Compare commits
41 Commits
feat/resea
...
feat/extra
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
4b71981a3e | ||
| 866d7c4958 | |||
| 133019a928 | |||
| 4d0ba69443 | |||
| 625ef0c365 | |||
| b88758fa76 | |||
|
|
45719c580b | ||
| 5a61225c6f | |||
| a30cea5231 | |||
|
|
93d67ccb66 | ||
| 240624f887 | |||
| 8a77e8e1c7 | |||
| 3b4dccc760 | |||
| 3d49e44cf7 | |||
|
|
aa5b386f65 | ||
|
|
3189b9fee3 | ||
| 07d70cb781 | |||
| af832980c8 | |||
|
|
cabe35cdbd | ||
|
|
de8e829d3e | ||
|
|
3406e9ac2f | ||
| a357b6990b | |||
| 9eea4ee345 | |||
|
|
42ee5c76d8 | ||
|
|
57b1276cb5 | ||
|
|
7e0dc9ce1c | ||
| 3253760ef1 | |||
|
|
71cefdfef3 | ||
|
|
33501093a1 | ||
| 756e1f0dc5 | |||
|
|
f91cec6708 | ||
| 28262eb27e | |||
| 1d36d2e089 | |||
| 742e36b94f | |||
|
|
57fe3ae3f6 | ||
| e704ec5ed4 | |||
|
|
27f04f0958 | ||
|
|
8cc177041a | ||
| 4a432a603f | |||
| bab4800698 | |||
| d043c54336 |
@@ -10,7 +10,7 @@ LLM_SETTINGS__LOCAL_LLM_URL="http://localhost:1234/v1/chat/completions"
|
|||||||
LLM_SETTINGS__LOCAL_LLM_MODEL="gpt-oss"
|
LLM_SETTINGS__LOCAL_LLM_MODEL="gpt-oss"
|
||||||
|
|
||||||
# Number of non-speech chunks to wait before speech ended. A chunk is approximately 31 ms. Increasing this number allows longer pauses in speech, but also increases response time.
|
# Number of non-speech chunks to wait before speech ended. A chunk is approximately 31 ms. Increasing this number allows longer pauses in speech, but also increases response time.
|
||||||
BEHAVIOUR_SETTINGS__VAD_NON_SPEECH_PATIENCE_CHUNKS=3
|
BEHAVIOUR_SETTINGS__VAD_NON_SPEECH_PATIENCE_CHUNKS=15
|
||||||
|
|
||||||
# Timeout in milliseconds for socket polling. Increase this number if network latency/jitter is high, often the case when using Wi-Fi. Perhaps 500 ms. A symptom of this issue is transcriptions getting cut off.
|
# Timeout in milliseconds for socket polling. Increase this number if network latency/jitter is high, often the case when using Wi-Fi. Perhaps 500 ms. A symptom of this issue is transcriptions getting cut off.
|
||||||
BEHAVIOUR_SETTINGS__SOCKET_POLLER_TIMEOUT_MS=100
|
BEHAVIOUR_SETTINGS__SOCKET_POLLER_TIMEOUT_MS=100
|
||||||
|
|||||||
@@ -1,7 +1,5 @@
|
|||||||
version: 1
|
version: 1
|
||||||
|
|
||||||
# Maak nieuwe (obvervation action)
|
|
||||||
# tussen 20-30
|
|
||||||
custom_levels:
|
custom_levels:
|
||||||
OBSERVATION: 25
|
OBSERVATION: 25
|
||||||
ACTION: 26
|
ACTION: 26
|
||||||
@@ -21,8 +19,6 @@ formatters:
|
|||||||
format: "{name} {levelname} {levelno} {message} {created} {relativeCreated}"
|
format: "{name} {levelname} {levelno} {message} {created} {relativeCreated}"
|
||||||
style: "{"
|
style: "{"
|
||||||
|
|
||||||
# Maak class = logging.fileHandler
|
|
||||||
#
|
|
||||||
handlers:
|
handlers:
|
||||||
console:
|
console:
|
||||||
class: logging.StreamHandler
|
class: logging.StreamHandler
|
||||||
@@ -39,8 +35,6 @@ root:
|
|||||||
level: WARN
|
level: WARN
|
||||||
handlers: [console]
|
handlers: [console]
|
||||||
|
|
||||||
# Maak research logger, laagste level (21)
|
|
||||||
# Handler: UI Handler
|
|
||||||
loggers:
|
loggers:
|
||||||
control_backend:
|
control_backend:
|
||||||
level: LLM
|
level: LLM
|
||||||
|
|||||||
@@ -15,6 +15,7 @@ dependencies = [
|
|||||||
"pydantic>=2.12.0",
|
"pydantic>=2.12.0",
|
||||||
"pydantic-settings>=2.11.0",
|
"pydantic-settings>=2.11.0",
|
||||||
"python-json-logger>=4.0.0",
|
"python-json-logger>=4.0.0",
|
||||||
|
"python-slugify>=8.0.4",
|
||||||
"pyyaml>=6.0.3",
|
"pyyaml>=6.0.3",
|
||||||
"pyzmq>=27.1.0",
|
"pyzmq>=27.1.0",
|
||||||
"silero-vad>=6.0.0",
|
"silero-vad>=6.0.0",
|
||||||
|
|||||||
273
src/control_backend/agents/bdi/agentspeak_ast.py
Normal file
273
src/control_backend/agents/bdi/agentspeak_ast.py
Normal file
@@ -0,0 +1,273 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
from enum import StrEnum
|
||||||
|
|
||||||
|
|
||||||
|
class AstNode(ABC):
|
||||||
|
"""
|
||||||
|
Abstract base class for all elements of an AgentSpeak program.
|
||||||
|
"""
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
"""
|
||||||
|
Generates the AgentSpeak code string.
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __str__(self) -> str:
|
||||||
|
return self._to_agentspeak()
|
||||||
|
|
||||||
|
|
||||||
|
class AstExpression(AstNode, ABC):
|
||||||
|
"""
|
||||||
|
Intermediate class for anything that can be used in a logical expression.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __and__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||||
|
return AstBinaryOp(self, BinaryOperatorType.AND, _coalesce_expr(other))
|
||||||
|
|
||||||
|
def __or__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||||
|
return AstBinaryOp(self, BinaryOperatorType.OR, _coalesce_expr(other))
|
||||||
|
|
||||||
|
def __invert__(self) -> AstLogicalExpression:
|
||||||
|
if isinstance(self, AstLogicalExpression):
|
||||||
|
self.negated = not self.negated
|
||||||
|
return self
|
||||||
|
return AstLogicalExpression(self, negated=True)
|
||||||
|
|
||||||
|
|
||||||
|
type ExprCoalescible = AstExpression | str | int | float
|
||||||
|
|
||||||
|
|
||||||
|
def _coalesce_expr(value: ExprCoalescible) -> AstExpression:
|
||||||
|
if isinstance(value, AstExpression):
|
||||||
|
return value
|
||||||
|
if isinstance(value, str):
|
||||||
|
return AstString(value)
|
||||||
|
if isinstance(value, (int, float)):
|
||||||
|
return AstNumber(value)
|
||||||
|
raise TypeError(f"Cannot coalesce type {type(value)} into an AstTerm.")
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstTerm(AstExpression, ABC):
|
||||||
|
"""
|
||||||
|
Base class for terms appearing inside literals.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __ge__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||||
|
return AstBinaryOp(self, BinaryOperatorType.GREATER_EQUALS, _coalesce_expr(other))
|
||||||
|
|
||||||
|
def __gt__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||||
|
return AstBinaryOp(self, BinaryOperatorType.GREATER_THAN, _coalesce_expr(other))
|
||||||
|
|
||||||
|
def __le__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||||
|
return AstBinaryOp(self, BinaryOperatorType.LESS_EQUALS, _coalesce_expr(other))
|
||||||
|
|
||||||
|
def __lt__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||||
|
return AstBinaryOp(self, BinaryOperatorType.LESS_THAN, _coalesce_expr(other))
|
||||||
|
|
||||||
|
def __eq__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||||
|
return AstBinaryOp(self, BinaryOperatorType.EQUALS, _coalesce_expr(other))
|
||||||
|
|
||||||
|
def __ne__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||||
|
return AstBinaryOp(self, BinaryOperatorType.NOT_EQUALS, _coalesce_expr(other))
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstAtom(AstTerm):
|
||||||
|
"""
|
||||||
|
Grounded expression in all lowercase.
|
||||||
|
"""
|
||||||
|
|
||||||
|
value: str
|
||||||
|
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
return self.value.lower()
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstVar(AstTerm):
|
||||||
|
"""
|
||||||
|
Ungrounded variable expression. First letter capitalized.
|
||||||
|
"""
|
||||||
|
|
||||||
|
name: str
|
||||||
|
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
return self.name.capitalize()
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstNumber(AstTerm):
|
||||||
|
value: int | float
|
||||||
|
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
return str(self.value)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstString(AstTerm):
|
||||||
|
value: str
|
||||||
|
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
return f'"{self.value}"'
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstLiteral(AstTerm):
|
||||||
|
functor: str
|
||||||
|
terms: list[AstTerm] = field(default_factory=list)
|
||||||
|
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
if not self.terms:
|
||||||
|
return self.functor
|
||||||
|
args = ", ".join(map(str, self.terms))
|
||||||
|
return f"{self.functor}({args})"
|
||||||
|
|
||||||
|
|
||||||
|
class BinaryOperatorType(StrEnum):
|
||||||
|
AND = "&"
|
||||||
|
OR = "|"
|
||||||
|
GREATER_THAN = ">"
|
||||||
|
LESS_THAN = "<"
|
||||||
|
EQUALS = "=="
|
||||||
|
NOT_EQUALS = "\\=="
|
||||||
|
GREATER_EQUALS = ">="
|
||||||
|
LESS_EQUALS = "<="
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstBinaryOp(AstExpression):
|
||||||
|
left: AstExpression
|
||||||
|
operator: BinaryOperatorType
|
||||||
|
right: AstExpression
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
self.left = _as_logical(self.left)
|
||||||
|
self.right = _as_logical(self.right)
|
||||||
|
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
l_str = str(self.left)
|
||||||
|
r_str = str(self.right)
|
||||||
|
|
||||||
|
assert isinstance(self.left, AstLogicalExpression)
|
||||||
|
assert isinstance(self.right, AstLogicalExpression)
|
||||||
|
|
||||||
|
if isinstance(self.left.expression, AstBinaryOp) or self.left.negated:
|
||||||
|
l_str = f"({l_str})"
|
||||||
|
if isinstance(self.right.expression, AstBinaryOp) or self.right.negated:
|
||||||
|
r_str = f"({r_str})"
|
||||||
|
|
||||||
|
return f"{l_str} {self.operator.value} {r_str}"
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstLogicalExpression(AstExpression):
|
||||||
|
expression: AstExpression
|
||||||
|
negated: bool = False
|
||||||
|
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
expr_str = str(self.expression)
|
||||||
|
if isinstance(self.expression, AstBinaryOp) and self.negated:
|
||||||
|
expr_str = f"({expr_str})"
|
||||||
|
return f"{'not ' if self.negated else ''}{expr_str}"
|
||||||
|
|
||||||
|
|
||||||
|
def _as_logical(expr: AstExpression) -> AstLogicalExpression:
|
||||||
|
if isinstance(expr, AstLogicalExpression):
|
||||||
|
return expr
|
||||||
|
return AstLogicalExpression(expr)
|
||||||
|
|
||||||
|
|
||||||
|
class StatementType(StrEnum):
|
||||||
|
EMPTY = ""
|
||||||
|
DO_ACTION = "."
|
||||||
|
ACHIEVE_GOAL = "!"
|
||||||
|
TEST_GOAL = "?"
|
||||||
|
ADD_BELIEF = "+"
|
||||||
|
REMOVE_BELIEF = "-"
|
||||||
|
REPLACE_BELIEF = "-+"
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstStatement(AstNode):
|
||||||
|
"""
|
||||||
|
A statement that can appear inside a plan.
|
||||||
|
"""
|
||||||
|
|
||||||
|
type: StatementType
|
||||||
|
expression: AstExpression
|
||||||
|
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
return f"{self.type.value}{self.expression}"
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstRule(AstNode):
|
||||||
|
result: AstExpression
|
||||||
|
condition: AstExpression | None = None
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
if self.condition is not None:
|
||||||
|
self.condition = _as_logical(self.condition)
|
||||||
|
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
if not self.condition:
|
||||||
|
return f"{self.result}."
|
||||||
|
return f"{self.result} :- {self.condition}."
|
||||||
|
|
||||||
|
|
||||||
|
class TriggerType(StrEnum):
|
||||||
|
ADDED_BELIEF = "+"
|
||||||
|
# REMOVED_BELIEF = "-" # TODO
|
||||||
|
# MODIFIED_BELIEF = "^" # TODO
|
||||||
|
ADDED_GOAL = "+!"
|
||||||
|
# REMOVED_GOAL = "-!" # TODO
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstPlan(AstNode):
|
||||||
|
type: TriggerType
|
||||||
|
trigger_literal: AstExpression
|
||||||
|
context: list[AstExpression]
|
||||||
|
body: list[AstStatement]
|
||||||
|
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
assert isinstance(self.trigger_literal, AstLiteral)
|
||||||
|
|
||||||
|
indent = " " * 6
|
||||||
|
colon = " : "
|
||||||
|
arrow = " <- "
|
||||||
|
|
||||||
|
lines = []
|
||||||
|
|
||||||
|
lines.append(f"{self.type.value}{self.trigger_literal}")
|
||||||
|
|
||||||
|
if self.context:
|
||||||
|
lines.append(colon + f" &\n{indent}".join(str(c) for c in self.context))
|
||||||
|
|
||||||
|
if self.body:
|
||||||
|
lines.append(arrow + f";\n{indent}".join(str(s) for s in self.body) + ".")
|
||||||
|
|
||||||
|
lines.append("")
|
||||||
|
|
||||||
|
return "\n".join(lines)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AstProgram(AstNode):
|
||||||
|
rules: list[AstRule] = field(default_factory=list)
|
||||||
|
plans: list[AstPlan] = field(default_factory=list)
|
||||||
|
|
||||||
|
def _to_agentspeak(self) -> str:
|
||||||
|
lines = []
|
||||||
|
lines.extend(map(str, self.rules))
|
||||||
|
|
||||||
|
lines.extend(["", ""])
|
||||||
|
lines.extend(map(str, self.plans))
|
||||||
|
|
||||||
|
return "\n".join(lines)
|
||||||
443
src/control_backend/agents/bdi/agentspeak_generator.py
Normal file
443
src/control_backend/agents/bdi/agentspeak_generator.py
Normal file
@@ -0,0 +1,443 @@
|
|||||||
|
from functools import singledispatchmethod
|
||||||
|
|
||||||
|
from slugify import slugify
|
||||||
|
|
||||||
|
from control_backend.agents.bdi.agentspeak_ast import (
|
||||||
|
AstBinaryOp,
|
||||||
|
AstExpression,
|
||||||
|
AstLiteral,
|
||||||
|
AstPlan,
|
||||||
|
AstProgram,
|
||||||
|
AstRule,
|
||||||
|
AstStatement,
|
||||||
|
AstString,
|
||||||
|
AstVar,
|
||||||
|
BinaryOperatorType,
|
||||||
|
StatementType,
|
||||||
|
TriggerType,
|
||||||
|
)
|
||||||
|
from control_backend.schemas.program import (
|
||||||
|
BasicNorm,
|
||||||
|
ConditionalNorm,
|
||||||
|
GestureAction,
|
||||||
|
Goal,
|
||||||
|
InferredBelief,
|
||||||
|
KeywordBelief,
|
||||||
|
LLMAction,
|
||||||
|
LogicalOperator,
|
||||||
|
Norm,
|
||||||
|
Phase,
|
||||||
|
PlanElement,
|
||||||
|
Program,
|
||||||
|
ProgramElement,
|
||||||
|
SemanticBelief,
|
||||||
|
SpeechAction,
|
||||||
|
Trigger,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class AgentSpeakGenerator:
|
||||||
|
_asp: AstProgram
|
||||||
|
|
||||||
|
def generate(self, program: Program) -> str:
|
||||||
|
self._asp = AstProgram()
|
||||||
|
|
||||||
|
self._asp.rules.append(AstRule(self._astify(program.phases[0])))
|
||||||
|
self._add_keyword_inference()
|
||||||
|
self._add_default_plans()
|
||||||
|
|
||||||
|
self._process_phases(program.phases)
|
||||||
|
|
||||||
|
self._add_fallbacks()
|
||||||
|
|
||||||
|
return str(self._asp)
|
||||||
|
|
||||||
|
def _add_keyword_inference(self) -> None:
|
||||||
|
keyword = AstVar("Keyword")
|
||||||
|
message = AstVar("Message")
|
||||||
|
position = AstVar("Pos")
|
||||||
|
|
||||||
|
self._asp.rules.append(
|
||||||
|
AstRule(
|
||||||
|
AstLiteral("keyword_said", [keyword]),
|
||||||
|
AstLiteral("user_said", [message])
|
||||||
|
& AstLiteral(".substring", [keyword, message, position])
|
||||||
|
& (position >= 0),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
def _add_default_plans(self):
|
||||||
|
self._add_reply_with_goal_plan()
|
||||||
|
self._add_say_plan()
|
||||||
|
self._add_reply_plan()
|
||||||
|
|
||||||
|
def _add_reply_with_goal_plan(self):
|
||||||
|
self._asp.plans.append(
|
||||||
|
AstPlan(
|
||||||
|
TriggerType.ADDED_GOAL,
|
||||||
|
AstLiteral("reply_with_goal", [AstVar("Goal")]),
|
||||||
|
[AstLiteral("user_said", [AstVar("Message")])],
|
||||||
|
[
|
||||||
|
AstStatement(StatementType.ADD_BELIEF, AstLiteral("responded_this_turn")),
|
||||||
|
AstStatement(
|
||||||
|
StatementType.DO_ACTION,
|
||||||
|
AstLiteral(
|
||||||
|
"findall",
|
||||||
|
[AstVar("Norm"), AstLiteral("norm", [AstVar("Norm")]), AstVar("Norms")],
|
||||||
|
),
|
||||||
|
),
|
||||||
|
AstStatement(
|
||||||
|
StatementType.DO_ACTION,
|
||||||
|
AstLiteral(
|
||||||
|
"reply_with_goal", [AstVar("Message"), AstVar("Norms"), AstVar("Goal")]
|
||||||
|
),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
def _add_say_plan(self):
|
||||||
|
self._asp.plans.append(
|
||||||
|
AstPlan(
|
||||||
|
TriggerType.ADDED_GOAL,
|
||||||
|
AstLiteral("say", [AstVar("Text")]),
|
||||||
|
[],
|
||||||
|
[
|
||||||
|
AstStatement(StatementType.ADD_BELIEF, AstLiteral("responded_this_turn")),
|
||||||
|
AstStatement(StatementType.DO_ACTION, AstLiteral("say", [AstVar("Text")])),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
def _add_reply_plan(self):
|
||||||
|
self._asp.plans.append(
|
||||||
|
AstPlan(
|
||||||
|
TriggerType.ADDED_GOAL,
|
||||||
|
AstLiteral("reply"),
|
||||||
|
[AstLiteral("user_said", [AstVar("Message")])],
|
||||||
|
[
|
||||||
|
AstStatement(StatementType.ADD_BELIEF, AstLiteral("responded_this_turn")),
|
||||||
|
AstStatement(
|
||||||
|
StatementType.DO_ACTION,
|
||||||
|
AstLiteral(
|
||||||
|
"findall",
|
||||||
|
[AstVar("Norm"), AstLiteral("norm", [AstVar("Norm")]), AstVar("Norms")],
|
||||||
|
),
|
||||||
|
),
|
||||||
|
AstStatement(
|
||||||
|
StatementType.DO_ACTION,
|
||||||
|
AstLiteral("reply", [AstVar("Message"), AstVar("Norms")]),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
def _process_phases(self, phases: list[Phase]) -> None:
|
||||||
|
for curr_phase, next_phase in zip([None] + phases, phases + [None], strict=True):
|
||||||
|
if curr_phase:
|
||||||
|
self._process_phase(curr_phase)
|
||||||
|
self._add_phase_transition(curr_phase, next_phase)
|
||||||
|
|
||||||
|
# End phase behavior
|
||||||
|
# When deleting this, the entire `reply` plan and action can be deleted
|
||||||
|
self._asp.plans.append(
|
||||||
|
AstPlan(
|
||||||
|
type=TriggerType.ADDED_BELIEF,
|
||||||
|
trigger_literal=AstLiteral("user_said", [AstVar("Message")]),
|
||||||
|
context=[AstLiteral("phase", [AstString("end")])],
|
||||||
|
body=[
|
||||||
|
AstStatement(StatementType.DO_ACTION, AstLiteral("notify_user_said")),
|
||||||
|
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("reply")),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
def _process_phase(self, phase: Phase) -> None:
|
||||||
|
for norm in phase.norms:
|
||||||
|
self._process_norm(norm, phase)
|
||||||
|
|
||||||
|
self._add_default_loop(phase)
|
||||||
|
|
||||||
|
previous_goal = None
|
||||||
|
for goal in phase.goals:
|
||||||
|
self._process_goal(goal, phase, previous_goal, main_goal=True)
|
||||||
|
previous_goal = goal
|
||||||
|
|
||||||
|
for trigger in phase.triggers:
|
||||||
|
self._process_trigger(trigger, phase)
|
||||||
|
|
||||||
|
def _add_phase_transition(self, from_phase: Phase | None, to_phase: Phase | None) -> None:
|
||||||
|
if from_phase is None:
|
||||||
|
return
|
||||||
|
from_phase_ast = self._astify(from_phase)
|
||||||
|
to_phase_ast = (
|
||||||
|
self._astify(to_phase) if to_phase else AstLiteral("phase", [AstString("end")])
|
||||||
|
)
|
||||||
|
|
||||||
|
context = [from_phase_ast]
|
||||||
|
if from_phase:
|
||||||
|
for goal in from_phase.goals:
|
||||||
|
context.append(self._astify(goal, achieved=True))
|
||||||
|
|
||||||
|
body = [
|
||||||
|
AstStatement(StatementType.REMOVE_BELIEF, from_phase_ast),
|
||||||
|
AstStatement(StatementType.ADD_BELIEF, to_phase_ast),
|
||||||
|
]
|
||||||
|
|
||||||
|
# if from_phase:
|
||||||
|
# body.extend(
|
||||||
|
# [
|
||||||
|
# AstStatement(
|
||||||
|
# StatementType.TEST_GOAL, AstLiteral("user_said", [AstVar("Message")])
|
||||||
|
# ),
|
||||||
|
# AstStatement(
|
||||||
|
# StatementType.REPLACE_BELIEF, AstLiteral("user_said", [AstVar("Message")])
|
||||||
|
# ),
|
||||||
|
# ]
|
||||||
|
# )
|
||||||
|
|
||||||
|
# Notify outside world about transition
|
||||||
|
body.append(
|
||||||
|
AstStatement(
|
||||||
|
StatementType.DO_ACTION,
|
||||||
|
AstLiteral(
|
||||||
|
"notify_transition_phase",
|
||||||
|
[
|
||||||
|
AstString(str(from_phase.id)),
|
||||||
|
AstString(str(to_phase.id) if to_phase else "end"),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
