Program.model_validate(program_dict).model_dump_json())
|
||||
expected_obj = Program.model_validate(program_dict).model_dump()
|
||||
assert sent_obj == expected_obj
|
||||
|
||||
|
||||
|
||||
@@ -1,65 +1,49 @@
|
||||
import uuid
|
||||
|
||||
import pytest
|
||||
from pydantic import ValidationError
|
||||
|
||||
from control_backend.schemas.program import (
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
KeywordBelief,
|
||||
LogicalOperator,
|
||||
KeywordTrigger,
|
||||
Norm,
|
||||
Phase,
|
||||
Plan,
|
||||
Program,
|
||||
SemanticBelief,
|
||||
Trigger,
|
||||
TriggerKeyword,
|
||||
)
|
||||
|
||||
|
||||
def base_norm() -> BasicNorm:
|
||||
return BasicNorm(
|
||||
id=uuid.uuid4(),
|
||||
name="testNormName",
|
||||
def base_norm() -> Norm:
|
||||
return Norm(
|
||||
id="norm1",
|
||||
label="testNorm",
|
||||
norm="testNormNorm",
|
||||
critical=False,
|
||||
)
|
||||
|
||||
|
||||
def base_goal() -> Goal:
|
||||
return Goal(
|
||||
id=uuid.uuid4(),
|
||||
name="testGoalName",
|
||||
plan=Plan(
|
||||
id=uuid.uuid4(),
|
||||
name="testGoalPlanName",
|
||||
steps=[],
|
||||
),
|
||||
can_fail=False,
|
||||
id="goal1",
|
||||
label="testGoal",
|
||||
description="testGoalDescription",
|
||||
achieved=False,
|
||||
)
|
||||
|
||||
|
||||
def base_trigger() -> Trigger:
|
||||
return Trigger(
|
||||
id=uuid.uuid4(),
|
||||
name="testTriggerName",
|
||||
condition=KeywordBelief(
|
||||
id=uuid.uuid4(),
|
||||
name="testTriggerKeywordBeliefTriggerName",
|
||||
keyword="Keyword",
|
||||
),
|
||||
plan=Plan(
|
||||
id=uuid.uuid4(),
|
||||
name="testTriggerPlanName",
|
||||
steps=[],
|
||||
),
|
||||
def base_trigger() -> KeywordTrigger:
|
||||
return KeywordTrigger(
|
||||
id="trigger1",
|
||||
label="testTrigger",
|
||||
type="keywords",
|
||||
keywords=[
|
||||
TriggerKeyword(id="keyword1", keyword="testKeyword1"),
|
||||
TriggerKeyword(id="keyword1", keyword="testKeyword2"),
|
||||
],
|
||||
)
|
||||
|
||||
|
||||
def base_phase() -> Phase:
|
||||
return Phase(
|
||||
id=uuid.uuid4(),
|
||||
id="phase1",
|
||||
label="basephase",
|
||||
norms=[base_norm()],
|
||||
goals=[base_goal()],
|
||||
triggers=[base_trigger()],
|
||||
@@ -74,7 +58,7 @@ def invalid_program() -> dict:
|
||||
# wrong types inside phases list (not Phase objects)
|
||||
return {
|
||||
"phases": [
|
||||
{"id": uuid.uuid4()}, # incomplete
|
||||
{"id": "phase1"}, # incomplete
|
||||
{"not_a_phase": True},
|
||||
]
|
||||
}
|
||||
@@ -93,112 +77,11 @@ def test_valid_deepprogram():
|
||||
# validate nested components directly
|
||||
phase = validated.phases[0]
|
||||
assert isinstance(phase.goals[0], Goal)
|
||||
assert isinstance(phase.triggers[0], Trigger)
|
||||
assert isinstance(phase.norms[0], BasicNorm)
|
||||
assert isinstance(phase.triggers[0], KeywordTrigger)
|
||||
assert isinstance(phase.norms[0], Norm)
|
||||
|
||||
|
||||
def test_invalid_program():
|
||||
bad = invalid_program()
|
||||
with pytest.raises(ValidationError):
|
||||
Program.model_validate(bad)
|
||||
|
||||
|
||||
def test_conditional_norm_parsing():
|
||||
"""
|
||||
Check that pydantic is able to preserve the type of the norm, that it doesn't lose its
|
||||
"condition" field when serializing and deserializing.