self._asp.plans.append(
|
||||||
|
AstPlan(TriggerType.ADDED_GOAL, AstLiteral("transition_phase"), context, body)
|
||||||
|
)
|
||||||
|
|
||||||
|
def _process_norm(self, norm: Norm, phase: Phase) -> None:
|
||||||
|
rule: AstRule | None = None
|
||||||
|
|
||||||
|
match norm:
|
||||||
|
case ConditionalNorm(condition=cond):
|
||||||
|
rule = AstRule(self._astify(norm), self._astify(phase) & self._astify(cond))
|
||||||
|
case BasicNorm():
|
||||||
|
rule = AstRule(self._astify(norm), self._astify(phase))
|
||||||
|
|
||||||
|
if not rule:
|
||||||
|
return
|
||||||
|
|
||||||
|
self._asp.rules.append(rule)
|
||||||
|
|
||||||
|
def _add_default_loop(self, phase: Phase) -> None:
|
||||||
|
actions = []
|
||||||
|
|
||||||
|
actions.append(
|
||||||
|
AstStatement(
|
||||||
|
StatementType.DO_ACTION, AstLiteral("notify_user_said", [AstVar("Message")])
|
||||||
|
)
|
||||||
|
)
|
||||||
|
actions.append(AstStatement(StatementType.REMOVE_BELIEF, AstLiteral("responded_this_turn")))
|
||||||
|
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("check_triggers")))
|
||||||
|
|
||||||
|
for goal in phase.goals:
|
||||||
|
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, self._astify(goal)))
|
||||||
|
|
||||||
|
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("transition_phase")))
|
||||||
|
|
||||||
|
self._asp.plans.append(
|
||||||
|
AstPlan(
|
||||||
|
TriggerType.ADDED_BELIEF,
|
||||||
|
AstLiteral("user_said", [AstVar("Message")]),
|
||||||
|
[self._astify(phase)],
|
||||||
|
actions,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
def _process_goal(
|
||||||
|
self,
|
||||||
|
goal: Goal,
|
||||||
|
phase: Phase,
|
||||||
|
previous_goal: Goal | None = None,
|
||||||
|
continues_response: bool = False,
|
||||||
|
main_goal: bool = False,
|
||||||
|
) -> None:
|
||||||
|
context: list[AstExpression] = [self._astify(phase)]
|
||||||
|
context.append(~self._astify(goal, achieved=True))
|
||||||
|
if previous_goal and previous_goal.can_fail:
|
||||||
|
context.append(self._astify(previous_goal, achieved=True))
|
||||||
|
if not continues_response:
|
||||||
|
context.append(~AstLiteral("responded_this_turn"))
|
||||||
|
|
||||||
|
body = []
|
||||||
|
if main_goal: # UI only needs to know about the main goals
|
||||||
|
body.append(
|
||||||
|
AstStatement(
|
||||||
|
StatementType.DO_ACTION,
|
||||||
|
AstLiteral("notify_goal_start", [AstString(self.slugify(goal))]),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
subgoals = []
|
||||||
|
for step in goal.plan.steps:
|
||||||
|
body.append(self._step_to_statement(step))
|
||||||
|
if isinstance(step, Goal):
|
||||||
|
subgoals.append(step)
|
||||||
|
|
||||||
|
if not goal.can_fail and not continues_response:
|
||||||
|
body.append(AstStatement(StatementType.ADD_BELIEF, self._astify(goal, achieved=True)))
|
||||||
|
|
||||||
|
self._asp.plans.append(AstPlan(TriggerType.ADDED_GOAL, self._astify(goal), context, body))
|
||||||
|
|
||||||
|
self._asp.plans.append(
|
||||||
|
AstPlan(
|
||||||
|
TriggerType.ADDED_GOAL,
|
||||||
|
self._astify(goal),
|
||||||
|
context=[],
|
||||||
|
body=[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
prev_goal = None
|
||||||
|
for subgoal in subgoals:
|
||||||
|
self._process_goal(subgoal, phase, prev_goal)
|
||||||
|
prev_goal = subgoal
|
||||||
|
|
||||||
|
def _step_to_statement(self, step: PlanElement) -> AstStatement:
|
||||||
|
match step:
|
||||||
|
case Goal() | SpeechAction() | LLMAction() as a:
|
||||||
|
return AstStatement(StatementType.ACHIEVE_GOAL, self._astify(a))
|
||||||
|
case GestureAction() as a:
|
||||||
|
return AstStatement(StatementType.DO_ACTION, self._astify(a))
|
||||||
|
|
||||||
|
# TODO: separate handling of keyword and others
|
||||||
|
def _process_trigger(self, trigger: Trigger, phase: Phase) -> None:
|
||||||
|
body = []
|
||||||
|
subgoals = []
|
||||||
|
|
||||||
|
body.append(
|
||||||
|
AstStatement(
|
||||||
|
StatementType.DO_ACTION,
|
||||||
|
AstLiteral("notify_trigger_start", [AstString(self.slugify(trigger))]),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
for step in trigger.plan.steps:
|
||||||
|
body.append(self._step_to_statement(step))
|
||||||
|
if isinstance(step, Goal):
|
||||||
|
step.can_fail = False # triggers are continuous sequence
|
||||||
|
subgoals.append(step)
|
||||||
|
body.append(
|
||||||
|
AstStatement(
|
||||||
|
StatementType.DO_ACTION,
|
||||||
|
AstLiteral("notify_trigger_end", [AstString(self.slugify(trigger))]),
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
self._asp.plans.append(
|
||||||
|
AstPlan(
|
||||||
|
TriggerType.ADDED_GOAL,
|
||||||
|
AstLiteral("check_triggers"),
|
||||||
|
[self._astify(phase), self._astify(trigger.condition)],
|
||||||
|
body,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Force trigger (from UI)
|
||||||
|
self._asp.plans.append(AstPlan(TriggerType.ADDED_GOAL, self._astify(trigger), [], body))
|
||||||
|
|
||||||
|
for subgoal in subgoals:
|
||||||
|
self._process_goal(subgoal, phase, continues_response=True)
|
||||||
|
|
||||||
|
def _add_fallbacks(self):
|
||||||
|
# Trigger fallback
|
||||||
|
self._asp.plans.append(
|
||||||
|
AstPlan(
|
||||||
|
TriggerType.ADDED_GOAL,
|
||||||
|
AstLiteral("check_triggers"),
|
||||||
|
[],
|
||||||
|
[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Phase transition fallback
|
||||||
|
self._asp.plans.append(
|
||||||
|
AstPlan(
|
||||||
|
TriggerType.ADDED_GOAL,
|
||||||
|
AstLiteral("transition_phase"),
|
||||||
|
[],
|
||||||
|
[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
@singledispatchmethod
|
||||||
|
def _astify(self, element: ProgramElement) -> AstExpression:
|
||||||
|
raise NotImplementedError(f"Cannot convert element {element} to an AgentSpeak expression.")
|
||||||
|
|
||||||
|
@_astify.register
|
||||||
|
def _(self, kwb: KeywordBelief) -> AstExpression:
|
||||||
|
return AstLiteral("keyword_said", [AstString(kwb.keyword)])
|
||||||
|
|
||||||
|
@_astify.register
|
||||||
|
def _(self, sb: SemanticBelief) -> AstExpression:
|
||||||
|
return AstLiteral(self.slugify(sb))
|
||||||
|
|
||||||
|
@_astify.register
|
||||||
|
def _(self, ib: InferredBelief) -> AstExpression:
|
||||||
|
return AstBinaryOp(
|
||||||
|
self._astify(ib.left),
|
||||||
|
BinaryOperatorType.AND if ib.operator == LogicalOperator.AND else BinaryOperatorType.OR,
|
||||||
|
self._astify(ib.right),
|
||||||
|
)
|
||||||
|
|
||||||
|
@_astify.register
|
||||||
|
def _(self, norm: Norm) -> AstExpression:
|
||||||
|
functor = "critical_norm" if norm.critical else "norm"
|
||||||
|
return AstLiteral(functor, [AstString(norm.norm)])
|
||||||
|
|
||||||
|
@_astify.register
|
||||||
|
def _(self, phase: Phase) -> AstExpression:
|
||||||
|
return AstLiteral("phase", [AstString(str(phase.id))])
|
||||||
|
|
||||||
|
@_astify.register
|
||||||
|
def _(self, goal: Goal, achieved: bool = False) -> AstExpression:
|
||||||
|
return AstLiteral(f"{'achieved_' if achieved else ''}{self._slugify_str(goal.name)}")
|
||||||
|
|
||||||
|
@_astify.register
|
||||||
|
def _(self, trigger: Trigger) -> AstExpression:
|
||||||
|
return AstLiteral(self.slugify(trigger))
|
||||||
|
|
||||||
|
@_astify.register
|
||||||
|
def _(self, sa: SpeechAction) -> AstExpression:
|
||||||
|
return AstLiteral("say", [AstString(sa.text)])
|
||||||
|
|
||||||
|
@_astify.register
|
||||||
|
def _(self, ga: GestureAction) -> AstExpression:
|
||||||
|
gesture = ga.gesture
|
||||||
|
return AstLiteral("gesture", [AstString(gesture.type), AstString(gesture.name)])
|
||||||
|
|
||||||
|
@_astify.register
|
||||||
|
def _(self, la: LLMAction) -> AstExpression:
|
||||||
|
return AstLiteral("reply_with_goal", [AstString(la.goal)])
|
||||||
|
|
||||||
|
@singledispatchmethod
|
||||||
|
@staticmethod
|
||||||
|
def slugify(element: ProgramElement) -> str:
|
||||||
|
raise NotImplementedError(f"Cannot convert element {element} to a slug.")
|
||||||
|
|
||||||
|
@slugify.register
|
||||||
|
@staticmethod
|
||||||
|
def _(sb: SemanticBelief) -> str:
|
||||||
|
return f"semantic_{AgentSpeakGenerator._slugify_str(sb.name)}"
|
||||||
|
|
||||||
|
@slugify.register
|
||||||
|
@staticmethod
|
||||||
|
def _(g: Goal) -> str:
|
||||||
|
return AgentSpeakGenerator._slugify_str(g.name)
|
||||||
|
|
||||||
|
@slugify.register
|
||||||
|
@staticmethod
|
||||||
|
def _(t: Trigger):
|
||||||
|
return f"trigger_{AgentSpeakGenerator._slugify_str(t.name)}"
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _slugify_str(text: str) -> str:
|
||||||
|
return slugify(text, separator="_", stopwords=["a", "an", "the", "we", "you", "I"])
|
||||||
203
src/control_backend/agents/bdi/asl_ast.py
Normal file
203
src/control_backend/agents/bdi/asl_ast.py
Normal file
@@ -0,0 +1,203 @@
|
|||||||
|
import typing
|
||||||
|
from dataclasses import dataclass, field
|
||||||
|
|
||||||
|
# --- Types ---
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class BeliefLiteral:
|
||||||
|
"""
|
||||||
|
Represents a literal or atom.
|
||||||
|
Example: phase(1), user_said("hello"), ~started
|
||||||
|
"""
|
||||||
|
|
||||||
|
functor: str
|
||||||
|
args: list[str] = field(default_factory=list)
|
||||||
|
negated: bool = False
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
# In ASL, 'not' is usually for closed-world assumption (prolog style),
|
||||||
|
# '~' is for explicit negation in beliefs.
|
||||||
|
# For simplicity in behavior trees, we often use 'not' for conditions.
|
||||||
|
prefix = "not " if self.negated else ""
|
||||||
|
if not self.args:
|
||||||
|
return f"{prefix}{self.functor}"
|
||||||
|
|
||||||
|
# Clean args to ensure strings are quoted if they look like strings,
|
||||||
|
# but usually the converter handles the quoting of string literals.
|
||||||
|
args_str = ", ".join(self.args)
|
||||||
|
return f"{prefix}{self.functor}({args_str})"
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class GoalLiteral:
|
||||||
|
name: str
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
return f"!{self.name}"
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class ActionLiteral:
|
||||||
|
"""
|
||||||
|
Represents a step in a plan body.
|
||||||
|
Example: .say("Hello") or !achieve_goal
|
||||||
|
"""
|
||||||
|
|
||||||
|
code: str
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
return self.code
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class BinaryOp:
|
||||||
|
"""
|
||||||
|
Represents logical operations.
|
||||||
|
Example: (A & B) | C
|
||||||
|
"""
|
||||||
|
|
||||||
|
left: "Expression | str"
|
||||||
|
operator: typing.Literal["&", "|"]
|
||||||
|
right: "Expression | str"
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
l_str = str(self.left)
|
||||||
|
r_str = str(self.right)
|
||||||
|
|
||||||
|
if isinstance(self.left, BinaryOp):
|
||||||
|
l_str = f"({l_str})"
|
||||||
|
if isinstance(self.right, BinaryOp):
|
||||||
|
r_str = f"({r_str})"
|
||||||
|
|
||||||
|
return f"{l_str} {self.operator} {r_str}"
|
||||||
|
|
||||||
|
|
||||||
|
Literal = BeliefLiteral | GoalLiteral | ActionLiteral
|
||||||
|
Expression = Literal | BinaryOp | str
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Rule:
|
||||||
|
"""
|
||||||
|
Represents an inference rule.
|
||||||
|
Example: head :- body.
|
||||||
|
"""
|
||||||
|
|
||||||
|
head: Expression
|
||||||
|
body: Expression | None = None
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
if not self.body:
|
||||||
|
return f"{self.head}."
|
||||||
|
return f"{self.head} :- {self.body}."
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class PersistentRule:
|
||||||
|
"""
|
||||||
|
Represents an inference rule, where the inferred belief is persistent when formed.
|
||||||
|
"""
|
||||||
|
|
||||||
|
head: Expression
|
||||||
|
body: Expression
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
if not self.body:
|
||||||
|
raise Exception("Rule without body should not be persistent.")
|
||||||
|
|
||||||
|
lines = []
|
||||||
|
|
||||||
|
if isinstance(self.body, BinaryOp):
|
||||||
|
lines.append(f"+{self.body.left}")
|
||||||
|
if self.body.operator == "&":
|
||||||
|
lines.append(f" : {self.body.right}")
|
||||||
|
lines.append(f" <- +{self.head}.")
|
||||||
|
if self.body.operator == "|":
|
||||||
|
lines.append(f"+{self.body.right}")
|
||||||
|
lines.append(f" <- +{self.head}.")
|
||||||
|
|
||||||
|
return "\n".join(lines)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class Plan:
|
||||||
|
"""
|
||||||
|
Represents a plan.
|
||||||
|
Syntax: +trigger : context <- body.
|
||||||
|
"""
|
||||||
|
|
||||||
|
trigger: BeliefLiteral | GoalLiteral
|
||||||
|
context: list[Expression] = field(default_factory=list)
|
||||||
|
body: list[ActionLiteral] = field(default_factory=list)
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
# Indentation settings
|
||||||
|
INDENT = " "
|
||||||
|
ARROW = "\n <- "
|
||||||
|
COLON = "\n : "
|
||||||
|
|
||||||
|
# Build Header
|
||||||
|
header = f"+{self.trigger}"
|
||||||
|
if self.context:
|
||||||
|
ctx_str = f" &\n{INDENT}".join(str(c) for c in self.context)
|
||||||
|
header += f"{COLON}{ctx_str}"
|
||||||
|
|
||||||
|
# Case 1: Empty body
|
||||||
|
if not self.body:
|
||||||
|
return f"{header}."
|
||||||
|
|
||||||
|
# Case 2: Short body (optional optimization, keeping it uniform usually better)
|
||||||
|
header += ARROW
|
||||||
|
|
||||||
|
lines = []
|
||||||
|
# We start the first action on the same line or next line.
|
||||||
|
# Let's put it on the next line for readability if there are multiple.
|
||||||
|
|
||||||
|
if len(self.body) == 1:
|
||||||
|
return f"{header}{self.body[0]}."
|
||||||
|
|
||||||
|
# First item
|
||||||
|
lines.append(f"{header}{self.body[0]};")
|
||||||
|
# Middle items
|
||||||
|
for item in self.body[1:-1]:
|
||||||
|
lines.append(f"{INDENT}{item};")
|
||||||
|
# Last item
|
||||||
|
lines.append(f"{INDENT}{self.body[-1]}.")
|
||||||
|
|
||||||
|
return "\n".join(lines)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class AgentSpeakFile:
|
||||||
|
"""
|
||||||
|
Root element representing the entire generated file.
|
||||||
|
"""
|
||||||
|
|
||||||
|
initial_beliefs: list[Rule] = field(default_factory=list)
|
||||||
|
inference_rules: list[Rule | PersistentRule] = field(default_factory=list)
|
||||||
|
plans: list[Plan] = field(default_factory=list)
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
sections = []
|
||||||
|
|
||||||
|
if self.initial_beliefs:
|
||||||
|
sections.append("// --- Initial Beliefs & Facts ---")
|
||||||
|
sections.extend(str(rule) for rule in self.initial_beliefs)
|
||||||
|
sections.append("")
|
||||||
|
|
||||||
|
if self.inference_rules:
|
||||||
|
sections.append("// --- Inference Rules ---")
|
||||||
|
sections.extend(str(rule) for rule in self.inference_rules if isinstance(rule, Rule))
|
||||||
|
sections.append("")
|
||||||
|
sections.extend(
|
||||||
|
str(rule) for rule in self.inference_rules if isinstance(rule, PersistentRule)
|
||||||
|
)
|
||||||
|
sections.append("")
|
||||||
|
|
||||||
|
if self.plans:
|
||||||
|
sections.append("// --- Plans ---")
|
||||||
|
# Separate plans by a newline for readability
|
||||||
|
sections.extend(str(plan) + "\n" for plan in self.plans)
|
||||||
|
|
||||||
|
return "\n".join(sections)
|
||||||
425
src/control_backend/agents/bdi/asl_gen.py
Normal file
425
src/control_backend/agents/bdi/asl_gen.py
Normal file
@@ -0,0 +1,425 @@
|
|||||||
|
import asyncio
|
||||||
|
import time
|
||||||
|
from functools import singledispatchmethod
|
||||||
|
|
||||||
|
from slugify import slugify
|
||||||
|
|
||||||
|
from control_backend.agents.bdi import BDICoreAgent
|
||||||
|
from control_backend.agents.bdi.asl_ast import (
|
||||||
|
ActionLiteral,
|
||||||
|
AgentSpeakFile,
|
||||||
|
BeliefLiteral,
|
||||||
|
BinaryOp,
|
||||||
|
Expression,
|
||||||
|
GoalLiteral,
|
||||||
|
PersistentRule,
|
||||||
|
Plan,
|
||||||
|
Rule,
|
||||||
|
)
|
||||||
|
from control_backend.agents.bdi.bdi_program_manager import test_program
|
||||||
|
from control_backend.schemas.program import (
|
||||||
|
BasicBelief,
|
||||||
|
Belief,
|
||||||
|
ConditionalNorm,
|
||||||
|
GestureAction,
|
||||||
|
Goal,
|
||||||
|
InferredBelief,
|
||||||
|
KeywordBelief,
|
||||||
|
LLMAction,
|
||||||
|
LogicalOperator,
|
||||||
|
Phase,
|
||||||
|
Program,
|
||||||
|
ProgramElement,
|
||||||
|
SemanticBelief,
|
||||||
|
SpeechAction,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
async def do_things():
|
||||||
|
res = input("Wanna generate")
|
||||||
|
if res == "y":
|
||||||
|
program = AgentSpeakGenerator().generate(test_program)
|
||||||
|
filename = f"{int(time.time())}.asl"
|
||||||
|
with open(filename, "w") as f:
|
||||||
|
f.write(program)
|
||||||
|
else:
|
||||||
|
# filename = "0test.asl"
|
||||||
|
filename = "1766062491.asl"
|
||||||
|
bdi_agent = BDICoreAgent("BDICoreAgent", filename)
|
||||||
|
flag = asyncio.Event()
|
||||||
|
await bdi_agent.start()
|
||||||
|
await flag.wait()
|
||||||
|
|
||||||
|
|
||||||
|
def do_other_things():
|
||||||
|
print(AgentSpeakGenerator().generate(test_program))
|
||||||
|
|
||||||
|
|
||||||
|
class AgentSpeakGenerator:
|
||||||
|
"""
|
||||||
|
Converts a Pydantic Program behavior model into an AgentSpeak(L) AST,
|
||||||
|
then renders it to a string.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def generate(self, program: Program) -> str:
|
||||||
|
asl = AgentSpeakFile()
|
||||||
|
|
||||||
|
self._generate_startup(program, asl)
|
||||||
|
|
||||||
|
for i, phase in enumerate(program.phases):
|
||||||
|
next_phase = program.phases[i + 1] if i < len(program.phases) - 1 else None
|
||||||
|
|
||||||
|
self._generate_phase_flow(phase, next_phase, asl)
|
||||||
|
|
||||||
|
self._generate_norms(phase, asl)
|
||||||
|
|
||||||
|
self._generate_goals(phase, asl)
|
||||||
|
|
||||||
|
self._generate_triggers(phase, asl)
|
||||||
|
|
||||||
|
self._generate_fallbacks(program, asl)
|
||||||
|
|
||||||
|
return str(asl)
|
||||||
|
|
||||||
|
# --- Section: Startup & Phase Management ---
|
||||||
|
|
||||||
|
def _generate_startup(self, program: Program, asl: AgentSpeakFile):
|
||||||
|
if not program.phases:
|
||||||
|
return
|
||||||
|
|
||||||
|
# Initial belief: phase(start).
|
||||||
|
asl.initial_beliefs.append(Rule(head=BeliefLiteral("phase", ['"start"'])))
|
||||||
|
|
||||||
|
# Startup plan: +started : phase(start) <- -phase(start); +phase(first_id).
|
||||||
|
asl.plans.append(
|
||||||
|
Plan(
|
||||||
|
trigger=BeliefLiteral("started"),
|
||||||
|
context=[BeliefLiteral("phase", ['"start"'])],
|
||||||
|
body=[
|
||||||
|
ActionLiteral('-phase("start")'),
|
||||||
|
ActionLiteral(f'+phase("{program.phases[0].id}")'),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Initial plans:
|
||||||
|
asl.plans.append(
|
||||||
|
Plan(
|
||||||
|
trigger=GoalLiteral("generate_response_with_goal(Goal)"),
|
||||||
|
context=[BeliefLiteral("user_said", ["Message"])],
|
||||||
|
body=[
|
||||||
|
ActionLiteral("+responded_this_turn"),
|
||||||
|
ActionLiteral(".findall(Norm, norm(Norm), Norms)"),
|
||||||
|
ActionLiteral(".reply_with_goal(Message, Norms, Goal)"),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
def _generate_phase_flow(self, phase: Phase, next_phase: Phase | None, asl: AgentSpeakFile):
|
||||||
|
"""Generates the main loop listener and the transition logic for this phase."""
|
||||||
|
|
||||||
|
# +user_said(Message) : phase(ID) <- !goal1; !goal2; !transition_phase.
|
||||||
|
goal_actions = [ActionLiteral("-responded_this_turn")]
|
||||||
|
goal_actions += [
|
||||||
|
ActionLiteral(f"!check_{self._slugify_str(keyword)}")
|
||||||
|
for keyword in self._get_keyword_conditionals(phase)
|
||||||
|
]
|
||||||
|
goal_actions += [ActionLiteral(f"!{self._slugify(g)}") for g in phase.goals]
|
||||||
|
goal_actions.append(ActionLiteral("!transition_phase"))
|
||||||
|
|
||||||
|
asl.plans.append(
|
||||||
|
Plan(
|
||||||
|
trigger=BeliefLiteral("user_said", ["Message"]),
|
||||||
|
context=[BeliefLiteral("phase", [f'"{phase.id}"'])],
|
||||||
|
body=goal_actions,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# +!transition_phase : phase(ID) <- -phase(ID); +(NEXT_ID).
|
||||||
|
next_id = str(next_phase.id) if next_phase else "end"
|
||||||
|
|
||||||
|
transition_context = [BeliefLiteral("phase", [f'"{phase.id}"'])]
|
||||||
|
if phase.goals:
|
||||||
|
transition_context.append(BeliefLiteral(f"achieved_{self._slugify(phase.goals[-1])}"))
|
||||||
|
|
||||||
|
asl.plans.append(
|
||||||
|
Plan(
|
||||||
|
trigger=GoalLiteral("transition_phase"),
|
||||||
|
context=transition_context,
|
||||||
|
body=[
|
||||||
|
ActionLiteral(f'-phase("{phase.id}")'),
|
||||||
|
ActionLiteral(f'+phase("{next_id}")'),
|
||||||
|
ActionLiteral("user_said(Anything)"),
|
||||||
|
ActionLiteral("-+user_said(Anything)"),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
def _get_keyword_conditionals(self, phase: Phase) -> list[str]:
|
||||||
|
res = []
|
||||||
|
for belief in self._extract_basic_beliefs_from_phase(phase):
|
||||||
|
if isinstance(belief, KeywordBelief):
|
||||||
|
res.append(belief.keyword)
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
# --- Section: Norms & Beliefs ---
|
||||||
|
|
||||||
|
def _generate_norms(self, phase: Phase, asl: AgentSpeakFile):
|
||||||
|
for norm in phase.norms:
|
||||||
|
norm_slug = f'"{norm.norm}"'
|
||||||
|
head = BeliefLiteral("norm", [norm_slug])
|
||||||
|
|
||||||
|
# Base context is the phase
|
||||||
|
phase_lit = BeliefLiteral("phase", [f'"{phase.id}"'])
|
||||||
|
|
||||||
|
if isinstance(norm, ConditionalNorm):
|
||||||
|
self._ensure_belief_inference(norm.condition, asl)
|
||||||
|
|
||||||
|
condition_expr = self._belief_to_expr(norm.condition)
|
||||||
|
body = BinaryOp(phase_lit, "&", condition_expr)
|
||||||
|
else:
|
||||||
|
body = phase_lit
|
||||||
|
|
||||||
|
asl.inference_rules.append(Rule(head=head, body=body))
|
||||||
|
|
||||||
|
def _ensure_belief_inference(self, belief: Belief, asl: AgentSpeakFile):
|
||||||
|
"""
|
||||||
|
Recursively adds rules to infer beliefs.
|
||||||
|
Checks strictly to avoid duplicates if necessary,
|
||||||
|
though ASL engines often handle redefinition or we can use a set to track processed IDs.
|
||||||
|
"""
|
||||||
|
if isinstance(belief, KeywordBelief):
|
||||||
|
pass
|
||||||
|
# # Rule: keyword_said("word") :- user_said(M) & .substring("word", M, P) & P >= 0.
|
||||||
|
# kwd_slug = f'"{belief.keyword}"'
|
||||||
|
# head = BeliefLiteral("keyword_said", [kwd_slug])
|
||||||
|
#
|
||||||
|
# # Avoid duplicates
|
||||||
|
# if any(str(r.head) == str(head) for r in asl.inference_rules):
|
||||||
|
# return
|
||||||
|
#
|
||||||
|
# body = BinaryOp(
|
||||||
|
# BeliefLiteral("user_said", ["Message"]),
|
||||||
|
# "&",
|
||||||
|
# BinaryOp(f".substring({kwd_slug}, Message, Pos)", "&", "Pos >= 0"),
|
||||||
|
# )
|
||||||
|
#
|
||||||
|
# asl.inference_rules.append(Rule(head=head, body=body))
|
||||||
|
|
||||||
|
elif isinstance(belief, InferredBelief):
|
||||||
|
self._ensure_belief_inference(belief.left, asl)
|
||||||
|
self._ensure_belief_inference(belief.right, asl)
|
||||||
|
|
||||||
|
slug = self._slugify(belief)
|
||||||
|
head = BeliefLiteral(slug)
|
||||||
|
|
||||||
|
if any(str(r.head) == str(head) for r in asl.inference_rules):
|
||||||
|
return
|
||||||
|
|
||||||
|
op_char = "&" if belief.operator == LogicalOperator.AND else "|"
|
||||||
|
body = BinaryOp(
|
||||||
|
self._belief_to_expr(belief.left), op_char, self._belief_to_expr(belief.right)
|
||||||
|
)
|
||||||
|
asl.inference_rules.append(PersistentRule(head=head, body=body))
|
||||||
|
|
||||||
|
def _belief_to_expr(self, belief: Belief) -> Expression:
|
||||||
|
if isinstance(belief, KeywordBelief):
|
||||||
|
return BeliefLiteral("keyword_said", [f'"{belief.keyword}"'])
|
||||||
|
else:
|
||||||
|
return BeliefLiteral(self._slugify(belief))
|
||||||
|
|
||||||
|
# --- Section: Goals ---
|
||||||
|
|
||||||
|
def _generate_goals(self, phase: Phase, asl: AgentSpeakFile):
|
||||||
|
previous_goal: Goal | None = None
|
||||||
|
for goal in phase.goals:
|
||||||
|
self._generate_goal_plan_recursive(goal, str(phase.id), previous_goal, asl)
|
||||||
|
previous_goal = goal
|
||||||
|
|
||||||
|
def _generate_goal_plan_recursive(
|
||||||
|
self,
|
||||||
|
goal: Goal,
|
||||||
|
phase_id: str,
|
||||||
|
previous_goal: Goal | None,
|
||||||
|
asl: AgentSpeakFile,
|
||||||
|
responded_needed: bool = True,
|
||||||
|
can_fail: bool = True,
|
||||||
|
):
|
||||||
|
goal_slug = self._slugify(goal)
|
||||||
|
|
||||||
|
# phase(ID) & not responded_this_turn & not achieved_goal
|
||||||
|
context = [
|
||||||
|
BeliefLiteral("phase", [f'"{phase_id}"']),
|
||||||
|
]
|
||||||
|
|
||||||
|
if responded_needed:
|
||||||
|
context.append(BeliefLiteral("responded_this_turn", negated=True))
|
||||||
|
if can_fail:
|
||||||
|
context.append(BeliefLiteral(f"achieved_{goal_slug}", negated=True))
|
||||||
|
|
||||||
|
if previous_goal:
|
||||||
|
prev_slug = self._slugify(previous_goal)
|
||||||
|
context.append(BeliefLiteral(f"achieved_{prev_slug}"))
|
||||||
|
|
||||||
|
body_actions = []
|
||||||
|
sub_goals_to_process = []
|
||||||
|
|
||||||
|
for step in goal.plan.steps:
|
||||||
|
if isinstance(step, Goal):
|
||||||
|
sub_slug = self._slugify(step)
|
||||||
|
body_actions.append(ActionLiteral(f"!{sub_slug}"))
|
||||||
|
sub_goals_to_process.append(step)
|
||||||
|
elif isinstance(step, SpeechAction):
|
||||||
|
body_actions.append(ActionLiteral(f'.say("{step.text}")'))
|
||||||
|
elif isinstance(step, GestureAction):
|
||||||
|
body_actions.append(ActionLiteral(f'.gesture("{step.gesture}")'))
|
||||||
|
elif isinstance(step, LLMAction):
|
||||||
|
body_actions.append(ActionLiteral(f'!generate_response_with_goal("{step.goal}")'))
|
||||||
|
|
||||||
|
# Mark achievement
|
||||||
|
if not goal.can_fail:
|
||||||
|
body_actions.append(ActionLiteral(f"+achieved_{goal_slug}"))
|
||||||
|
|
||||||
|
asl.plans.append(Plan(trigger=GoalLiteral(goal_slug), context=context, body=body_actions))
|
||||||
|
asl.plans.append(
|
||||||
|
Plan(trigger=GoalLiteral(goal_slug), context=[], body=[ActionLiteral("true")])
|
||||||
|
)
|
||||||
|
|
||||||
|
prev_sub = None
|
||||||
|
for sub_goal in sub_goals_to_process:
|
||||||
|
self._generate_goal_plan_recursive(sub_goal, phase_id, prev_sub, asl)
|
||||||
|
prev_sub = sub_goal
|
||||||
|
|
||||||
|
# --- Section: Triggers ---
|
||||||
|
|
||||||
|
def _generate_triggers(self, phase: Phase, asl: AgentSpeakFile):
|
||||||
|
for keyword in self._get_keyword_conditionals(phase):
|
||||||
|
asl.plans.append(
|
||||||
|
Plan(
|
||||||
|
trigger=GoalLiteral(f"check_{self._slugify_str(keyword)}"),
|
||||||
|
context=[
|
||||||
|
ActionLiteral(
|
||||||
|
f'user_said(Message) & .substring("{keyword}", Message, Pos) & Pos >= 0'
|
||||||
|
)
|
||||||
|
],
|
||||||
|
body=[
|
||||||
|
ActionLiteral(f'+keyword_said("{keyword}")'),
|
||||||
|
ActionLiteral(f'-keyword_said("{keyword}")'),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
asl.plans.append(
|
||||||
|
Plan(
|
||||||
|
trigger=GoalLiteral(f"check_{self._slugify_str(keyword)}"),
|
||||||
|
body=[ActionLiteral("true")],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
for trigger in phase.triggers:
|
||||||
|
self._ensure_belief_inference(trigger.condition, asl)
|
||||||
|
|
||||||
|
trigger_belief_slug = self._belief_to_expr(trigger.condition)
|
||||||
|
|
||||||
|
body_actions = []
|
||||||
|
sub_goals = []
|
||||||
|
|
||||||
|
for step in trigger.plan.steps:
|
||||||
|
if isinstance(step, Goal):
|
||||||
|
sub_slug = self._slugify(step)
|
||||||
|
body_actions.append(ActionLiteral(f"!{sub_slug}"))
|
||||||
|
sub_goals.append(step)
|
||||||
|
elif isinstance(step, SpeechAction):
|
||||||
|
body_actions.append(ActionLiteral(f'.say("{step.text}")'))
|
||||||
|
elif isinstance(step, GestureAction):
|
||||||
|
body_actions.append(
|
||||||
|
ActionLiteral(f'.gesture("{step.gesture.type}", "{step.gesture.name}")')
|
||||||
|
)
|
||||||
|
elif isinstance(step, LLMAction):
|
||||||
|
body_actions.append(
|
||||||
|
ActionLiteral(f'!generate_response_with_goal("{step.goal}")')
|
||||||
|
)
|
||||||
|
|
||||||
|
asl.plans.append(
|
||||||
|
Plan(
|
||||||
|
trigger=BeliefLiteral(trigger_belief_slug),
|
||||||
|
context=[BeliefLiteral("phase", [f'"{phase.id}"'])],
|
||||||
|
body=body_actions,
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
# Recurse for triggered goals
|
||||||
|
prev_sub = None
|
||||||
|
for sub_goal in sub_goals:
|
||||||
|
self._generate_goal_plan_recursive(
|
||||||
|
sub_goal, str(phase.id), prev_sub, asl, False, False
|
||||||
|
)
|
||||||
|
prev_sub = sub_goal
|
||||||
|
|
||||||
|
# --- Section: Fallbacks ---
|
||||||
|
|
||||||
|
def _generate_fallbacks(self, program: Program, asl: AgentSpeakFile):
|
||||||
|
asl.plans.append(
|
||||||
|
Plan(trigger=GoalLiteral("transition_phase"), context=[], body=[ActionLiteral("true")])
|
||||||
|
)
|
||||||
|
|
||||||
|
# --- Helpers ---
|
||||||
|
|
||||||
|
@singledispatchmethod
|
||||||
|
def _slugify(self, element: ProgramElement) -> str:
|
||||||
|
if element.name:
|
||||||
|
raise NotImplementedError("Cannot slugify this element.")
|
||||||
|
return self._slugify_str(element.name)
|
||||||
|
|
||||||
|
@_slugify.register
|
||||||
|
def _(self, goal: Goal) -> str:
|
||||||
|
if goal.name:
|
||||||
|
return self._slugify_str(goal.name)
|
||||||
|
return f"goal_{goal.id.hex}"
|
||||||
|
|
||||||
|
@_slugify.register
|
||||||
|
def _(self, kwb: KeywordBelief) -> str:
|
||||||
|
return f"keyword_said({kwb.keyword})"
|
||||||
|
|
||||||
|
@_slugify.register
|
||||||
|
def _(self, sb: SemanticBelief) -> str:
|
||||||
|
return self._slugify_str(sb.description)
|
||||||
|
|
||||||
|
@_slugify.register
|
||||||
|
def _(self, ib: InferredBelief) -> str:
|
||||||
|
return self._slugify_str(ib.name)
|
||||||
|
|
||||||
|
def _slugify_str(self, text: str) -> str:
|
||||||
|
return slugify(text, separator="_", stopwords=["a", "an", "the", "we", "you", "I"])
|
||||||
|
|
||||||
|
def _extract_basic_beliefs_from_program(self, program: Program) -> list[BasicBelief]:
|
||||||
|
beliefs = []
|
||||||
|
|
||||||
|
for phase in program.phases:
|
||||||
|
beliefs.extend(self._extract_basic_beliefs_from_phase(phase))
|
||||||
|
|
||||||
|
return beliefs
|
||||||
|
|
||||||
|
def _extract_basic_beliefs_from_phase(self, phase: Phase) -> list[BasicBelief]:
|
||||||
|
beliefs = []
|
||||||
|
|
||||||
|
for norm in phase.norms:
|
||||||
|
if isinstance(norm, ConditionalNorm):
|
||||||
|
beliefs += self._extract_basic_beliefs_from_belief(norm.condition)
|
||||||
|
|
||||||
|
for trigger in phase.triggers:
|
||||||
|
beliefs += self._extract_basic_beliefs_from_belief(trigger.condition)
|
||||||
|
|
||||||
|
return beliefs
|
||||||
|
|
||||||
|
def _extract_basic_beliefs_from_belief(self, belief: Belief) -> list[BasicBelief]:
|
||||||
|
if isinstance(belief, InferredBelief):
|
||||||
|
return self._extract_basic_beliefs_from_belief(
|
||||||
|
belief.left
|
||||||
|
) + self._extract_basic_beliefs_from_belief(belief.right)
|
||||||
|
return [belief]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
asyncio.run(do_things())
|
||||||
|
# do_other_things()y
|
||||||
@@ -1,5 +1,6 @@
|
|||||||
import asyncio
|
import asyncio
|
||||||
import copy
|
import copy
|
||||||
|
import json
|
||||||
import time
|
import time
|
||||||
from collections.abc import Iterable
|
from collections.abc import Iterable
|
||||||
|
|
||||||
@@ -11,9 +12,9 @@ from pydantic import ValidationError
|
|||||||
from control_backend.agents.base import BaseAgent
|
from control_backend.agents.base import BaseAgent
|
||||||
from control_backend.core.agent_system import InternalMessage
|
from control_backend.core.agent_system import InternalMessage
|
||||||
from control_backend.core.config import settings
|
from control_backend.core.config import settings
|
||||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
from control_backend.schemas.belief_message import BeliefMessage
|
||||||
from control_backend.schemas.llm_prompt_message import LLMPromptMessage
|
from control_backend.schemas.llm_prompt_message import LLMPromptMessage
|
||||||
from control_backend.schemas.ri_message import SpeechCommand
|
from control_backend.schemas.ri_message import GestureCommand, RIEndpoint, SpeechCommand
|
||||||
|
|
||||||
DELIMITER = ";\n" # TODO: temporary until we support lists in AgentSpeak
|
DELIMITER = ";\n" # TODO: temporary until we support lists in AgentSpeak
|
||||||
|
|
||||||
@@ -42,13 +43,13 @@ class BDICoreAgent(BaseAgent):
|
|||||||
|
|
||||||
bdi_agent: agentspeak.runtime.Agent
|
bdi_agent: agentspeak.runtime.Agent
|
||||||
|
|
||||||
def __init__(self, name: str, asl: str):
|
def __init__(self, name: str):
|
||||||
super().__init__(name)
|
super().__init__(name)
|
||||||
self.asl_file = asl
|
|
||||||
self.env = agentspeak.runtime.Environment()
|
self.env = agentspeak.runtime.Environment()
|
||||||
# Deep copy because we don't actually want to modify the standard actions globally
|
# Deep copy because we don't actually want to modify the standard actions globally
|
||||||
self.actions = copy.deepcopy(agentspeak.stdlib.actions)
|
self.actions = copy.deepcopy(agentspeak.stdlib.actions)
|
||||||
self._wake_bdi_loop = asyncio.Event()
|
self._wake_bdi_loop = asyncio.Event()
|
||||||
|
self._bdi_loop_task = None
|
||||||
|
|
||||||
async def setup(self) -> None:
|
async def setup(self) -> None:
|
||||||
"""
|
"""
|
||||||
@@ -65,19 +66,22 @@ class BDICoreAgent(BaseAgent):
|
|||||||
await self._load_asl()
|
await self._load_asl()
|
||||||
|
|
||||||
# Start the BDI cycle loop
|
# Start the BDI cycle loop
|
||||||
self.add_behavior(self._bdi_loop())
|
self._bdi_loop_task = self.add_behavior(self._bdi_loop())
|
||||||
self._wake_bdi_loop.set()
|
self._wake_bdi_loop.set()
|
||||||
self.logger.debug("Setup complete.")
|
self.logger.debug("Setup complete.")
|
||||||
|
|
||||||
async def _load_asl(self):
|
async def _load_asl(self, file_name: str | None = None) -> None:
|
||||||
"""
|
"""
|
||||||
Load and parse the AgentSpeak source file.
|
Load and parse the AgentSpeak source file.
|
||||||
"""
|
"""
|
||||||
|
file_name = file_name or "src/control_backend/agents/bdi/default_behavior.asl"
|
||||||
|
|
||||||
try:
|
try:
|
||||||
with open(self.asl_file) as source:
|
with open(file_name) as source:
|
||||||
self.bdi_agent = self.env.build_agent(source, self.actions)
|
self.bdi_agent = self.env.build_agent(source, self.actions)
|
||||||
|
self.logger.info(f"Loaded new ASL from {file_name}.")
|
||||||
except FileNotFoundError:
|
except FileNotFoundError:
|
||||||
self.logger.warning(f"Could not find the specified ASL file at {self.asl_file}.")
|
self.logger.warning(f"Could not find the specified ASL file at {file_name}.")
|
||||||
self.bdi_agent = agentspeak.runtime.Agent(self.env, self.name)
|
self.bdi_agent = agentspeak.runtime.Agent(self.env, self.name)
|
||||||
|
|
||||||
async def _bdi_loop(self):
|
async def _bdi_loop(self):
|
||||||
@@ -97,7 +101,6 @@ class BDICoreAgent(BaseAgent):
|
|||||||
maybe_more_work = True
|
maybe_more_work = True
|
||||||
while maybe_more_work:
|
while maybe_more_work:
|
||||||
maybe_more_work = False
|
maybe_more_work = False
|
||||||
self.logger.debug("Stepping BDI.")
|
|
||||||
if self.bdi_agent.step():
|
if self.bdi_agent.step():
|
||||||
maybe_more_work = True
|
maybe_more_work = True
|
||||||
|
|
||||||
@@ -116,6 +119,7 @@ class BDICoreAgent(BaseAgent):
|
|||||||
Handle incoming messages.
|
Handle incoming messages.
|
||||||
|
|
||||||
- **Beliefs**: Updates the internal belief base.
|
- **Beliefs**: Updates the internal belief base.
|
||||||
|
- **Program**: Updates the internal agentspeak file to match the current program.
|
||||||
- **LLM Responses**: Forwards the generated text to the Robot Speech Agent (actuation).
|
- **LLM Responses**: Forwards the generated text to the Robot Speech Agent (actuation).
|
||||||
|
|
||||||
:param msg: The received internal message.
|
:param msg: The received internal message.
|
||||||
@@ -124,12 +128,19 @@ class BDICoreAgent(BaseAgent):
|
|||||||
|
|
||||||
if msg.thread == "beliefs":
|
if msg.thread == "beliefs":
|
||||||
try:
|
try:
|
||||||
beliefs = BeliefMessage.model_validate_json(msg.body).beliefs
|
belief_changes = BeliefMessage.model_validate_json(msg.body)
|
||||||
self._apply_beliefs(beliefs)
|
self._apply_belief_changes(belief_changes)
|
||||||
except ValidationError:
|
except ValidationError:
|
||||||
self.logger.exception("Error processing belief.")
|
self.logger.exception("Error processing belief.")