|
||||
"""
|
||||
norm = ConditionalNorm(
|
||||
name="testNormName",
|
||||
id=uuid.uuid4(),
|
||||
norm="testNormNorm",
|
||||
critical=False,
|
||||
condition=KeywordBelief(
|
||||
name="testKeywordBelief",
|
||||
id=uuid.uuid4(),
|
||||
keyword="testKeywordBelief",
|
||||
),
|
||||
)
|
||||
program = Program(
|
||||
phases=[
|
||||
Phase(
|
||||
name="Some phase",
|
||||
id=uuid.uuid4(),
|
||||
norms=[norm],
|
||||
goals=[],
|
||||
triggers=[],
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
parsed_program = Program.model_validate_json(program.model_dump_json())
|
||||
parsed_norm = parsed_program.phases[0].norms[0]
|
||||
|
||||
assert hasattr(parsed_norm, "condition")
|
||||
assert isinstance(parsed_norm, ConditionalNorm)
|
||||
|
||||
|
||||
def test_belief_type_parsing():
|
||||
"""
|
||||
Check that pydantic is able to discern between the different types of beliefs when serializing
|
||||
and deserializing.
|
||||
"""
|
||||
keyword_belief = KeywordBelief(
|
||||
name="testKeywordBelief",
|
||||
id=uuid.uuid4(),
|
||||
keyword="something",
|
||||
)
|
||||
semantic_belief = SemanticBelief(
|
||||
name="testSemanticBelief",
|
||||
id=uuid.uuid4(),
|
||||
description="something",
|
||||
)
|
||||
inferred_belief = InferredBelief(
|
||||
name="testInferredBelief",
|
||||
id=uuid.uuid4(),
|
||||
operator=LogicalOperator.OR,
|
||||
left=keyword_belief,
|
||||
right=semantic_belief,
|
||||
)
|
||||
|
||||
program = Program(
|
||||
phases=[
|
||||
Phase(
|
||||
name="Some phase",
|
||||
id=uuid.uuid4(),
|
||||
norms=[],
|
||||
goals=[],
|
||||
triggers=[
|
||||
Trigger(
|
||||
name="testTriggerKeywordTrigger",
|
||||
id=uuid.uuid4(),
|
||||
condition=keyword_belief,
|
||||
plan=Plan(name="testTriggerPlanName", id=uuid.uuid4(), steps=[]),
|
||||
),
|
||||
Trigger(
|
||||
name="testTriggerSemanticTrigger",
|
||||
id=uuid.uuid4(),
|
||||
condition=semantic_belief,
|
||||
plan=Plan(name="testTriggerPlanName", id=uuid.uuid4(), steps=[]),
|
||||
),
|
||||
Trigger(
|
||||
name="testTriggerInferredTrigger",
|
||||
id=uuid.uuid4(),
|
||||
condition=inferred_belief,
|
||||
plan=Plan(name="testTriggerPlanName", id=uuid.uuid4(), steps=[]),
|
||||
),
|
||||
],
|
||||
),
|
||||
],
|
||||
)
|
||||
|
||||
parsed_program = Program.model_validate_json(program.model_dump_json())
|
||||
|
||||
parsed_keyword_belief = parsed_program.phases[0].triggers[0].condition
|
||||
assert isinstance(parsed_keyword_belief, KeywordBelief)
|
||||
|
||||
parsed_semantic_belief = parsed_program.phases[0].triggers[1].condition
|
||||
assert isinstance(parsed_semantic_belief, SemanticBelief)
|
||||
|
||||
parsed_inferred_belief = parsed_program.phases[0].triggers[2].condition
|
||||
assert isinstance(parsed_inferred_belief, InferredBelief)
|
||||
|
||||
Reference in New Issue
Block a user