|
||||||
return
|
return
|
||||||
|
|
||||||
|
# New agentspeak file
|
||||||
|
if msg.thread == "new_program":
|
||||||
|
if self._bdi_loop_task:
|
||||||
|
self._bdi_loop_task.cancel()
|
||||||
|
await self._load_asl(msg.body)
|
||||||
|
self.add_behavior(self._bdi_loop())
|
||||||
|
|
||||||
# The message was not a belief, handle special cases based on sender
|
# The message was not a belief, handle special cases based on sender
|
||||||
match msg.sender:
|
match msg.sender:
|
||||||
case settings.agent_settings.llm_name:
|
case settings.agent_settings.llm_name:
|
||||||
@@ -144,23 +155,41 @@ class BDICoreAgent(BaseAgent):
|
|||||||
body=cmd.model_dump_json(),
|
body=cmd.model_dump_json(),
|
||||||
)
|
)
|
||||||
await self.send(out_msg)
|
await self.send(out_msg)
|
||||||
|
case settings.agent_settings.user_interrupt_name:
|
||||||
|
content = msg.body
|
||||||
|
self.logger.debug("Received user interruption: %s", content)
|
||||||
|
|
||||||
def _apply_beliefs(self, beliefs: list[Belief]):
|
match msg.thread:
|
||||||
|
case "force_phase_transition":
|
||||||
|
self._set_goal("transition_phase")
|
||||||
|
case "force_trigger":
|
||||||
|
self._force_trigger(msg.body)
|
||||||
|
case _:
|
||||||
|
self.logger.warning("Received unknow user interruption: %s", msg)
|
||||||
|
|
||||||
|
def _apply_belief_changes(self, belief_changes: BeliefMessage):
|
||||||
"""
|
"""
|
||||||
Update the belief base with a list of new beliefs.
|
Update the belief base with a list of new beliefs.
|
||||||
|
|
||||||
If ``replace=True`` is set on a belief, it removes all existing beliefs with that name
|
For beliefs in ``belief_changes.replace``, it removes all existing beliefs with that name
|
||||||
before adding the new one.
|
before adding one new one.
|
||||||
|
|
||||||
|
:param belief_changes: The changes in beliefs to apply.
|
||||||
"""
|
"""
|
||||||
if not beliefs:
|
if not belief_changes.create and not belief_changes.replace and not belief_changes.delete:
|
||||||
return
|
return
|
||||||
|
|
||||||
for belief in beliefs:
|
for belief in belief_changes.create:
|
||||||
if belief.replace:
|
|
||||||
self._remove_all_with_name(belief.name)
|
|
||||||
self._add_belief(belief.name, belief.arguments)
|
self._add_belief(belief.name, belief.arguments)
|
||||||
|
|
||||||
def _add_belief(self, name: str, args: Iterable[str] = []):
|
for belief in belief_changes.replace:
|
||||||
|
self._remove_all_with_name(belief.name)
|
||||||
|
self._add_belief(belief.name, belief.arguments)
|
||||||
|
|
||||||
|
for belief in belief_changes.delete:
|
||||||
|
self._remove_belief(belief.name, belief.arguments)
|
||||||
|
|
||||||
|
def _add_belief(self, name: str, args: list[str] = None):
|
||||||
"""
|
"""
|
||||||
Add a single belief to the BDI agent.
|
Add a single belief to the BDI agent.
|
||||||
|
|
||||||
@@ -168,9 +197,13 @@ class BDICoreAgent(BaseAgent):
|
|||||||
:param args: Arguments for the belief.
|
:param args: Arguments for the belief.
|
||||||
"""
|
"""
|
||||||
# new_args = (agentspeak.Literal(arg) for arg in args) # TODO: Eventually support multiple
|
# new_args = (agentspeak.Literal(arg) for arg in args) # TODO: Eventually support multiple
|
||||||
merged_args = DELIMITER.join(arg for arg in args)
|
args = args or []
|
||||||
new_args = (agentspeak.Literal(merged_args),)
|
if args:
|
||||||
term = agentspeak.Literal(name, new_args)
|
merged_args = DELIMITER.join(arg for arg in args)
|
||||||
|
new_args = (agentspeak.Literal(merged_args),)
|
||||||
|
term = agentspeak.Literal(name, new_args)
|
||||||
|
else:
|
||||||
|
term = agentspeak.Literal(name)
|
||||||
|
|
||||||
self.bdi_agent.call(
|
self.bdi_agent.call(
|
||||||
agentspeak.Trigger.addition,
|
agentspeak.Trigger.addition,
|
||||||
@@ -179,16 +212,35 @@ class BDICoreAgent(BaseAgent):
|
|||||||
agentspeak.runtime.Intention(),
|
agentspeak.runtime.Intention(),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# Check for transitions
|
||||||
|
self.bdi_agent.call(
|
||||||
|
agentspeak.Trigger.addition,
|
||||||
|
agentspeak.GoalType.achievement,
|
||||||
|
agentspeak.Literal("transition_phase"),
|
||||||
|
agentspeak.runtime.Intention(),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check triggers
|
||||||
|
self.bdi_agent.call(
|
||||||
|
agentspeak.Trigger.addition,
|
||||||
|
agentspeak.GoalType.achievement,
|
||||||
|
agentspeak.Literal("check_triggers"),
|
||||||
|
agentspeak.runtime.Intention(),
|
||||||
|
)
|
||||||
|
|
||||||
self._wake_bdi_loop.set()
|
self._wake_bdi_loop.set()
|
||||||
|
|
||||||
self.logger.debug(f"Added belief {self.format_belief_string(name, args)}")
|
self.logger.debug(f"Added belief {self.format_belief_string(name, args)}")
|
||||||
|
|
||||||
def _remove_belief(self, name: str, args: Iterable[str]):
|
def _remove_belief(self, name: str, args: Iterable[str] | None):
|
||||||
"""
|
"""
|
||||||
Removes a specific belief (with arguments), if it exists.
|
Removes a specific belief (with arguments), if it exists.
|
||||||
"""
|
"""
|
||||||
new_args = (agentspeak.Literal(arg) for arg in args)
|
if args is None:
|
||||||
term = agentspeak.Literal(name, new_args)
|
term = agentspeak.Literal(name)
|
||||||
|
else:
|
||||||
|
new_args = (agentspeak.Literal(arg) for arg in args)
|
||||||
|
term = agentspeak.Literal(name, new_args)
|
||||||
|
|
||||||
result = self.bdi_agent.call(
|
result = self.bdi_agent.call(
|
||||||
agentspeak.Trigger.removal,
|
agentspeak.Trigger.removal,
|
||||||
@@ -228,6 +280,37 @@ class BDICoreAgent(BaseAgent):
|
|||||||
|
|
||||||
self.logger.debug(f"Removed {removed_count} beliefs.")
|
self.logger.debug(f"Removed {removed_count} beliefs.")
|
||||||
|
|
||||||
|
def _set_goal(self, name: str, args: Iterable[str] | None = None):
|
||||||
|
args = args or []
|
||||||
|
|
||||||
|
if args:
|
||||||
|
merged_args = DELIMITER.join(arg for arg in args)
|
||||||
|
new_args = (agentspeak.Literal(merged_args),)
|
||||||
|
term = agentspeak.Literal(name, new_args)
|
||||||
|
else:
|
||||||
|
term = agentspeak.Literal(name)
|
||||||
|
|
||||||
|
self.bdi_agent.call(
|
||||||
|
agentspeak.Trigger.addition,
|
||||||
|
agentspeak.GoalType.achievement,
|
||||||
|
term,
|
||||||
|
agentspeak.runtime.Intention(),
|
||||||
|
)
|
||||||
|
|
||||||
|
self._wake_bdi_loop.set()
|
||||||
|
|
||||||
|
self.logger.debug(f"Set goal !{self.format_belief_string(name, args)}.")
|
||||||
|
|
||||||
|
def _force_trigger(self, name: str):
|
||||||
|
self.bdi_agent.call(
|
||||||
|
agentspeak.Trigger.addition,
|
||||||
|
agentspeak.GoalType.achievement,
|
||||||
|
agentspeak.Literal(name),
|
||||||
|
agentspeak.runtime.Intention(),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.logger.info("Manually forced trigger %s.", name)
|
||||||
|
|
||||||
def _add_custom_actions(self) -> None:
|
def _add_custom_actions(self) -> None:
|
||||||
"""
|
"""
|
||||||
Add any custom actions here. Inside `@self.actions.add()`, the first argument is
|
Add any custom actions here. Inside `@self.actions.add()`, the first argument is
|
||||||
@@ -235,43 +318,207 @@ class BDICoreAgent(BaseAgent):
|
|||||||
the function expects (which will be located in `term.args`).
|
the function expects (which will be located in `term.args`).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
@self.actions.add(".reply", 3)
|
@self.actions.add(".reply", 2)
|
||||||
def _reply(agent: "BDICoreAgent", term, intention):
|
def _reply(agent, term, intention):
|
||||||
"""
|
"""
|
||||||
Sends text to the LLM (AgentSpeak action).
|
Let the LLM generate a response to a user's utterance with the current norms and goals.
|
||||||
Example: .reply("Hello LLM!", "Some norm", "Some goal")
|
|
||||||
"""
|
"""
|
||||||
message_text = agentspeak.grounded(term.args[0], intention.scope)
|
message_text = agentspeak.grounded(term.args[0], intention.scope)
|
||||||
norms = agentspeak.grounded(term.args[1], intention.scope)
|
norms = agentspeak.grounded(term.args[1], intention.scope)
|
||||||
goals = agentspeak.grounded(term.args[2], intention.scope)
|
|
||||||
|
|
||||||
self.logger.debug("Norms: %s", norms)
|
self.logger.debug("Norms: %s", norms)
|
||||||
self.logger.debug("Goals: %s", goals)
|
|
||||||
self.logger.debug("User text: %s", message_text)
|
self.logger.debug("User text: %s", message_text)
|
||||||
|
|
||||||
asyncio.create_task(self._send_to_llm(str(message_text), str(norms), str(goals)))
|
self.add_behavior(self._send_to_llm(str(message_text), str(norms), ""))
|
||||||
yield
|
yield
|
||||||
|
|
||||||
async def _send_to_llm(self, text: str, norms: str = None, goals: str = None):
|
@self.actions.add(".reply_with_goal", 3)
|
||||||
|
def _reply_with_goal(agent: "BDICoreAgent", term, intention):
|
||||||
|
"""
|
||||||
|
Let the LLM generate a response to a user's utterance with the current norms and a
|
||||||
|
specific goal.
|
||||||
|
"""
|
||||||
|
message_text = agentspeak.grounded(term.args[0], intention.scope)
|
||||||
|
norms = agentspeak.grounded(term.args[1], intention.scope)
|
||||||
|
goal = agentspeak.grounded(term.args[2], intention.scope)
|
||||||
|
|
||||||
|
self.logger.debug(
|
||||||
|
'"reply_with_goal" action called with message=%s, norms=%s, goal=%s',
|
||||||
|
message_text,
|
||||||
|
norms,
|
||||||
|
goal,
|
||||||
|
)
|
||||||
|
self.add_behavior(self._send_to_llm(str(message_text), str(norms), str(goal)))
|
||||||
|
yield
|
||||||
|
|
||||||
|
@self.actions.add(".say", 1)
|
||||||
|
def _say(agent, term, intention):
|
||||||
|
"""
|
||||||
|
Make the robot say the given text instantly.
|
||||||
|
"""
|
||||||
|
message_text = agentspeak.grounded(term.args[0], intention.scope)
|
||||||
|
|
||||||
|
self.logger.debug('"say" action called with text=%s', message_text)
|
||||||
|
|
||||||
|
speech_command = SpeechCommand(data=message_text)
|
||||||
|
speech_message = InternalMessage(
|
||||||
|
to=settings.agent_settings.robot_speech_name,
|
||||||
|
sender=settings.agent_settings.bdi_core_name,
|
||||||
|
body=speech_command.model_dump_json(),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.add_behavior(self.send(speech_message))
|
||||||
|
|
||||||
|
chat_history_message = InternalMessage(
|
||||||
|
to=settings.agent_settings.llm_name,
|
||||||
|
thread="assistant_message",
|
||||||
|
body=str(message_text),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.add_behavior(self.send(chat_history_message))
|
||||||
|
|
||||||
|
yield
|
||||||
|
|
||||||
|
@self.actions.add(".gesture", 2)
|
||||||
|
def _gesture(agent, term, intention):
|
||||||
|
"""
|
||||||
|
Make the robot perform the given gesture instantly.
|
||||||
|
"""
|
||||||
|
gesture_type = agentspeak.grounded(term.args[0], intention.scope)
|
||||||
|
gesture_name = agentspeak.grounded(term.args[1], intention.scope)
|
||||||
|
|
||||||
|
self.logger.debug(
|
||||||
|
'"gesture" action called with type=%s, name=%s',
|
||||||
|
gesture_type,
|
||||||
|
gesture_name,
|
||||||
|
)
|
||||||
|
|
||||||
|
if str(gesture_type) == "single":
|
||||||
|
endpoint = RIEndpoint.GESTURE_SINGLE
|
||||||
|
elif str(gesture_type) == "tag":
|
||||||
|
endpoint = RIEndpoint.GESTURE_TAG
|
||||||
|
else:
|
||||||
|
self.logger.warning("Gesture type %s could not be resolved.", gesture_type)
|
||||||
|
endpoint = RIEndpoint.GESTURE_SINGLE
|
||||||
|
|
||||||
|
gesture_command = GestureCommand(endpoint=endpoint, data=gesture_name)
|
||||||
|
gesture_message = InternalMessage(
|
||||||
|
to=settings.agent_settings.robot_gesture_name,
|
||||||
|
sender=settings.agent_settings.bdi_core_name,
|
||||||
|
body=gesture_command.model_dump_json(),
|
||||||
|
)
|
||||||
|
self.add_behavior(self.send(gesture_message))
|
||||||
|
yield
|
||||||
|
|
||||||
|
@self.actions.add(".notify_user_said", 1)
|
||||||
|
def _notify_user_said(agent, term, intention):
|
||||||
|
user_said = agentspeak.grounded(term.args[0], intention.scope)
|
||||||
|
|
||||||
|
msg = InternalMessage(
|
||||||
|
to=settings.agent_settings.llm_name, thread="user_message", body=str(user_said)
|
||||||
|
)
|
||||||
|
|
||||||
|
self.add_behavior(self.send(msg))
|
||||||
|
|
||||||
|
yield
|
||||||
|
|
||||||
|
@self.actions.add(".notify_trigger_start", 1)
|
||||||
|
def _notify_trigger_start(agent, term, intention):
|
||||||
|
"""
|
||||||
|
Notify the UI about the trigger we just started doing.
|
||||||
|
"""
|
||||||
|
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
|
||||||
|
|
||||||
|
self.logger.debug("Started trigger %s", trigger_name)
|
||||||
|
|
||||||
|
msg = InternalMessage(
|
||||||
|
to=settings.agent_settings.user_interrupt_name,
|
||||||
|
sender=self.name,
|
||||||
|
thread="trigger_start",
|
||||||
|
body=str(trigger_name),
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO: check with Pim
|
||||||
|
self.add_behavior(self.send(msg))
|
||||||
|
|
||||||
|
yield
|
||||||
|
|
||||||
|
@self.actions.add(".notify_trigger_end", 1)
|
||||||
|
def _notify_trigger_end(agent, term, intention):
|
||||||
|
"""
|
||||||
|
Notify the UI about the trigger we just started doing.
|
||||||
|
"""
|
||||||
|
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
|
||||||
|
|
||||||
|
self.logger.debug("Finished trigger %s", trigger_name)
|
||||||
|
|
||||||
|
msg = InternalMessage(
|
||||||
|
to=settings.agent_settings.user_interrupt_name,
|
||||||
|
sender=self.name,
|
||||||
|
thread="trigger_end",
|
||||||
|
body=str(trigger_name),
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO: check with Pim
|
||||||
|
self.add_behavior(self.send(msg))
|
||||||
|
|
||||||
|
yield
|
||||||
|
|
||||||
|
@self.actions.add(".notify_goal_start", 1)
|
||||||
|
def _notify_goal_start(agent, term, intention):
|
||||||
|
"""
|
||||||
|
Notify the UI about the goal we just started chasing.
|
||||||
|
"""
|
||||||
|
goal_name = agentspeak.grounded(term.args[0], intention.scope)
|
||||||
|
|
||||||
|
self.logger.debug("Started chasing goal %s", goal_name)
|
||||||
|
|
||||||
|
msg = InternalMessage(
|
||||||
|
to=settings.agent_settings.user_interrupt_name,
|
||||||
|
sender=self.name,
|
||||||
|
thread="goal_start",
|
||||||
|
body=str(goal_name),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.add_behavior(self.send(msg))
|
||||||
|
|
||||||
|
yield
|
||||||
|
|
||||||
|
@self.actions.add(".notify_transition_phase", 2)
|
||||||
|
def _notify_transition_phase(agent, term, intention):
|
||||||
|
"""
|
||||||
|
Notify the BDI program manager about a phase transition.
|
||||||
|
"""
|
||||||
|
old = agentspeak.grounded(term.args[0], intention.scope)
|
||||||
|
new = agentspeak.grounded(term.args[1], intention.scope)
|
||||||
|
|
||||||
|
msg = InternalMessage(
|
||||||
|
to=settings.agent_settings.bdi_program_manager_name,
|
||||||
|
thread="transition_phase",
|
||||||
|
body=json.dumps({"old": str(old), "new": str(new)}),
|
||||||
|
)
|
||||||
|
|
||||||
|
self.add_behavior(self.send(msg))
|
||||||
|
|
||||||
|
yield
|
||||||
|
|
||||||
|
async def _send_to_llm(self, text: str, norms: str, goals: str):
|
||||||
"""
|
"""
|
||||||
Sends a text query to the LLM agent asynchronously.
|
Sends a text query to the LLM agent asynchronously.
|
||||||
"""
|
"""
|
||||||
prompt = LLMPromptMessage(
|
prompt = LLMPromptMessage(text=text, norms=norms.split("\n"), goals=goals.split("\n"))
|
||||||
text=text,
|
|
||||||
norms=norms.split("\n") if norms else [],
|
|
||||||
goals=goals.split("\n") if norms else [],
|
|
||||||
)
|
|
||||||
msg = InternalMessage(
|
msg = InternalMessage(
|
||||||
to=settings.agent_settings.llm_name,
|
to=settings.agent_settings.llm_name,
|
||||||
sender=self.name,
|
sender=self.name,
|
||||||
body=prompt.model_dump_json(),
|
body=prompt.model_dump_json(),
|
||||||
|
thread="prompt_message",
|
||||||
)
|
)
|
||||||
await self.send(msg)
|
await self.send(msg)
|
||||||
self.logger.info("Message sent to LLM agent: %s", text)
|
self.logger.info("Message sent to LLM agent: %s", text)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def format_belief_string(name: str, args: Iterable[str] = []):
|
def format_belief_string(name: str, args: Iterable[str] | None = []):
|
||||||
"""
|
"""
|
||||||
Given a belief's name and its args, return a string of the form "name(*args)"
|
Given a belief's name and its args, return a string of the form "name(*args)"
|
||||||
"""
|
"""
|
||||||
return f"{name}{'(' if args else ''}{','.join(args)}{')' if args else ''}"
|
return f"{name}{'(' if args else ''}{','.join(args or [])}{')' if args else ''}"
|
||||||
|
|||||||
@@ -1,12 +1,23 @@
|
|||||||
|
import asyncio
|
||||||
|
import json
|
||||||
|
|
||||||
import zmq
|
import zmq
|
||||||
from pydantic import ValidationError
|
from pydantic import ValidationError
|
||||||
from zmq.asyncio import Context
|
from zmq.asyncio import Context
|
||||||
|
|
||||||
from control_backend.agents import BaseAgent
|
from control_backend.agents import BaseAgent
|
||||||
from control_backend.core.agent_system import InternalMessage
|
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||||
from control_backend.core.config import settings
|
from control_backend.core.config import settings
|
||||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
from control_backend.schemas.belief_list import BeliefList, GoalList
|
||||||
from control_backend.schemas.program import Program
|
from control_backend.schemas.internal_message import InternalMessage
|
||||||
|
from control_backend.schemas.program import (
|
||||||
|
Belief,
|
||||||
|
ConditionalNorm,
|
||||||
|
Goal,
|
||||||
|
InferredBelief,
|
||||||
|
Phase,
|
||||||
|
Program,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
class BDIProgramManager(BaseAgent):
|
class BDIProgramManager(BaseAgent):
|
||||||
@@ -21,44 +32,140 @@ class BDIProgramManager(BaseAgent):
|
|||||||
:ivar sub_socket: The ZMQ SUB socket used to receive program updates.
|
:ivar sub_socket: The ZMQ SUB socket used to receive program updates.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
_program: Program
|
||||||
|
_phase: Phase | None
|
||||||
|
|
||||||
def __init__(self, **kwargs):
|
def __init__(self, **kwargs):
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
self.sub_socket = None
|
self.sub_socket = None
|
||||||
|
|
||||||
async def _send_to_bdi(self, program: Program):
|
def _initialize_internal_state(self, program: Program):
|
||||||
|
self._program = program
|
||||||
|
self._phase = program.phases[0] # start in first phase
|
||||||
|
|
||||||
|
async def _create_agentspeak_and_send_to_bdi(self, program: Program):
|
||||||
"""
|
"""
|
||||||
Convert a received program into BDI beliefs and send them to the BDI Core Agent.
|
Convert a received program into an AgentSpeak file and send it to the BDI Core Agent.
|
||||||
|
|
||||||
Currently, it takes the **first phase** of the program and extracts:
|
|
||||||
- **Norms**: Constraints or rules the agent must follow.
|
|
||||||
- **Goals**: Objectives the agent must achieve.
|
|
||||||
|
|
||||||
These are sent as a ``BeliefMessage`` with ``replace=True``, meaning they will
|
|
||||||
overwrite any existing norms/goals of the same name in the BDI agent.
|
|
||||||
|
|
||||||
:param program: The program object received from the API.
|
:param program: The program object received from the API.
|
||||||
"""
|
"""
|
||||||
first_phase = program.phases[0]
|
asg = AgentSpeakGenerator()
|
||||||
norms_belief = Belief(
|
|
||||||
name="norms",
|
asl_str = asg.generate(program)
|
||||||
arguments=[norm.norm for norm in first_phase.norms],
|
|
||||||
replace=True,
|
file_name = "src/control_backend/agents/bdi/agentspeak.asl"
|
||||||
|
|
||||||
|
with open(file_name, "w") as f:
|
||||||
|
f.write(asl_str)
|
||||||
|
|
||||||
|
msg = InternalMessage(
|
||||||
|
sender=self.name,
|
||||||
|
to=settings.agent_settings.bdi_core_name,
|
||||||
|
body=file_name,
|
||||||
|
thread="new_program",
|
||||||
)
|
)
|
||||||
goals_belief = Belief(
|
|
||||||
name="goals",
|
await self.send(msg)
|
||||||
arguments=[goal.description for goal in first_phase.goals],
|
|
||||||
replace=True,
|
async def handle_message(self, msg: InternalMessage):
|
||||||
|
match msg.thread:
|
||||||
|
case "transition_phase":
|
||||||
|
phases = json.loads(msg.body)
|
||||||
|
|
||||||
|
await self._transition_phase(phases["old"], phases["new"])
|
||||||
|
|
||||||
|
async def _transition_phase(self, old: str, new: str):
|
||||||
|
assert old == str(self._phase.id)
|
||||||
|
|
||||||
|
if new == "end":
|
||||||
|
self._phase = None
|
||||||
|
return
|
||||||
|
|
||||||
|
for phase in self._program.phases:
|
||||||
|
if str(phase.id) == new:
|
||||||
|
self._phase = phase
|
||||||
|
|
||||||
|
await self._send_beliefs_to_semantic_belief_extractor()
|
||||||
|
await self._send_goals_to_semantic_belief_extractor()
|
||||||
|
|
||||||
|
# Notify user interaction agent
|
||||||
|
msg = InternalMessage(
|
||||||
|
to=settings.agent_settings.user_interrupt_name,
|
||||||
|
thread="transition_phase",
|
||||||
|
body=str(self._phase.id),
|
||||||
)
|
)
|
||||||
program_beliefs = BeliefMessage(beliefs=[norms_belief, goals_belief])
|
|
||||||
|
self.add_behavior(self.send(msg))
|
||||||
|
|
||||||
|
def _extract_current_beliefs(self) -> list[Belief]:
|
||||||
|
beliefs: list[Belief] = []
|
||||||
|
|
||||||
|
for norm in self._phase.norms:
|
||||||
|
if isinstance(norm, ConditionalNorm):
|
||||||
|
beliefs += self._extract_beliefs_from_belief(norm.condition)
|
||||||
|
|
||||||
|
for trigger in self._phase.triggers:
|
||||||
|
beliefs += self._extract_beliefs_from_belief(trigger.condition)
|
||||||
|
|
||||||
|
return beliefs
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _extract_beliefs_from_belief(belief: Belief) -> list[Belief]:
|
||||||
|
if isinstance(belief, InferredBelief):
|
||||||
|
return BDIProgramManager._extract_beliefs_from_belief(
|
||||||
|
belief.left
|
||||||
|
) + BDIProgramManager._extract_beliefs_from_belief(belief.right)
|
||||||
|
return [belief]
|
||||||
|
|
||||||
|
async def _send_beliefs_to_semantic_belief_extractor(self):
|
||||||
|
"""
|
||||||
|
Extract beliefs from the program and send them to the Semantic Belief Extractor Agent.
|
||||||
|
"""
|
||||||
|
beliefs = BeliefList(beliefs=self._extract_current_beliefs())
|
||||||
|
|
||||||
message = InternalMessage(
|
message = InternalMessage(
|
||||||
to=settings.agent_settings.bdi_core_name,
|
to=settings.agent_settings.text_belief_extractor_name,
|
||||||
sender=self.name,
|
sender=self.name,
|
||||||
body=program_beliefs.model_dump_json(),
|
body=beliefs.model_dump_json(),
|
||||||
thread="beliefs",
|
thread="beliefs",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
await self.send(message)
|
||||||
|
|
||||||
|
def _extract_current_goals(self) -> list[Goal]:
|
||||||
|
"""
|
||||||
|
Extract all goals from the program, including subgoals.
|
||||||
|
|
||||||
|
:return: A list of Goal objects.
|
||||||
|
"""
|
||||||
|
goals: list[Goal] = []
|
||||||
|
|
||||||
|
def extract_goals_from_goal(goal_: Goal) -> list[Goal]:
|
||||||
|
goals_: list[Goal] = [goal]
|
||||||
|
for plan in goal_.plan:
|
||||||
|
if isinstance(plan, Goal):
|
||||||
|
goals_.extend(extract_goals_from_goal(plan))
|
||||||
|
return goals_
|
||||||
|
|
||||||
|
for goal in self._phase.goals:
|
||||||
|
goals.extend(extract_goals_from_goal(goal))
|
||||||
|
|
||||||
|
return goals
|
||||||
|
|
||||||
|
async def _send_goals_to_semantic_belief_extractor(self):
|
||||||
|
"""
|
||||||
|
Extract goals for the current phase and send them to the Semantic Belief Extractor Agent.
|
||||||
|
"""
|
||||||
|
goals = GoalList(goals=self._extract_current_goals())
|
||||||
|
|
||||||
|
message = InternalMessage(
|
||||||
|
to=settings.agent_settings.text_belief_extractor_name,
|
||||||
|
sender=self.name,
|
||||||
|
body=goals.model_dump_json(),
|
||||||
|
thread="goals",
|
||||||
|
)
|
||||||
|
|
||||||
await self.send(message)
|
await self.send(message)
|
||||||
self.logger.debug("Sent new norms and goals to the BDI agent.")
|
|
||||||
|
|
||||||
async def _send_clear_llm_history(self):
|
async def _send_clear_llm_history(self):
|
||||||
"""
|
"""
|
||||||
@@ -68,13 +175,19 @@ class BDIProgramManager(BaseAgent):
|
|||||||
"""
|
"""
|
||||||
message = InternalMessage(
|
message = InternalMessage(
|
||||||
to=settings.agent_settings.llm_name,
|
to=settings.agent_settings.llm_name,
|
||||||
sender=self.name,
|
|
||||||
body="clear_history",
|
body="clear_history",
|
||||||
threads="clear history message",
|
|
||||||
)
|
)
|
||||||
await self.send(message)
|
await self.send(message)
|
||||||
self.logger.debug("Sent message to LLM agent to clear history.")
|
self.logger.debug("Sent message to LLM agent to clear history.")
|
||||||
|
|
||||||
|
extractor_msg = InternalMessage(
|
||||||
|
to=settings.agent_settings.text_belief_extractor_name,
|
||||||
|
thread="conversation_history",
|
||||||
|
body="reset",
|
||||||
|
)
|
||||||
|
await self.send(extractor_msg)
|
||||||
|
self.logger.debug("Sent message to extractor agent to clear history.")
|
||||||
|
|
||||||
async def _receive_programs(self):
|
async def _receive_programs(self):
|
||||||
"""
|
"""
|
||||||
Continuous loop that receives program updates from the HTTP endpoint.
|
Continuous loop that receives program updates from the HTTP endpoint.
|
||||||
@@ -88,13 +201,20 @@ class BDIProgramManager(BaseAgent):
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
program = Program.model_validate_json(body)
|
program = Program.model_validate_json(body)
|
||||||
await self._send_to_bdi(program)
|
|
||||||
await self._send_clear_llm_history()
|
|
||||||
|
|
||||||
except ValidationError:
|
except ValidationError:
|
||||||
self.logger.exception("Received an invalid program.")
|
self.logger.warning("Received an invalid program.")
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
self._initialize_internal_state(program)
|
||||||
|
|
||||||
|
await self._send_clear_llm_history()
|
||||||
|
|
||||||
|
await asyncio.gather(
|
||||||
|
self._create_agentspeak_and_send_to_bdi(program),
|
||||||
|
self._send_beliefs_to_semantic_belief_extractor(),
|
||||||
|
self._send_goals_to_semantic_belief_extractor(),
|
||||||
|
)
|
||||||
|
|
||||||
async def setup(self):
|
async def setup(self):
|
||||||
"""
|
"""
|
||||||
Initialize the agent.
|
Initialize the agent.
|
||||||
|
|||||||
@@ -144,7 +144,7 @@ class BDIBeliefCollectorAgent(BaseAgent):
|
|||||||
msg = InternalMessage(
|
msg = InternalMessage(
|
||||||
to=settings.agent_settings.bdi_core_name,
|
to=settings.agent_settings.bdi_core_name,
|
||||||
sender=self.name,
|
sender=self.name,
|
||||||
body=BeliefMessage(beliefs=beliefs).model_dump_json(),
|
body=BeliefMessage(create=beliefs).model_dump_json(),
|
||||||
thread="beliefs",
|
thread="beliefs",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|||||||
6
src/control_backend/agents/bdi/default_behavior.asl
Normal file
6
src/control_backend/agents/bdi/default_behavior.asl
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
norms("").
|
||||||
|
|
||||||
|
+user_said(Message) : norms(Norms) <-
|
||||||
|
.notify_user_said(Message);
|
||||||
|
-user_said(Message);
|
||||||
|
.reply(Message, Norms).
|
||||||
@@ -1,6 +0,0 @@
|
|||||||
norms("").
|
|
||||||
goals("").
|
|
||||||
|
|
||||||
+user_said(Message) : norms(Norms) & goals(Goals) <-
|
|
||||||
-user_said(Message);
|
|
||||||
.reply(Message, Norms, Goals).
|
|
||||||
@@ -1,8 +1,46 @@
|
|||||||
|
import asyncio
|
||||||
import json
|
import json
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
from pydantic import BaseModel, ValidationError
|
||||||
|
|
||||||
from control_backend.agents.base import BaseAgent
|
from control_backend.agents.base import BaseAgent
|
||||||
|
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||||
from control_backend.core.agent_system import InternalMessage
|
from control_backend.core.agent_system import InternalMessage
|
||||||
from control_backend.core.config import settings
|
from control_backend.core.config import settings
|
||||||
|
from control_backend.schemas.belief_list import BeliefList, GoalList
|
||||||
|
from control_backend.schemas.belief_message import Belief as InternalBelief
|
||||||
|
from control_backend.schemas.belief_message import BeliefMessage
|
||||||
|
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
|
||||||
|
from control_backend.schemas.program import Goal, SemanticBelief
|
||||||
|
|
||||||
|
type JSONLike = None | bool | int | float | str | list["JSONLike"] | dict[str, "JSONLike"]
|
||||||
|
|
||||||
|
|
||||||
|
class BeliefState(BaseModel):
|
||||||
|
true: set[InternalBelief] = set()
|
||||||
|
false: set[InternalBelief] = set()
|
||||||
|
|
||||||
|
def difference(self, other: "BeliefState") -> "BeliefState":
|
||||||
|
return BeliefState(
|
||||||
|
true=self.true - other.true,
|
||||||
|
false=self.false - other.false,
|
||||||
|
)
|
||||||
|
|
||||||
|
def union(self, other: "BeliefState") -> "BeliefState":
|
||||||
|
return BeliefState(
|
||||||
|
true=self.true | other.true,
|
||||||
|
false=self.false | other.false,
|
||||||
|
)
|
||||||
|
|
||||||
|
def __sub__(self, other):
|
||||||
|
return self.difference(other)
|
||||||
|
|
||||||
|
def __or__(self, other):
|
||||||
|
return self.union(other)
|
||||||
|
|
||||||
|
def __bool__(self):
|
||||||
|
return bool(self.true) or bool(self.false)
|
||||||
|
|
||||||
|
|
||||||
class TextBeliefExtractorAgent(BaseAgent):
|
class TextBeliefExtractorAgent(BaseAgent):
|
||||||
@@ -12,54 +50,433 @@ class TextBeliefExtractorAgent(BaseAgent):
|
|||||||
This agent is responsible for processing raw text (e.g., from speech transcription) and
|
This agent is responsible for processing raw text (e.g., from speech transcription) and
|
||||||
extracting semantic beliefs from it.
|
extracting semantic beliefs from it.
|
||||||
|
|
||||||
In the current demonstration version, it performs a simple wrapping of the user's input
|
It uses the available beliefs received from the program manager to try to extract beliefs from a
|
||||||
into a ``user_said`` belief. In a full implementation, this agent would likely interact
|
user's message, sends and updated beliefs to the BDI core, and forms a ``user_said`` belief from
|
||||||
with an LLM or NLU engine to extract intent, entities, and other structured information.
|
the message itself.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
def __init__(self, name: str):
|
||||||
|
super().__init__(name)
|
||||||
|
self._llm = self.LLM(self, settings.llm_settings.n_parallel)
|
||||||
|
self.belief_inferrer = SemanticBeliefInferrer(self._llm)
|
||||||
|
self.goal_inferrer = GoalAchievementInferrer(self._llm)
|
||||||
|
self._current_beliefs = BeliefState()
|
||||||
|
self._current_goal_completions: dict[str, bool] = {}
|
||||||
|
self.conversation = ChatHistory(messages=[])
|
||||||
|
|
||||||
async def setup(self):
|
async def setup(self):
|
||||||
"""
|
"""
|
||||||
Initialize the agent and its resources.
|
Initialize the agent and its resources.
|
||||||
"""
|
"""
|
||||||
self.logger.info("Settting up %s.", self.name)
|
self.logger.info("Setting up %s.", self.name)
|
||||||
# Setup LLM belief context if needed (currently demo is just passthrough)
|
|
||||||
self.beliefs = {"mood": ["X"], "car": ["Y"]}
|
|
||||||
|
|
||||||
async def handle_message(self, msg: InternalMessage):
|
async def handle_message(self, msg: InternalMessage):
|
||||||
"""
|
"""
|
||||||
Handle incoming messages, primarily from the Transcription Agent.
|
Handle incoming messages. Expect messages from the Transcriber agent, LLM agent, and the
|
||||||
|
Program manager agent.
|
||||||
|
|
||||||
:param msg: The received message containing transcribed text.
|
:param msg: The received message.
|
||||||
"""
|
"""
|
||||||
sender = msg.sender
|
sender = msg.sender
|
||||||
if sender == settings.agent_settings.transcription_name:
|
|
||||||
self.logger.debug("Received text from transcriber: %s", msg.body)
|
|
||||||
await self._process_transcription_demo(msg.body)
|
|
||||||
else:
|
|
||||||
self.logger.info("Discarding message from %s", sender)
|
|
||||||
|
|
||||||
async def _process_transcription_demo(self, txt: str):
|
match sender:
|
||||||
|
case settings.agent_settings.transcription_name:
|
||||||
|
self.logger.debug("Received text from transcriber: %s", msg.body)
|
||||||
|
self._apply_conversation_message(ChatMessage(role="user", content=msg.body))
|
||||||
|
await self._user_said(msg.body)
|
||||||
|
await self._infer_new_beliefs()
|
||||||
|
await self._infer_goal_completions()
|
||||||
|
case settings.agent_settings.llm_name:
|
||||||
|
self.logger.debug("Received text from LLM: %s", msg.body)
|
||||||
|
self._apply_conversation_message(ChatMessage(role="assistant", content=msg.body))
|
||||||
|
case settings.agent_settings.bdi_program_manager_name:
|
||||||
|
await self._handle_program_manager_message(msg)
|
||||||
|
case _:
|
||||||
|
self.logger.info("Discarding message from %s", sender)
|
||||||
|
return
|
||||||
|
|
||||||
|
def _apply_conversation_message(self, message: ChatMessage):
|
||||||
"""
|
"""
|
||||||
Process the transcribed text and generate beliefs.
|
Save the chat message to our conversation history, taking into account the conversation
|
||||||
|
length limit.
|
||||||
|
|
||||||
**Demo Implementation:**
|
:param message: The chat message to add to the conversation history.
|
||||||
Currently, this method takes the raw text ``txt`` and wraps it into a belief structure:
|
|
||||||
``user_said("txt")``.
|
|
||||||
|
|
||||||
This belief is then sent to the :class:`BDIBeliefCollectorAgent`.
|
|
||||||
|
|
||||||
:param txt: The raw transcribed text string.
|
|
||||||
"""
|
"""
|
||||||
# For demo, just wrapping user text as user_said belief
|
length_limit = settings.behaviour_settings.conversation_history_length_limit
|
||||||
belief = {"beliefs": {"user_said": [txt]}, "type": "belief_extraction_text"}
|
self.conversation.messages = (self.conversation.messages + [message])[-length_limit:]
|
||||||
payload = json.dumps(belief)
|
|
||||||
|
|
||||||
belief_msg = InternalMessage(
|
async def _handle_program_manager_message(self, msg: InternalMessage):
|
||||||
to=settings.agent_settings.bdi_belief_collector_name,
|
"""
|
||||||
sender=self.name,
|
Handle a message from the program manager: extract available beliefs and goals from it.
|
||||||
body=payload,
|
|
||||||
thread="beliefs",
|
:param msg: The received message from the program manager.
|
||||||
|
"""
|
||||||
|
match msg.thread:
|
||||||
|
case "beliefs":
|
||||||
|
self._handle_beliefs_message(msg)
|
||||||
|
await self._infer_new_beliefs()
|
||||||
|
case "goals":
|
||||||
|
self._handle_goals_message(msg)
|
||||||
|
await self._infer_goal_completions()
|
||||||
|
case "conversation_history":
|
||||||
|
if msg.body == "reset":
|
||||||
|
self._reset()
|
||||||
|
case _:
|
||||||
|
self.logger.warning("Received unexpected message from %s", msg.sender)
|
||||||
|
|
||||||
|
def _reset(self):
|
||||||
|
self.conversation = ChatHistory(messages=[])
|
||||||
|
self.belief_inferrer.available_beliefs.clear()
|
||||||
|
self._current_beliefs = BeliefState()
|
||||||
|
self.goal_inferrer.goals.clear()
|
||||||
|
self._current_goal_completions = {}
|
||||||
|
|
||||||
|
def _handle_beliefs_message(self, msg: InternalMessage):
|
||||||
|
try:
|
||||||
|
belief_list = BeliefList.model_validate_json(msg.body)
|
||||||
|
except ValidationError:
|
||||||
|
self.logger.warning(
|
||||||
|
"Received message from program manager but it is not a valid list of beliefs."
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
available_beliefs = [b for b in belief_list.beliefs if isinstance(b, SemanticBelief)]
|
||||||
|
self.belief_inferrer.available_beliefs = available_beliefs
|
||||||
|
self.logger.debug(
|
||||||
|
"Received %d semantic beliefs from the program manager: %s",
|
||||||
|
len(available_beliefs),
|
||||||
|
", ".join(b.name for b in available_beliefs),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
def _handle_goals_message(self, msg: InternalMessage):
|
||||||
|
try:
|
||||||
|
goals_list = GoalList.model_validate_json(msg.body)
|
||||||
|
except ValidationError:
|
||||||
|
self.logger.warning(
|
||||||
|
"Received message from program manager but it is not a valid list of goals."
|
||||||
|
)
|
||||||
|
return
|
||||||
|
|
||||||
|
# Use only goals that can fail, as the others are always assumed to be completed
|
||||||
|
available_goals = [g for g in goals_list.goals if g.can_fail]
|
||||||
|
self.goal_inferrer.goals = available_goals
|
||||||
|
self.logger.debug(
|
||||||
|
"Received %d failable goals from the program manager: %s",
|
||||||
|
len(available_goals),
|
||||||
|
", ".join(g.name for g in available_goals),
|
||||||
|
)
|
||||||
|
|
||||||
|
async def _user_said(self, text: str):
|
||||||
|
"""
|
||||||
|
Create a belief for the user's full speech.
|
||||||
|
|
||||||
|
:param text: User's transcribed text.
|
||||||
|
"""
|
||||||
|
belief_msg = InternalMessage(
|
||||||
|
to=settings.agent_settings.bdi_core_name,
|
||||||
|
sender=self.name,
|
||||||
|
body=BeliefMessage(
|
||||||
|
replace=[InternalBelief(name="user_said", arguments=[text])],
|
||||||
|
).model_dump_json(),
|
||||||
|
thread="beliefs",
|
||||||
|
)
|
||||||
await self.send(belief_msg)
|
await self.send(belief_msg)
|
||||||
self.logger.info("Sent %d beliefs to the belief collector.", len(belief["beliefs"]))
|
|
||||||
|
async def _infer_new_beliefs(self):
|
||||||
|
conversation_beliefs = await self.belief_inferrer.infer_from_conversation(self.conversation)
|
||||||
|
|
||||||
|
new_beliefs = conversation_beliefs - self._current_beliefs
|
||||||
|
if not new_beliefs:
|
||||||
|
self.logger.debug("No new beliefs detected.")
|
||||||
|
return
|
||||||
|
|
||||||
|
self._current_beliefs |= new_beliefs
|
||||||
|
|
||||||
|
belief_changes = BeliefMessage(
|
||||||
|
create=list(new_beliefs.true),
|
||||||
|
delete=list(new_beliefs.false),
|
||||||
|
)
|
||||||
|
|
||||||
|
message = InternalMessage(
|
||||||
|
to=settings.agent_settings.bdi_core_name,
|
||||||
|
sender=self.name,
|
||||||
|
body=belief_changes.model_dump_json(),
|
||||||
|
thread="beliefs",
|
||||||
|
)
|
||||||
|
await self.send(message)
|
||||||
|
|
||||||
|
async def _infer_goal_completions(self):
|
||||||
|
goal_completions = await self.goal_inferrer.infer_from_conversation(self.conversation)
|
||||||
|
|
||||||
|
new_achieved = [
|
||||||
|
InternalBelief(name=goal, arguments=None)
|
||||||
|
for goal, achieved in goal_completions.items()
|
||||||
|
if achieved and self._current_goal_completions.get(goal) != achieved
|
||||||
|
]
|
||||||
|
new_not_achieved = [
|
||||||
|
InternalBelief(name=goal, arguments=None)
|
||||||
|
for goal, achieved in goal_completions.items()
|
||||||
|
if not achieved and self._current_goal_completions.get(goal) != achieved
|
||||||
|
]
|
||||||
|
for goal, achieved in goal_completions.items():
|
||||||
|
self._current_goal_completions[goal] = achieved
|
||||||
|
|
||||||
|
if not new_achieved and not new_not_achieved:
|
||||||
|
self.logger.debug("No goal achievement changes detected.")
|
||||||
|
return
|
||||||
|
|
||||||
|
belief_changes = BeliefMessage(
|
||||||
|
create=new_achieved,
|
||||||
|
delete=new_not_achieved,
|
||||||
|
)
|
||||||
|
message = InternalMessage(
|
||||||
|
to=settings.agent_settings.bdi_core_name,
|
||||||
|
sender=self.name,
|
||||||
|
body=belief_changes.model_dump_json(),
|
||||||
|
thread="beliefs",
|
||||||
|
)
|
||||||
|
await self.send(message)
|
||||||
|
|
||||||
|
class LLM:
|
||||||
|
"""
|
||||||
|
Class that handles sending structured generation requests to an LLM.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, agent: "TextBeliefExtractorAgent", n_parallel: int):
|
||||||
|
self._agent = agent
|
||||||
|
self._semaphore = asyncio.Semaphore(n_parallel)
|
||||||
|
|
||||||
|
async def query(self, prompt: str, schema: dict, tries: int = 3) -> JSONLike | None:
|
||||||
|
"""
|
||||||
|
Query the LLM with the given prompt and schema, return an instance of a dict conforming
|
||||||
|
to this schema. Try ``tries`` times, or return None.
|
||||||
|
|
||||||
|
:param prompt: Prompt to be queried.
|
||||||
|
:param schema: Schema to be queried.
|
||||||
|
:param tries: Number of times to try to query the LLM.
|
||||||
|
:return: An instance of a dict conforming to this schema, or None if failed.
|
||||||
|
"""
|
||||||
|
try_count = 0
|
||||||
|
while try_count < tries:
|
||||||
|
try_count += 1
|
||||||
|
|
||||||
|
try:
|
||||||
|
return await self._query_llm(prompt, schema)
|
||||||
|
except (httpx.HTTPError, json.JSONDecodeError, KeyError) as e:
|
||||||
|
if try_count < tries:
|
||||||
|
continue
|
||||||
|
self._agent.logger.exception(
|
||||||
|
"Failed to get LLM response after %d tries.",
|
||||||
|
try_count,
|
||||||
|
exc_info=e,
|
||||||
|
)
|
||||||
|
|
||||||
|
return None
|
||||||
|
|
||||||
|
async def _query_llm(self, prompt: str, schema: dict) -> JSONLike:
|
||||||
|
"""
|
||||||
|
Query an LLM with the given prompt and schema, return an instance of a dict conforming
|
||||||
|
to that schema.
|
||||||
|
|
||||||
|
:param prompt: The prompt to be queried.
|
||||||
|
:param schema: Schema to use during response.
|
||||||
|
:return: A dict conforming to this schema.
|
||||||
|
:raises httpx.HTTPStatusError: If the LLM server responded with an error.
|
||||||
|
:raises json.JSONDecodeError: If the LLM response was not valid JSON. May happen if the
|
||||||
|
response was cut off early due to length limitations.
|
||||||
|
:raises KeyError: If the LLM server responded with no error, but the response was
|
||||||
|
invalid.
|
||||||
|
"""
|
||||||
|
async with self._semaphore:
|
||||||
|
async with httpx.AsyncClient() as client:
|
||||||
|
response = await client.post(
|
||||||
|
settings.llm_settings.local_llm_url,
|
||||||
|
json={
|
||||||
|
"model": settings.llm_settings.local_llm_model,
|
||||||
|
"messages": [{"role": "user", "content": prompt}],
|
||||||
|
"response_format": {
|
||||||
|
"type": "json_schema",
|
||||||
|
"json_schema": {
|
||||||
|
"name": "Beliefs",
|
||||||
|
"strict": True,
|
||||||
|
"schema": schema,
|
||||||
|
},
|
||||||
|
},
|
||||||
|
"reasoning_effort": "low",
|
||||||
|
"temperature": settings.llm_settings.code_temperature,
|
||||||
|
"stream": False,
|
||||||
|
},
|
||||||
|
timeout=30.0,
|
||||||
|
)
|
||||||
|
response.raise_for_status()
|
||||||
|
|
||||||
|
response_json = response.json()
|
||||||
|
json_message = response_json["choices"][0]["message"]["content"]
|
||||||
|
return json.loads(json_message)
|
||||||
|
|
||||||
|
|
||||||
|
class SemanticBeliefInferrer:
|
||||||
|
"""
|
||||||
|
Class that handles only prompting an LLM for semantic beliefs.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
llm: "TextBeliefExtractorAgent.LLM",
|
||||||
|
available_beliefs: list[SemanticBelief] | None = None,
|
||||||
|
):
|
||||||
|
self._llm = llm
|
||||||
|
self.available_beliefs: list[SemanticBelief] = available_beliefs or []
|
||||||
|
|
||||||
|
async def infer_from_conversation(self, conversation: ChatHistory) -> BeliefState:
|
||||||
|
"""
|
||||||
|
Process conversation history to extract beliefs, semantically. The result is an object that
|
||||||
|
describes all beliefs that hold or don't hold based on the full conversation.
|
||||||
|
|
||||||
|
:param conversation: The conversation history to be processed.
|
||||||
|
:return: An object that describes beliefs.
|
||||||
|
"""
|
||||||
|
# Return instantly if there are no beliefs to infer
|
||||||
|
if not self.available_beliefs:
|
||||||
|
return BeliefState()
|
||||||
|
|
||||||
|
n_parallel = max(1, min(settings.llm_settings.n_parallel - 1, len(self.available_beliefs)))
|
||||||
|
all_beliefs: list[dict[str, bool | None] | None] = await asyncio.gather(
|
||||||
|
*[
|
||||||
|
self._infer_beliefs(conversation, beliefs)
|
||||||
|
for beliefs in self._split_into_chunks(self.available_beliefs, n_parallel)
|
||||||
|
]
|
||||||
|
)
|
||||||
|
retval = BeliefState()
|
||||||
|
for beliefs in all_beliefs:
|
||||||
|
if beliefs is None:
|
||||||
|
continue
|
||||||
|
for belief_name, belief_holds in beliefs.items():
|
||||||
|
if belief_holds is None:
|
||||||
|
continue
|
||||||
|
belief = InternalBelief(name=belief_name, arguments=None)
|
||||||
|
if belief_holds:
|
||||||
|
retval.true.add(belief)
|
||||||
|
else:
|
||||||
|
retval.false.add(belief)
|
||||||
|
return retval
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
|
||||||
|
"""
|
||||||
|
Split a list into ``n`` chunks, making each chunk approximately ``len(items) / n`` long.
|
||||||
|
|
||||||
|
:param items: The list of items to split.
|
||||||
|
:param n: The number of desired chunks.
|
||||||
|
:return: A list of chunks each approximately ``len(items) / n`` long.
|
||||||
|
"""
|
||||||
|
k, m = divmod(len(items), n)
|
||||||
|
return [items[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)]
|
||||||
|
|
||||||
|
async def _infer_beliefs(
|
||||||
|
self,
|
||||||
|
conversation: ChatHistory,
|
||||||
|
beliefs: list[SemanticBelief],
|
||||||
|
) -> dict[str, bool | None] | None:
|
||||||
|
"""
|
||||||
|
Infer given beliefs based on the given conversation.
|
||||||
|
:param conversation: The conversation to infer beliefs from.
|
||||||
|
:param beliefs: The beliefs to infer.
|
||||||
|
:return: A dict containing belief names and a boolean whether they hold, or None if the
|
||||||
|
belief cannot be inferred based on the given conversation.
|
||||||
|
"""
|
||||||
|
example = {
|
||||||
|
"example_belief": True,
|
||||||
|
}
|
||||||
|
|
||||||
|
prompt = f"""{self._format_conversation(conversation)}
|
||||||
|
|
||||||
|
Given the above conversation, what beliefs can be inferred?
|
||||||
|
If there is no relevant information about a belief belief, give null.
|
||||||
|
In case messages conflict, prefer using the most recent messages for inference.
|
||||||
|
|
||||||
|
Choose from the following list of beliefs, formatted as `- <belief_name>: <description>`:
|
||||||
|
{self._format_beliefs(beliefs)}
|
||||||
|
|
||||||
|
Respond with a JSON similar to the following, but with the property names as given above:
|
||||||
|
{json.dumps(example, indent=2)}
|
||||||
|
"""
|
||||||
|
|
||||||
|
schema = self._create_beliefs_schema(beliefs)
|
||||||
|
|
||||||
|
return await self._llm.query(prompt, schema)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _create_belief_schema(belief: SemanticBelief) -> tuple[str, dict]:
|
||||||
|
return AgentSpeakGenerator.slugify(belief), {
|
||||||
|
"type": ["boolean", "null"],
|
||||||
|
"description": belief.description,
|
||||||
|
}
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _create_beliefs_schema(beliefs: list[SemanticBelief]) -> dict:
|
||||||
|
belief_schemas = [
|
||||||
|
SemanticBeliefInferrer._create_belief_schema(belief) for belief in beliefs
|
||||||
|
]
|
||||||
|
|
||||||
|
return {
|
||||||
|
"type": "object",
|
||||||
|
"properties": dict(belief_schemas),
|
||||||
|
"required": [name for name, _ in belief_schemas],
|
||||||
|
}
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _format_message(message: ChatMessage):
|
||||||
|
return f"{message.role.upper()}:\n{message.content}"
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _format_conversation(conversation: ChatHistory):
|
||||||
|
return "\n\n".join(
|
||||||
|
[SemanticBeliefInferrer._format_message(message) for message in conversation.messages]
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _format_beliefs(beliefs: list[SemanticBelief]):
|
||||||
|
return "\n".join(
|
||||||
|
[f"- {AgentSpeakGenerator.slugify(belief)}: {belief.description}" for belief in beliefs]
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class GoalAchievementInferrer(SemanticBeliefInferrer):
|
||||||
|
def __init__(self, llm: TextBeliefExtractorAgent.LLM):
|
||||||
|
super().__init__(llm)
|
||||||
|
self.goals = []
|
||||||
|
|
||||||
|
async def infer_from_conversation(self, conversation: ChatHistory) -> dict[str, bool]:
|
||||||
|
"""
|
||||||
|
Determine which goals have been achieved based on the given conversation.
|
||||||
|
|
||||||
|
:param conversation: The conversation to infer goal completion from.
|
||||||
|
:return: A mapping of goals and a boolean whether they have been achieved.
|
||||||
|
"""
|
||||||
|
if not self.goals:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
goals_achieved = await asyncio.gather(
|
||||||
|
*[self._infer_goal(conversation, g) for g in self.goals]
|
||||||
|
)
|
||||||
|
return {
|
||||||
|
f"achieved_{AgentSpeakGenerator.slugify(goal)}": achieved
|
||||||
|
for goal, achieved in zip(self.goals, goals_achieved, strict=True)
|
||||||
|
}
|
||||||
|
|
||||||
|
async def _infer_goal(self, conversation: ChatHistory, goal: Goal) -> bool:
|
||||||
|
prompt = f"""{self._format_conversation(conversation)}
|
||||||
|
|
||||||
|
Given the above conversation, what has the following goal been achieved?
|
||||||
|
|
||||||
|
The name of the goal: {goal.name}
|
||||||
|
Description of the goal: {goal.description}
|
||||||
|
|
||||||
|
Answer with literally only `true` or `false` (without backticks)."""
|
||||||
|
|
||||||
|
schema = {
|
||||||
|
"type": "boolean",
|
||||||
|
}
|
||||||
|
|
||||||
|
return await self._llm.query(prompt, schema)
|
||||||
|
|||||||
@@ -248,7 +248,8 @@ class RICommunicationAgent(BaseAgent):
|
|||||||
self._req_socket.recv_json(), timeout=seconds_to_wait_total / 2
|
self._req_socket.recv_json(), timeout=seconds_to_wait_total / 2
|
||||||
)
|
)
|
||||||
|
|
||||||
self.logger.debug(f'Received message "{message}" from RI.')
|
if "endpoint" in message and message["endpoint"] != "ping":
|
||||||
|
self.logger.debug(f'Received message "{message}" from RI.')
|
||||||
if "endpoint" not in message:
|
if "endpoint" not in message:
|
||||||
self.logger.warning("No received endpoint in message, expected ping endpoint.")
|
self.logger.warning("No received endpoint in message, expected ping endpoint.")
|
||||||
continue
|
continue
|
||||||
|
|||||||
@@ -46,18 +46,23 @@ class LLMAgent(BaseAgent):
|
|||||||
:param msg: The received internal message.
|
:param msg: The received internal message.
|
||||||
"""
|
"""
|
||||||
if msg.sender == settings.agent_settings.bdi_core_name:
|
if msg.sender == settings.agent_settings.bdi_core_name:
|
||||||
self.logger.debug("Processing message from BDI core.")
|
match msg.thread:
|
||||||
try:
|
case "prompt_message":
|
||||||
prompt_message = LLMPromptMessage.model_validate_json(msg.body)
|
try:
|
||||||
await self._process_bdi_message(prompt_message)
|
prompt_message = LLMPromptMessage.model_validate_json(msg.body)
|
||||||
except ValidationError:
|
await self._process_bdi_message(prompt_message)
|
||||||
self.logger.debug("Prompt message from BDI core is invalid.")
|
except ValidationError:
|
||||||
|
self.logger.debug("Prompt message from BDI core is invalid.")
|
||||||
|
case "assistant_message":
|
||||||
|
self.history.append({"role": "assistant", "content": msg.body})
|
||||||
|
case "user_message":
|
||||||
|
self.history.append({"role": "user", "content": msg.body})
|
||||||
elif msg.sender == settings.agent_settings.bdi_program_manager_name:
|
elif msg.sender == settings.agent_settings.bdi_program_manager_name:
|
||||||
if msg.body == "clear_history":
|
if msg.body == "clear_history":
|
||||||
self.logger.debug("Clearing conversation history.")
|
self.logger.debug("Clearing conversation history.")
|
||||||
self.history.clear()
|
self.history.clear()
|
||||||
else:
|
else:
|
||||||
self.logger.debug("Message ignored (not from BDI core.")
|
self.logger.debug("Message ignored.")
|
||||||
|
|
||||||
async def _process_bdi_message(self, message: LLMPromptMessage):
|
async def _process_bdi_message(self, message: LLMPromptMessage):
|
||||||
"""
|
"""
|
||||||
@@ -68,11 +73,12 @@ class LLMAgent(BaseAgent):
|
|||||||
|
|
||||||
:param message: The parsed prompt message containing text, norms, and goals.
|
:param message: The parsed prompt message containing text, norms, and goals.
|
||||||
"""
|
"""
|
||||||
|
full_message = ""
|
||||||
async for chunk in self._query_llm(message.text, message.norms, message.goals):
|
async for chunk in self._query_llm(message.text, message.norms, message.goals):
|
||||||
await self._send_reply(chunk)
|
await self._send_reply(chunk)
|
||||||
self.logger.debug(
|
full_message += chunk
|
||||||
"Finished processing BDI message. Response sent in chunks to BDI core."
|
self.logger.debug("Finished processing BDI message. Response sent in chunks to BDI core.")
|
||||||
)
|
await self._send_full_reply(full_message)
|
||||||
|
|
||||||
async def _send_reply(self, msg: str):
|
async def _send_reply(self, msg: str):
|
||||||
"""
|
"""
|
||||||
@@ -87,6 +93,19 @@ class LLMAgent(BaseAgent):
|
|||||||
)
|
)
|
||||||
await self.send(reply)
|
await self.send(reply)
|
||||||
|
|
||||||
|
async def _send_full_reply(self, msg: str):
|
||||||
|
"""
|
||||||
|
Sends a response message (full) to agents that need it.
|
||||||
|
|
||||||
|
:param msg: The text content of the message.
|
||||||
|
"""
|
||||||
|
message = InternalMessage(
|
||||||
|
to=settings.agent_settings.text_belief_extractor_name,
|
||||||
|
sender=self.name,
|
||||||
|
body=msg,
|
||||||
|
)
|
||||||
|
await self.send(message)
|
||||||
|
|
||||||
async def _query_llm(
|
async def _query_llm(
|
||||||
self, prompt: str, norms: list[str], goals: list[str]
|
self, prompt: str, norms: list[str], goals: list[str]
|
||||||
) -> AsyncGenerator[str]:
|
) -> AsyncGenerator[str]:
|
||||||
@@ -104,13 +123,6 @@ class LLMAgent(BaseAgent):
|
|||||||
:param goals: Goals the LLM should achieve.
|
:param goals: Goals the LLM should achieve.
|
||||||
:yield: Fragments of the LLM-generated content (e.g., sentences/phrases).
|
:yield: Fragments of the LLM-generated content (e.g., sentences/phrases).
|
||||||
"""
|
"""
|
||||||
self.history.append(
|
|
||||||
{
|
|
||||||
"role": "user",
|
|
||||||
"content": prompt,
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
instructions = LLMInstructions(norms if norms else None, goals if goals else None)
|
instructions = LLMInstructions(norms if norms else None, goals if goals else None)
|
||||||
messages = [
|
messages = [
|
||||||
{
|
{
|
||||||
@@ -176,7 +188,7 @@ class LLMAgent(BaseAgent):
|
|||||||
json={
|
json={
|
||||||
"model": settings.llm_settings.local_llm_model,
|
"model": settings.llm_settings.local_llm_model,
|
||||||
"messages": messages,
|
"messages": messages,
|
||||||
"temperature": 0.3,
|
"temperature": settings.llm_settings.chat_temperature,
|
||||||
"stream": True,
|
"stream": True,
|
||||||
},
|
},
|
||||||
) as response:
|
) as response:
|
||||||
|
|||||||
@@ -229,10 +229,11 @@ class VADAgent(BaseAgent):
|
|||||||
assert self.model is not None
|
assert self.model is not None
|
||||||
prob = self.model(torch.from_numpy(chunk), settings.vad_settings.sample_rate_hz).item()
|
prob = self.model(torch.from_numpy(chunk), settings.vad_settings.sample_rate_hz).item()
|
||||||
non_speech_patience = settings.behaviour_settings.vad_non_speech_patience_chunks
|
non_speech_patience = settings.behaviour_settings.vad_non_speech_patience_chunks
|
||||||
|
begin_silence_length = settings.behaviour_settings.vad_begin_silence_chunks
|
||||||
prob_threshold = settings.behaviour_settings.vad_prob_threshold
|
prob_threshold = settings.behaviour_settings.vad_prob_threshold
|
||||||
|
|
||||||
if prob > prob_threshold:
|
if prob > prob_threshold:
|
||||||
if self.i_since_speech > non_speech_patience:
|
if self.i_since_speech > non_speech_patience + begin_silence_length:
|
||||||
self.logger.debug("Speech started.")
|
self.logger.debug("Speech started.")
|
||||||
self.audio_buffer = np.append(self.audio_buffer, chunk)
|
self.audio_buffer = np.append(self.audio_buffer, chunk)
|
||||||
self.i_since_speech = 0
|
self.i_since_speech = 0
|
||||||
@@ -246,11 +247,12 @@ class VADAgent(BaseAgent):
|
|||||||
continue
|
continue
|
||||||
|
|
||||||
# Speech probably ended. Make sure we have a usable amount of data.
|
# Speech probably ended. Make sure we have a usable amount of data.
|
||||||
if len(self.audio_buffer) >= 3 * len(chunk):
|
if len(self.audio_buffer) > begin_silence_length * len(chunk):
|
||||||
self.logger.debug("Speech ended.")
|
self.logger.debug("Speech ended.")
|
||||||
assert self.audio_out_socket is not None
|
assert self.audio_out_socket is not None
|
||||||
await self.audio_out_socket.send(self.audio_buffer[: -2 * len(chunk)].tobytes())
|
await self.audio_out_socket.send(self.audio_buffer[: -2 * len(chunk)].tobytes())
|
||||||
|
|
||||||
# At this point, we know that the speech has ended.
|
# At this point, we know that there is no speech.
|
||||||
# Prepend the last chunk that had no speech, for a more fluent boundary
|
# Prepend the last few chunks that had no speech, for a more fluent boundary.
|
||||||
self.audio_buffer = chunk
|
self.audio_buffer = np.append(self.audio_buffer, chunk)
|
||||||
|
self.audio_buffer = self.audio_buffer[-begin_silence_length * len(chunk) :]
|
||||||
|
|||||||
@@ -131,6 +131,7 @@ class BaseAgent(ABC):
|
|||||||
:param message: The message to send.
|
:param message: The message to send.
|
||||||
"""
|
"""
|
||||||
target = AgentDirectory.get(message.to)
|
target = AgentDirectory.get(message.to)
|
||||||
|
message.sender = self.name
|
||||||
if target:
|
if target:
|
||||||
await target.inbox.put(message)
|
await target.inbox.put(message)
|
||||||
self.logger.debug(f"Sent message {message.body} to {message.to} via regular inbox.")
|
self.logger.debug(f"Sent message {message.body} to {message.to} via regular inbox.")
|
||||||
@@ -192,7 +193,16 @@ class BaseAgent(ABC):
|
|||||||
|
|
||||||
:param coro: The coroutine to execute as a task.
|
:param coro: The coroutine to execute as a task.
|
||||||
"""
|
"""
|
||||||
task = asyncio.create_task(coro)
|
|
||||||
|
async def try_coro(coro_: Coroutine):
|
||||||
|
try:
|
||||||
|
await coro_
|
||||||
|
except asyncio.CancelledError:
|
||||||
|
self.logger.debug("A behavior was canceled successfully: %s", coro_)
|
||||||
|
except Exception:
|
||||||
|
self.logger.warning("An exception occurred in a behavior.", exc_info=True)
|
||||||
|
|
||||||
|
task = asyncio.create_task(try_coro(coro))
|
||||||
self._tasks.add(task)
|
self._tasks.add(task)
|
||||||
task.add_done_callback(self._tasks.discard)
|
task.add_done_callback(self._tasks.discard)
|
||||||
return task
|
return task
|
||||||
|
|||||||
@@ -73,10 +73,12 @@ class BehaviourSettings(BaseModel):
|
|||||||
:ivar vad_prob_threshold: Probability threshold for Voice Activity Detection.
|
:ivar vad_prob_threshold: Probability threshold for Voice Activity Detection.
|
||||||
:ivar vad_initial_since_speech: Initial value for 'since speech' counter in VAD.
|
:ivar vad_initial_since_speech: Initial value for 'since speech' counter in VAD.
|
||||||
:ivar vad_non_speech_patience_chunks: Number of non-speech chunks to wait before speech ended.
|
:ivar vad_non_speech_patience_chunks: Number of non-speech chunks to wait before speech ended.
|
||||||
|
:ivar vad_begin_silence_chunks: The number of chunks of silence to prepend to speech chunks.
|
||||||
:ivar transcription_max_concurrent_tasks: Maximum number of concurrent transcription tasks.
|
:ivar transcription_max_concurrent_tasks: Maximum number of concurrent transcription tasks.
|
||||||
:ivar transcription_words_per_minute: Estimated words per minute for transcription timing.
|
:ivar transcription_words_per_minute: Estimated words per minute for transcription timing.
|
||||||
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
|
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
|
||||||
:ivar transcription_token_buffer: Buffer for transcription tokens.
|
:ivar transcription_token_buffer: Buffer for transcription tokens.
|
||||||
|
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||||
@@ -88,7 +90,8 @@ class BehaviourSettings(BaseModel):
|
|||||||
# VAD settings
|
# VAD settings
|
||||||
vad_prob_threshold: float = 0.5
|
vad_prob_threshold: float = 0.5
|
||||||
vad_initial_since_speech: int = 100
|
vad_initial_since_speech: int = 100
|
||||||
vad_non_speech_patience_chunks: int = 3
|
vad_non_speech_patience_chunks: int = 15
|
||||||
|
vad_begin_silence_chunks: int = 6
|
||||||
|
|
||||||
# transcription behaviour
|
# transcription behaviour
|
||||||
transcription_max_concurrent_tasks: int = 3
|
transcription_max_concurrent_tasks: int = 3
|
||||||
@@ -96,6 +99,9 @@ class BehaviourSettings(BaseModel):
|
|||||||
transcription_words_per_token: float = 0.75 # (3 words = 4 tokens)
|
transcription_words_per_token: float = 0.75 # (3 words = 4 tokens)
|
||||||
transcription_token_buffer: int = 10
|
transcription_token_buffer: int = 10
|
||||||
|
|
||||||
|
# Text belief extractor settings
|
||||||
|
conversation_history_length_limit: int = 10
|
||||||
|
|
||||||
|
|
||||||
class LLMSettings(BaseModel):
|
class LLMSettings(BaseModel):
|
||||||
"""
|
"""
|
||||||
@@ -103,12 +109,19 @@ class LLMSettings(BaseModel):
|
|||||||
|
|
||||||
:ivar local_llm_url: URL for the local LLM API.
|
:ivar local_llm_url: URL for the local LLM API.
|
||||||
:ivar local_llm_model: Name of the local LLM model to use.
|
:ivar local_llm_model: Name of the local LLM model to use.
|
||||||
|
:ivar chat_temperature: The temperature to use while generating chat responses.
|
||||||
|
:ivar code_temperature: The temperature to use while generating code-like responses like during
|
||||||
|
belief inference.
|
||||||
|
:ivar n_parallel: The number of parallel calls allowed to be made to the LLM.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||||
|
|
||||||
local_llm_url: str = "http://localhost:1234/v1/chat/completions"
|
local_llm_url: str = "http://localhost:1234/v1/chat/completions"
|
||||||
local_llm_model: str = "gpt-oss"
|
local_llm_model: str = "gpt-oss"
|
||||||
|
chat_temperature: float = 1.0
|
||||||
|
code_temperature: float = 0.3
|
||||||
|
n_parallel: int = 4
|
||||||
|
|
||||||
|
|
||||||
class VADSettings(BaseModel):
|
class VADSettings(BaseModel):
|
||||||
|
|||||||
@@ -120,7 +120,6 @@ async def lifespan(app: FastAPI):
|
|||||||
BDICoreAgent,
|
BDICoreAgent,
|
||||||
{
|
{
|
||||||
"name": settings.agent_settings.bdi_core_name,
|
"name": settings.agent_settings.bdi_core_name,
|
||||||
"asl": "src/control_backend/agents/bdi/rules.asl",
|
|
||||||
},
|
},
|
||||||
),
|
),
|
||||||
"BeliefCollectorAgent": (
|
"BeliefCollectorAgent": (
|
||||||
|
|||||||
19
src/control_backend/schemas/belief_list.py
Normal file
19
src/control_backend/schemas/belief_list.py
Normal file
@@ -0,0 +1,19 @@
|
|||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from control_backend.schemas.program import Belief as ProgramBelief
|
||||||
|
from control_backend.schemas.program import Goal
|
||||||
|
|
||||||
|
|
||||||
|
class BeliefList(BaseModel):
|
||||||
|
"""
|
||||||
|
Represents a list of beliefs, separated from a program. Useful in agents which need to
|
||||||
|
communicate beliefs.
|
||||||
|
|
||||||
|
:ivar: beliefs: The list of beliefs.
|
||||||
|
"""
|
||||||
|
|
||||||
|
beliefs: list[ProgramBelief]
|
||||||
|
|
||||||
|
|
||||||
|
class GoalList(BaseModel):
|
||||||
|
goals: list[Goal]
|
||||||
@@ -6,18 +6,30 @@ class Belief(BaseModel):
|
|||||||
Represents a single belief in the BDI system.
|
Represents a single belief in the BDI system.
|
||||||
|
|
||||||
:ivar name: The functor or name of the belief (e.g., 'user_said').
|
:ivar name: The functor or name of the belief (e.g., 'user_said').
|
||||||
:ivar arguments: A list of string arguments for the belief.
|
:ivar arguments: A list of string arguments for the belief, or None if the belief has no
|
||||||
:ivar replace: If True, existing beliefs with this name should be replaced by this one.
|
arguments.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
name: str
|
name: str
|
||||||
arguments: list[str]
|
arguments: list[str] | None
|
||||||
replace: bool = False
|
|
||||||
|
# To make it hashable
|
||||||
|
model_config = {"frozen": True}
|
||||||
|
|
||||||
|
|
||||||
class BeliefMessage(BaseModel):
|
class BeliefMessage(BaseModel):
|
||||||
"""
|
"""
|
||||||
A container for transporting a list of beliefs between agents.
|
A container for communicating beliefs between agents.
|
||||||
|
|
||||||
|
:ivar create: Beliefs to create.
|
||||||
|
:ivar delete: Beliefs to delete.
|
||||||
|
:ivar replace: Beliefs to replace. Deletes all beliefs with the same name, replacing them with
|
||||||
|
one new belief.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
beliefs: list[Belief]
|
create: list[Belief] = []
|
||||||
|
delete: list[Belief] = []
|
||||||
|
replace: list[Belief] = []
|
||||||
|
|
||||||
|
def has_values(self) -> bool:
|
||||||
|
return len(self.create) > 0 or len(self.delete) > 0 or len(self.replace) > 0
|
||||||
|
|||||||
10
src/control_backend/schemas/chat_history.py
Normal file
10
src/control_backend/schemas/chat_history.py
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
|
||||||
|
class ChatMessage(BaseModel):
|
||||||
|
role: str
|
||||||
|
content: str
|
||||||
|
|
||||||
|
|
||||||
|
class ChatHistory(BaseModel):
|
||||||
|
messages: list[ChatMessage]
|
||||||
@@ -12,6 +12,6 @@ class InternalMessage(BaseModel):
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
to: str
|
to: str
|
||||||
sender: str
|
sender: str | None = None
|
||||||
body: str
|
body: str
|
||||||
thread: str | None = None
|
thread: str | None = None
|
||||||
|
|||||||
@@ -1,64 +1,202 @@
|
|||||||
from pydantic import BaseModel
|
from enum import Enum
|
||||||
|
from typing import Literal
|
||||||
|
|
||||||
|
from pydantic import UUID4, BaseModel
|
||||||
|
|
||||||
|
|
||||||
class Norm(BaseModel):
|
class ProgramElement(BaseModel):
|
||||||
"""
|
"""
|
||||||
Represents a behavioral norm.
|
Represents a basic element of our behavior program.
|
||||||
|
|
||||||
|
:ivar name: The researcher-assigned name of the element.
|
||||||
:ivar id: Unique identifier.
|
:ivar id: Unique identifier.
|
||||||
:ivar label: Human-readable label.
|
|
||||||
:ivar norm: The actual norm text describing the behavior.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
id: str
|
name: str
|
||||||
label: str
|
id: UUID4
|
||||||
norm: str
|
|
||||||
|
|
||||||
|
|
||||||
class Goal(BaseModel):
|
class LogicalOperator(Enum):
|
||||||
|
AND = "AND"
|
||||||
|
OR = "OR"
|
||||||
|
|
||||||
|
|
||||||
|
type Belief = KeywordBelief | SemanticBelief | InferredBelief
|
||||||
|
type BasicBelief = KeywordBelief | SemanticBelief
|
||||||
|
|
||||||
|
|
||||||
|
class KeywordBelief(ProgramElement):
|
||||||
"""
|
"""
|
||||||
Represents an objective to be achieved.
|
Represents a belief that is set when the user spoken text contains a certain keyword.
|
||||||
|
|
||||||
:ivar id: Unique identifier.
|
:ivar keyword: The keyword on which this belief gets set.
|
||||||
:ivar label: Human-readable label.
|
|
||||||
:ivar description: Detailed description of the goal.
|
|
||||||
:ivar achieved: Status flag indicating if the goal has been met.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
id: str
|
name: str = ""
|
||||||
label: str
|
|
||||||
description: str
|
|
||||||
achieved: bool
|
|
||||||
|
|
||||||
|
|
||||||
class TriggerKeyword(BaseModel):
|
|
||||||
id: str
|
|
||||||
keyword: str
|
keyword: str
|
||||||
|
|
||||||
|
|
||||||
class KeywordTrigger(BaseModel):
|
class SemanticBelief(ProgramElement):
|
||||||
id: str
|
"""
|
||||||
label: str
|
Represents a belief that is set by semantic LLM validation.
|
||||||
type: str
|
|
||||||
keywords: list[TriggerKeyword]
|
:ivar description: Description of how to form the belief, used by the LLM.
|
||||||
|
"""
|
||||||
|
|
||||||
|
description: str
|
||||||
|
|
||||||
|
|
||||||
class Phase(BaseModel):
|
class InferredBelief(ProgramElement):
|
||||||
|
"""
|
||||||
|
Represents a belief that gets formed by combining two beliefs with a logical AND or OR.
|
||||||
|
|
||||||
|
These beliefs can also be :class:`InferredBelief`, leading to arbitrarily deep nesting.
|
||||||
|
|
||||||
|
:ivar operator: The logical operator to apply.
|
||||||
|
:ivar left: The left part of the logical expression.
|
||||||
|
:ivar right: The right part of the logical expression.
|
||||||
|
"""
|
||||||
|
|
||||||
|
name: str = ""
|
||||||
|
operator: LogicalOperator
|
||||||
|
left: Belief
|
||||||
|
right: Belief
|
||||||
|
|
||||||
|
|
||||||
|
class Norm(ProgramElement):
|
||||||
|
name: str = ""
|
||||||
|
norm: str
|
||||||
|
critical: bool = False
|
||||||
|
|
||||||
|
|
||||||
|
class BasicNorm(Norm):
|
||||||
|
"""
|
||||||
|
Represents a behavioral norm.
|
||||||
|
|
||||||
|
:ivar norm: The actual norm text describing the behavior.
|
||||||
|
:ivar critical: When true, this norm should absolutely not be violated (checked separately).
|
||||||
|
"""
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class ConditionalNorm(Norm):
|
||||||
|
"""
|
||||||
|
Represents a norm that is only active when a condition is met (i.e., a certain belief holds).
|
||||||
|
|
||||||
|
:ivar condition: When to activate this norm.
|
||||||
|
"""
|
||||||
|
|
||||||
|
condition: Belief
|
||||||
|
|
||||||
|
|
||||||
|
type PlanElement = Goal | Action
|
||||||
|
|
||||||
|
|
||||||
|
class Plan(ProgramElement):
|
||||||
|
"""
|
||||||
|
Represents a list of steps to execute. Each of these steps can be a goal (with its own plan)
|
||||||
|
or a simple action.
|
||||||
|
|
||||||
|
:ivar steps: The actions or subgoals to execute, in order.
|
||||||
|
"""
|
||||||
|
|
||||||
|
name: str = ""
|
||||||
|
steps: list[PlanElement]
|
||||||
|
|
||||||
|
|
||||||
|
class Goal(ProgramElement):
|
||||||
|
"""
|
||||||
|
Represents an objective to be achieved. To reach the goal, we should execute
|
||||||
|
the corresponding plan. If we can fail to achieve a goal after executing the plan,
|
||||||
|
for example when the achieving of the goal is dependent on the user's reply, this means
|
||||||
|
that the achieved status will be set from somewhere else in the program.
|
||||||
|
|
||||||
|
:ivar description: A description of the goal, used to determine if it has been achieved.
|
||||||
|
:ivar plan: The plan to execute.
|
||||||
|
:ivar can_fail: Whether we can fail to achieve the goal after executing the plan.
|
||||||
|
"""
|
||||||
|
|
||||||
|
description: str = ""
|
||||||
|
plan: Plan
|
||||||
|
can_fail: bool = True
|
||||||
|
|
||||||
|
|
||||||
|
type Action = SpeechAction | GestureAction | LLMAction
|
||||||
|
|
||||||
|
|
||||||
|
class SpeechAction(ProgramElement):
|
||||||
|
"""
|
||||||
|
Represents the action of the robot speaking a literal text.
|
||||||
|
|
||||||
|
:ivar text: The text to speak.
|
||||||
|
"""
|
||||||
|
|
||||||
|
name: str = ""
|
||||||
|
text: str
|
||||||
|
|
||||||
|
|
||||||
|
class Gesture(BaseModel):
|
||||||
|
"""
|
||||||
|
Represents a gesture to be performed. Can be either a single gesture,
|
||||||
|
or a random gesture from a category (tag).
|
||||||
|
|
||||||
|
:ivar type: The type of the gesture, "tag" or "single".
|
||||||
|
:ivar name: The name of the single gesture or tag.
|
||||||
|
"""
|
||||||
|
|
||||||
|
type: Literal["tag", "single"]
|
||||||
|
name: str
|
||||||
|
|
||||||
|
|
||||||
|
class GestureAction(ProgramElement):
|
||||||
|
"""
|
||||||
|
Represents the action of the robot performing a gesture.
|
||||||
|
|
||||||
|
:ivar gesture: The gesture to perform.
|
||||||
|
"""
|
||||||
|
|
||||||
|
name: str = ""
|
||||||
|
gesture: Gesture
|
||||||
|
|
||||||
|
|
||||||
|
class LLMAction(ProgramElement):
|
||||||
|
"""
|
||||||
|
Represents the action of letting an LLM generate a reply based on its chat history
|
||||||
|
and an additional goal added in the prompt.
|
||||||
|
|
||||||
|
:ivar goal: The extra (temporary) goal to add to the LLM.
|
||||||
|
"""
|
||||||
|
|
||||||
|
name: str = ""
|
||||||
|
goal: str
|
||||||
|
|
||||||
|
|
||||||
|
class Trigger(ProgramElement):
|
||||||
|
"""
|
||||||
|
Represents a belief-based trigger. When a belief is set, the corresponding plan is executed.
|
||||||
|
|
||||||
|
:ivar condition: When to activate the trigger.
|
||||||
|
:ivar plan: The plan to execute.
|
||||||
|
"""
|
||||||
|
|
||||||
|
condition: Belief
|
||||||
|
plan: Plan
|
||||||
|
|
||||||
|
|
||||||
|
class Phase(ProgramElement):
|
||||||
"""
|
"""
|
||||||
A distinct phase within a program, containing norms, goals, and triggers.
|
A distinct phase within a program, containing norms, goals, and triggers.
|
||||||
|
|
||||||
:ivar id: Unique identifier.
|
|
||||||
:ivar label: Human-readable label.
|
|
||||||
:ivar norms: List of norms active in this phase.
|
:ivar norms: List of norms active in this phase.
|
||||||
:ivar goals: List of goals to pursue in this phase.
|
:ivar goals: List of goals to pursue in this phase.
|
||||||
:ivar triggers: List of triggers that define transitions out of this phase.
|
:ivar triggers: List of triggers that define transitions out of this phase.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
id: str
|
name: str = ""
|
||||||
label: str
|
norms: list[BasicNorm | ConditionalNorm]
|
||||||
norms: list[Norm]
|
|
||||||
goals: list[Goal]
|
goals: list[Goal]
|
||||||
triggers: list[KeywordTrigger]
|
triggers: list[Trigger]
|
||||||
|
|
||||||
|
|
||||||
class Program(BaseModel):
|
class Program(BaseModel):
|
||||||
|
|||||||
@@ -20,7 +20,7 @@ def mock_agentspeak_env():
|
|||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
def agent():
|
def agent():
|
||||||
agent = BDICoreAgent("bdi_agent", "dummy.asl")
|
agent = BDICoreAgent("bdi_agent")
|
||||||
agent.send = AsyncMock()
|
agent.send = AsyncMock()
|
||||||
agent.bdi_agent = MagicMock()
|
agent.bdi_agent = MagicMock()
|
||||||
return agent
|
return agent
|
||||||
@@ -51,7 +51,7 @@ async def test_handle_belief_collector_message(agent, mock_settings):
|
|||||||
msg = InternalMessage(
|
msg = InternalMessage(
|
||||||
to="bdi_agent",
|
to="bdi_agent",
|
||||||
sender=mock_settings.agent_settings.bdi_belief_collector_name,
|
sender=mock_settings.agent_settings.bdi_belief_collector_name,
|
||||||
body=BeliefMessage(beliefs=beliefs).model_dump_json(),
|
body=BeliefMessage(create=beliefs).model_dump_json(),
|
||||||
thread="beliefs",
|
thread="beliefs",
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -64,6 +64,26 @@ async def test_handle_belief_collector_message(agent, mock_settings):
|
|||||||
assert args[2] == agentspeak.Literal("user_said", (agentspeak.Literal("Hello"),))
|
assert args[2] == agentspeak.Literal("user_said", (agentspeak.Literal("Hello"),))
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_handle_delete_belief_message(agent, mock_settings):
|
||||||
|
"""Test that incoming beliefs to be deleted are removed from the BDI agent"""
|
||||||
|
beliefs = [Belief(name="user_said", arguments=["Hello"])]
|
||||||
|
|
||||||
|
msg = InternalMessage(
|
||||||
|
to="bdi_agent",
|
||||||
|
sender=mock_settings.agent_settings.bdi_belief_collector_name,
|
||||||
|
body=BeliefMessage(delete=beliefs).model_dump_json(),
|
||||||
|
thread="beliefs",
|
||||||
|
)
|
||||||
|
await agent.handle_message(msg)
|
||||||
|
|
||||||
|
# Expect bdi_agent.call to be triggered to remove belief
|
||||||
|
args = agent.bdi_agent.call.call_args.args
|
||||||
|
assert args[0] == agentspeak.Trigger.removal
|
||||||
|
assert args[1] == agentspeak.GoalType.belief
|
||||||
|
assert args[2] == agentspeak.Literal("user_said", (agentspeak.Literal("Hello"),))
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_incorrect_belief_collector_message(agent, mock_settings):
|
async def test_incorrect_belief_collector_message(agent, mock_settings):
|
||||||
"""Test that incorrect message format triggers an exception."""
|
"""Test that incorrect message format triggers an exception."""
|
||||||
@@ -113,14 +133,14 @@ async def test_custom_actions(agent):
|
|||||||
|
|
||||||
# Invoke action
|
# Invoke action
|
||||||
mock_term = MagicMock()
|
mock_term = MagicMock()
|
||||||
mock_term.args = ["Hello", "Norm", "Goal"]
|
mock_term.args = ["Hello", "Norm"]
|
||||||
mock_intention = MagicMock()
|
mock_intention = MagicMock()
|
||||||
|
|
||||||
# Run generator
|
# Run generator
|
||||||
gen = action_fn(agent, mock_term, mock_intention)
|
gen = action_fn(agent, mock_term, mock_intention)
|
||||||
next(gen) # Execute
|
next(gen) # Execute
|
||||||
|
|
||||||
agent._send_to_llm.assert_called_with("Hello", "Norm", "Goal")
|
agent._send_to_llm.assert_called_with("Hello", "Norm", "")
|
||||||
|
|
||||||
|
|
||||||
def test_add_belief_sets_event(agent):
|
def test_add_belief_sets_event(agent):
|
||||||
@@ -128,7 +148,8 @@ def test_add_belief_sets_event(agent):
|
|||||||
agent._wake_bdi_loop = MagicMock()
|
agent._wake_bdi_loop = MagicMock()
|
||||||
|
|
||||||
belief = Belief(name="test_belief", arguments=["a", "b"])
|
belief = Belief(name="test_belief", arguments=["a", "b"])
|
||||||
agent._apply_beliefs([belief])
|
belief_changes = BeliefMessage(replace=[belief])
|
||||||
|
agent._apply_belief_changes(belief_changes)
|
||||||
|
|
||||||
assert agent.bdi_agent.call.called
|
assert agent.bdi_agent.call.called
|
||||||
agent._wake_bdi_loop.set.assert_called()
|
agent._wake_bdi_loop.set.assert_called()
|
||||||
@@ -137,7 +158,7 @@ def test_add_belief_sets_event(agent):
|
|||||||
def test_apply_beliefs_empty_returns(agent):
|
def test_apply_beliefs_empty_returns(agent):
|
||||||
"""Line: if not beliefs: return"""
|
"""Line: if not beliefs: return"""
|
||||||
agent._wake_bdi_loop = MagicMock()
|
agent._wake_bdi_loop = MagicMock()
|
||||||
agent._apply_beliefs([])
|
agent._apply_belief_changes(BeliefMessage())
|
||||||
agent.bdi_agent.call.assert_not_called()
|
agent.bdi_agent.call.assert_not_called()
|
||||||
agent._wake_bdi_loop.set.assert_not_called()
|
agent._wake_bdi_loop.set.assert_not_called()
|
||||||
|
|
||||||
@@ -220,8 +241,9 @@ def test_replace_belief_calls_remove_all(agent):
|
|||||||
agent._remove_all_with_name = MagicMock()
|
agent._remove_all_with_name = MagicMock()
|
||||||
agent._wake_bdi_loop = MagicMock()
|
agent._wake_bdi_loop = MagicMock()
|
||||||
|
|
||||||
belief = Belief(name="user_said", arguments=["Hello"], replace=True)
|
belief = Belief(name="user_said", arguments=["Hello"])
|
||||||
agent._apply_beliefs([belief])
|
belief_changes = BeliefMessage(replace=[belief])
|
||||||
|
agent._apply_belief_changes(belief_changes)
|
||||||
|
|
||||||
agent._remove_all_with_name.assert_called_with("user_said")
|
agent._remove_all_with_name.assert_called_with("user_said")
|
||||||
|
|
||||||
|
|||||||
@@ -1,6 +1,6 @@
|
|||||||
import asyncio
|
import asyncio
|
||||||
import json
|
|
||||||
import sys
|
import sys
|
||||||
|
import uuid
|
||||||
from unittest.mock import AsyncMock
|
from unittest.mock import AsyncMock
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
@@ -8,38 +8,54 @@ import pytest
|
|||||||
from control_backend.agents.bdi.bdi_program_manager import BDIProgramManager
|
from control_backend.agents.bdi.bdi_program_manager import BDIProgramManager
|
||||||
from control_backend.core.agent_system import InternalMessage
|
from control_backend.core.agent_system import InternalMessage
|
||||||
from control_backend.schemas.belief_message import BeliefMessage
|
from control_backend.schemas.belief_message import BeliefMessage
|
||||||
from control_backend.schemas.program import Program
|
from control_backend.schemas.program import BasicNorm, Goal, Phase, Plan, Program
|
||||||
|
|
||||||
# Fix Windows Proactor loop for zmq
|
# Fix Windows Proactor loop for zmq
|
||||||
if sys.platform.startswith("win"):
|
if sys.platform.startswith("win"):
|
||||||
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
asyncio.set_event_loop_policy(asyncio.WindowsSelectorEventLoopPolicy())
|
||||||
|
|
||||||
|
|
||||||
def make_valid_program_json(norm="N1", goal="G1"):
|
def make_valid_program_json(norm="N1", goal="G1") -> str:
|
||||||
return json.dumps(
|
return Program(
|
||||||
{
|
phases=[
|
||||||
"phases": [
|
Phase(
|
||||||
{
|
id=uuid.uuid4(),
|
||||||
"id": "phase1",
|
name="Basic Phase",
|
||||||
"label": "Phase 1",
|
norms=[
|
||||||
"triggers": [],
|
BasicNorm(
|
||||||
"norms": [{"id": "n1", "label": "Norm 1", "norm": norm}],
|
id=uuid.uuid4(),
|
||||||
"goals": [
|
name=norm,
|
||||||
{"id": "g1", "label": "Goal 1", "description": goal, "achieved": False}
|
norm=norm,
|
||||||
],
|
),
|
||||||
}
|
],
|
||||||
]
|
goals=[
|
||||||
}
|
Goal(
|
||||||
)
|
id=uuid.uuid4(),
|
||||||
|
name=goal,
|
||||||
|
description="This description can be used to determine whether the goal "
|
||||||
|
"has been achieved.",
|
||||||
|
plan=Plan(
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
name="Goal Plan",
|
||||||
|
steps=[],
|
||||||
|
),
|
||||||
|
can_fail=False,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
triggers=[],
|
||||||
|
),
|
||||||
|
],
|
||||||
|
).model_dump_json()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.skip(reason="Functionality being rebuilt.")
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
async def test_send_to_bdi():
|
async def test_send_to_bdi():
|
||||||
manager = BDIProgramManager(name="program_manager_test")
|
manager = BDIProgramManager(name="program_manager_test")
|
||||||
manager.send = AsyncMock()
|
manager.send = AsyncMock()
|
||||||
|
|
||||||
program = Program.model_validate_json(make_valid_program_json())
|
program = Program.model_validate_json(make_valid_program_json())
|
||||||
await manager._send_to_bdi(program)
|
await manager._create_agentspeak_and_send_to_bdi(program)
|
||||||
|
|
||||||
assert manager.send.await_count == 1
|
assert manager.send.await_count == 1
|
||||||
msg: InternalMessage = manager.send.await_args[0][0]
|
msg: InternalMessage = manager.send.await_args[0][0]
|
||||||
@@ -61,8 +77,9 @@ async def test_receive_programs_valid_and_invalid():
|
|||||||
]
|
]
|
||||||
|
|
||||||
manager = BDIProgramManager(name="program_manager_test")
|
manager = BDIProgramManager(name="program_manager_test")
|
||||||
|
manager._internal_pub_socket = AsyncMock()
|
||||||
manager.sub_socket = sub
|
manager.sub_socket = sub
|
||||||
manager._send_to_bdi = AsyncMock()
|
manager._create_agentspeak_and_send_to_bdi = AsyncMock()
|
||||||
manager._send_clear_llm_history = AsyncMock()
|
manager._send_clear_llm_history = AsyncMock()
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@@ -72,10 +89,10 @@ async def test_receive_programs_valid_and_invalid():
|
|||||||
pass
|
pass
|
||||||
|
|
||||||
# Only valid Program should have triggered _send_to_bdi
|
# Only valid Program should have triggered _send_to_bdi
|
||||||
assert manager._send_to_bdi.await_count == 1
|
assert manager._create_agentspeak_and_send_to_bdi.await_count == 1
|
||||||
forwarded: Program = manager._send_to_bdi.await_args[0][0]
|
forwarded: Program = manager._create_agentspeak_and_send_to_bdi.await_args[0][0]
|
||||||
assert forwarded.phases[0].norms[0].norm == "N1"
|
assert forwarded.phases[0].norms[0].name == "N1"
|
||||||
assert forwarded.phases[0].goals[0].description == "G1"
|
assert forwarded.phases[0].goals[0].name == "G1"
|
||||||
|
|
||||||
# Verify history clear was triggered
|
# Verify history clear was triggered
|
||||||
assert manager._send_clear_llm_history.await_count == 1
|
assert manager._send_clear_llm_history.await_count == 1
|
||||||
@@ -91,8 +108,8 @@ async def test_send_clear_llm_history(mock_settings):
|
|||||||
|
|
||||||
await manager._send_clear_llm_history()
|
await manager._send_clear_llm_history()
|
||||||
|
|
||||||
assert manager.send.await_count == 1
|
assert manager.send.await_count == 2
|
||||||
msg: InternalMessage = manager.send.await_args[0][0]
|
msg: InternalMessage = manager.send.await_args_list[0][0][0]
|
||||||
|
|
||||||
# Verify the content and recipient
|
# Verify the content and recipient
|
||||||
assert msg.body == "clear_history"
|
assert msg.body == "clear_history"
|
||||||
|
|||||||
@@ -86,7 +86,7 @@ async def test_send_beliefs_to_bdi(agent):
|
|||||||
sent: InternalMessage = agent.send.call_args.args[0]
|
sent: InternalMessage = agent.send.call_args.args[0]
|
||||||
assert sent.to == settings.agent_settings.bdi_core_name
|
assert sent.to == settings.agent_settings.bdi_core_name
|
||||||
assert sent.thread == "beliefs"
|
assert sent.thread == "beliefs"
|
||||||
assert json.loads(sent.body)["beliefs"] == [belief.model_dump() for belief in beliefs]
|
assert json.loads(sent.body)["create"] == [belief.model_dump() for belief in beliefs]
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
@pytest.mark.asyncio
|
||||||
|
|||||||
376
test/unit/agents/bdi/test_text_belief_extractor.py
Normal file
376
test/unit/agents/bdi/test_text_belief_extractor.py
Normal file
@@ -0,0 +1,376 @@
|
|||||||
|
import json
|
||||||
|
import uuid
|
||||||
|
from unittest.mock import AsyncMock, MagicMock, patch
|
||||||
|
|
||||||
|
import httpx
|
||||||
|
import pytest
|
||||||
|
|
||||||
|
from control_backend.agents.bdi import TextBeliefExtractorAgent
|
||||||
|
from control_backend.agents.bdi.text_belief_extractor_agent import BeliefState
|
||||||
|
from control_backend.core.agent_system import InternalMessage
|
||||||
|
from control_backend.core.config import settings
|
||||||
|
from control_backend.schemas.belief_list import BeliefList
|
||||||
|
from control_backend.schemas.belief_message import Belief as InternalBelief
|
||||||
|
from control_backend.schemas.belief_message import BeliefMessage
|
||||||
|
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
|
||||||
|
from control_backend.schemas.program import (
|
||||||
|
ConditionalNorm,
|
||||||
|
KeywordBelief,
|
||||||
|
LLMAction,
|
||||||
|
Phase,
|
||||||
|
Plan,
|
||||||
|
Program,
|
||||||
|
SemanticBelief,
|
||||||
|
Trigger,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def llm():
|
||||||
|
llm = TextBeliefExtractorAgent.LLM(MagicMock(), 4)
|
||||||
|
llm._query_llm = AsyncMock()
|
||||||
|
return llm
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def agent(llm):
|
||||||
|
with patch(
|
||||||
|
"control_backend.agents.bdi.text_belief_extractor_agent.TextBeliefExtractorAgent.LLM",
|
||||||
|
return_value=llm,
|
||||||
|
):
|
||||||
|
agent = TextBeliefExtractorAgent("text_belief_agent")
|
||||||
|
agent.send = AsyncMock()
|
||||||
|
return agent
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def sample_program():
|
||||||
|
return Program(
|
||||||
|
phases=[
|
||||||
|
Phase(
|
||||||
|
name="Some phase",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
norms=[
|
||||||
|
ConditionalNorm(
|
||||||
|
name="Some norm",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
norm="Use nautical terms.",
|
||||||
|
critical=False,
|
||||||
|
condition=SemanticBelief(
|
||||||
|
name="is_pirate",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
description="The user is a pirate. Perhaps because they say "
|
||||||
|
"they are, or because they speak like a pirate "
|
||||||
|
'with terms like "arr".',
|
||||||
|
),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
goals=[],
|
||||||
|
triggers=[
|
||||||
|
Trigger(
|
||||||
|
name="Some trigger",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
condition=SemanticBelief(
|
||||||
|
name="no_more_booze",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
description="There is no more alcohol.",
|
||||||
|
),
|
||||||
|
plan=Plan(
|
||||||
|
name="Some plan",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
steps=[
|
||||||
|
LLMAction(
|
||||||
|
name="Some action",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
goal="Suggest eating chocolate instead.",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def make_msg(sender: str, body: str, thread: str | None = None) -> InternalMessage:
|
||||||
|
return InternalMessage(to="unused", sender=sender, body=body, thread=thread)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_handle_message_ignores_other_agents(agent):
|
||||||
|
msg = make_msg("unknown", "some data", None)
|
||||||
|
|
||||||
|
await agent.handle_message(msg)
|
||||||
|
|
||||||
|
agent.send.assert_not_called() # noqa # `agent.send` has no such property, but we mock it.
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_handle_message_from_transcriber(agent, mock_settings):
|
||||||
|
transcription = "hello world"
|
||||||
|
msg = make_msg(mock_settings.agent_settings.transcription_name, transcription, None)
|
||||||
|
|
||||||
|
await agent.handle_message(msg)
|
||||||
|
|
||||||
|
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
|
||||||
|
sent: InternalMessage = agent.send.call_args.args[0] # noqa
|
||||||
|
assert sent.to == mock_settings.agent_settings.bdi_core_name
|
||||||
|
assert sent.thread == "beliefs"
|
||||||
|
parsed = BeliefMessage.model_validate_json(sent.body)
|
||||||
|
replaced_last = parsed.replace.pop()
|
||||||
|
assert replaced_last.name == "user_said"
|
||||||
|
assert replaced_last.arguments == [transcription]
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_query_llm():
|
||||||
|
mock_response = MagicMock()
|
||||||
|
mock_response.json.return_value = {
|
||||||
|
"choices": [
|
||||||
|
{
|
||||||
|
"message": {
|
||||||
|
"content": "null",
|
||||||
|
}
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
mock_client = AsyncMock()
|
||||||
|
mock_client.post.return_value = mock_response
|
||||||
|
mock_async_client = MagicMock()
|
||||||
|
mock_async_client.__aenter__.return_value = mock_client
|
||||||
|
mock_async_client.__aexit__.return_value = None
|
||||||
|
|
||||||
|
with patch(
|
||||||
|
"control_backend.agents.bdi.text_belief_extractor_agent.httpx.AsyncClient",
|
||||||
|
return_value=mock_async_client,
|
||||||
|
):
|
||||||
|
llm = TextBeliefExtractorAgent.LLM(MagicMock(), 4)
|
||||||
|
|
||||||
|
res = await llm._query_llm("hello world", {"type": "null"})
|
||||||
|
# Response content was set as "null", so should be deserialized as None
|
||||||
|
assert res is None
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_retry_query_llm_success(llm):
|
||||||
|
llm._query_llm.return_value = None
|
||||||
|
res = await llm.query("hello world", {"type": "null"})
|
||||||
|
|
||||||
|
llm._query_llm.assert_called_once()
|
||||||
|
assert res is None
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_retry_query_llm_success_after_failure(llm):
|
||||||
|
llm._query_llm.side_effect = [KeyError(), "real value"]
|
||||||
|
res = await llm.query("hello world", {"type": "string"})
|
||||||
|
|
||||||
|
assert llm._query_llm.call_count == 2
|
||||||
|
assert res == "real value"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_retry_query_llm_failures(llm):
|
||||||
|
llm._query_llm.side_effect = [KeyError(), KeyError(), KeyError(), "real value"]
|
||||||
|
res = await llm.query("hello world", {"type": "string"})
|
||||||
|
|
||||||
|
assert llm._query_llm.call_count == 3
|
||||||
|
assert res is None
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_retry_query_llm_fail_immediately(llm):
|
||||||
|
llm._query_llm.side_effect = [KeyError(), "real value"]
|
||||||
|
res = await llm.query("hello world", {"type": "string"}, tries=1)
|
||||||
|
|
||||||
|
assert llm._query_llm.call_count == 1
|
||||||
|
assert res is None
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_extracting_semantic_beliefs(agent):
|
||||||
|
"""
|
||||||
|
The Program Manager sends beliefs to this agent. Test whether the agent handles them correctly.
|
||||||
|
"""
|
||||||
|
assert len(agent.belief_inferrer.available_beliefs) == 0
|
||||||
|
beliefs = BeliefList(
|
||||||
|
beliefs=[
|
||||||
|
KeywordBelief(
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
name="keyword_hello",
|
||||||
|
keyword="hello",
|
||||||
|
),
|
||||||
|
SemanticBelief(
|
||||||
|
id=uuid.uuid4(), name="semantic_hello_1", description="Some semantic belief 1"
|
||||||
|
),
|
||||||
|
SemanticBelief(
|
||||||
|
id=uuid.uuid4(), name="semantic_hello_2", description="Some semantic belief 2"
|
||||||
|
),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
await agent.handle_message(
|
||||||
|
InternalMessage(
|
||||||
|
to=settings.agent_settings.text_belief_extractor_name,
|
||||||
|
sender=settings.agent_settings.bdi_program_manager_name,
|
||||||
|
body=beliefs.model_dump_json(),
|
||||||
|
thread="beliefs",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
assert len(agent.belief_inferrer.available_beliefs) == 2
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_handle_invalid_beliefs(agent, sample_program):
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||||
|
assert len(agent.belief_inferrer.available_beliefs) == 2
|
||||||
|
|
||||||
|
await agent.handle_message(
|
||||||
|
InternalMessage(
|
||||||
|
to=settings.agent_settings.text_belief_extractor_name,
|
||||||
|
sender=settings.agent_settings.bdi_program_manager_name,
|
||||||
|
body=json.dumps({"phases": "Invalid"}),
|
||||||
|
thread="beliefs",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
assert len(agent.belief_inferrer.available_beliefs) == 2
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_handle_robot_response(agent):
|
||||||
|
initial_length = len(agent.conversation.messages)
|
||||||
|
response = "Hi, I'm Pepper. What's your name?"
|
||||||
|
|
||||||
|
await agent.handle_message(
|
||||||
|
InternalMessage(
|
||||||
|
to=settings.agent_settings.text_belief_extractor_name,
|
||||||
|
sender=settings.agent_settings.llm_name,
|
||||||
|
body=response,
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
assert len(agent.conversation.messages) == initial_length + 1
|
||||||
|
assert agent.conversation.messages[-1].role == "assistant"
|
||||||
|
assert agent.conversation.messages[-1].content == response
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_simulated_real_turn_with_beliefs(agent, llm, sample_program):
|
||||||
|
"""Test sending user message to extract beliefs from."""
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||||
|
|
||||||
|
# Send a user message with the belief that there's no more booze
|
||||||
|
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": True}
|
||||||
|
assert len(agent.conversation.messages) == 0
|
||||||
|
await agent.handle_message(
|
||||||
|
InternalMessage(
|
||||||
|
to=settings.agent_settings.text_belief_extractor_name,
|
||||||
|
sender=settings.agent_settings.transcription_name,
|
||||||
|
body="We're all out of schnaps.",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
assert len(agent.conversation.messages) == 1
|
||||||
|
|
||||||
|
# There should be a belief set and sent to the BDI core, as well as the user_said belief
|
||||||
|
assert agent.send.call_count == 2
|
||||||
|
|
||||||
|
# First should be the beliefs message
|
||||||
|
message: InternalMessage = agent.send.call_args_list[1].args[0]
|
||||||
|
beliefs = BeliefMessage.model_validate_json(message.body)
|
||||||
|
assert len(beliefs.create) == 1
|
||||||
|
assert beliefs.create[0].name == "no_more_booze"
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_simulated_real_turn_no_beliefs(agent, llm, sample_program):
|
||||||
|
"""Test a user message to extract beliefs from, but no beliefs are formed."""
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||||
|
|
||||||
|
# Send a user message with no new beliefs
|
||||||
|
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": None}
|
||||||
|
await agent.handle_message(
|
||||||
|
InternalMessage(
|
||||||
|
to=settings.agent_settings.text_belief_extractor_name,
|
||||||
|
sender=settings.agent_settings.transcription_name,
|
||||||
|
body="Hello there!",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Only the user_said belief should've been sent
|
||||||
|
agent.send.assert_called_once()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_simulated_real_turn_no_new_beliefs(agent, llm, sample_program):
|
||||||
|
"""
|
||||||
|
Test a user message to extract beliefs from, but no new beliefs are formed because they already
|
||||||
|
existed.
|
||||||
|
"""
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||||
|
agent._current_beliefs = BeliefState(true={InternalBelief(name="is_pirate", arguments=None)})
|
||||||
|
|
||||||
|
# Send a user message with the belief the user is a pirate, still
|
||||||
|
llm._query_llm.return_value = {"is_pirate": True, "no_more_booze": None}
|
||||||
|
await agent.handle_message(
|
||||||
|
InternalMessage(
|
||||||
|
to=settings.agent_settings.text_belief_extractor_name,
|
||||||
|
sender=settings.agent_settings.transcription_name,
|
||||||
|
body="Arr, nice to meet you, matey.",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Only the user_said belief should've been sent, as no beliefs have changed
|
||||||
|
agent.send.assert_called_once()
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_simulated_real_turn_remove_belief(agent, llm, sample_program):
|
||||||
|
"""
|
||||||
|
Test a user message to extract beliefs from, but an existing belief is determined no longer to
|
||||||
|
hold.
|
||||||
|
"""
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||||
|
agent._current_beliefs = BeliefState(
|
||||||
|
true={InternalBelief(name="no_more_booze", arguments=None)},
|
||||||
|
)
|
||||||
|
|
||||||
|
# Send a user message with the belief the user is a pirate, still
|
||||||
|
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": False}
|
||||||
|
await agent.handle_message(
|
||||||
|
InternalMessage(
|
||||||
|
to=settings.agent_settings.text_belief_extractor_name,
|
||||||
|
sender=settings.agent_settings.transcription_name,
|
||||||
|
body="I found an untouched barrel of wine!",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Both user_said and belief change should've been sent
|
||||||
|
assert agent.send.call_count == 2
|
||||||
|
|
||||||
|
# Agent's current beliefs should've changed
|
||||||
|
assert any(b.name == "no_more_booze" for b in agent._current_beliefs.false)
|
||||||
|
|
||||||
|
|
||||||
|
@pytest.mark.asyncio
|
||||||
|
async def test_llm_failure_handling(agent, llm, sample_program):
|
||||||
|
"""
|
||||||
|
Check that the agent handles failures gracefully without crashing.
|
||||||
|
"""
|
||||||
|
llm._query_llm.side_effect = httpx.HTTPError("")
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||||
|
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||||
|
|
||||||
|
belief_changes = await agent.belief_inferrer.infer_from_conversation(
|
||||||
|
ChatHistory(
|
||||||
|
messages=[ChatMessage(role="user", content="Good day!")],
|
||||||
|
),
|
||||||
|
)
|
||||||
|
|
||||||
|
assert len(belief_changes.true) == 0
|
||||||
|
assert len(belief_changes.false) == 0
|
||||||
@@ -1,65 +0,0 @@
|
|||||||
import json
|
|
||||||
from unittest.mock import AsyncMock
|
|
||||||
|
|
||||||
import pytest
|
|
||||||
|
|
||||||
from control_backend.agents.bdi import (
|
|
||||||
TextBeliefExtractorAgent,
|
|
||||||
)
|
|
||||||
from control_backend.core.agent_system import InternalMessage
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
|
||||||
def agent():
|
|
||||||
agent = TextBeliefExtractorAgent("text_belief_agent")
|
|
||||||
agent.send = AsyncMock()
|
|
||||||
return agent
|
|
||||||
|
|
||||||
|
|
||||||
def make_msg(sender: str, body: str, thread: str | None = None) -> InternalMessage:
|
|
||||||
return InternalMessage(to="unused", sender=sender, body=body, thread=thread)
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
|
||||||
async def test_handle_message_ignores_other_agents(agent):
|
|
||||||
msg = make_msg("unknown", "some data", None)
|
|
||||||
|
|
||||||
await agent.handle_message(msg)
|
|
||||||
|
|
||||||
agent.send.assert_not_called() # noqa # `agent.send` has no such property, but we mock it.
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
|
||||||
async def test_handle_message_from_transcriber(agent, mock_settings):
|
|
||||||
transcription = "hello world"
|
|
||||||
msg = make_msg(mock_settings.agent_settings.transcription_name, transcription, None)
|
|
||||||
|
|
||||||
await agent.handle_message(msg)
|
|
||||||
|
|
||||||
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
|
|
||||||
sent: InternalMessage = agent.send.call_args.args[0] # noqa
|
|
||||||
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
|
|
||||||
assert sent.thread == "beliefs"
|
|
||||||
parsed = json.loads(sent.body)
|
|
||||||
assert parsed == {"beliefs": {"user_said": [transcription]}, "type": "belief_extraction_text"}
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
|
||||||
async def test_process_transcription_demo(agent, mock_settings):
|
|
||||||
transcription = "this is a test"
|
|
||||||
|
|
||||||
await agent._process_transcription_demo(transcription)
|
|
||||||
|
|
||||||
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
|
|
||||||
sent: InternalMessage = agent.send.call_args.args[0] # noqa
|
|
||||||
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
|
|
||||||
assert sent.thread == "beliefs"
|
|
||||||
parsed = json.loads(sent.body)
|
|
||||||
assert parsed["beliefs"]["user_said"] == [transcription]
|
|
||||||
|
|
||||||
|
|
||||||
@pytest.mark.asyncio
|
|
||||||
async def test_setup_initializes_beliefs(agent):
|
|
||||||
"""Covers the setup method and ensures beliefs are initialized."""
|
|
||||||
await agent.setup()
|
|
||||||
assert agent.beliefs == {"mood": ["X"], "car": ["Y"]}
|
|
||||||
@@ -66,7 +66,7 @@ async def test_llm_processing_success(mock_httpx_client, mock_settings):
|
|||||||
# "Hello world." constitutes one sentence/chunk based on punctuation split
|
# "Hello world." constitutes one sentence/chunk based on punctuation split
|
||||||
# The agent should call send once with the full sentence
|
# The agent should call send once with the full sentence
|
||||||
assert agent.send.called
|
assert agent.send.called
|
||||||
args = agent.send.call_args[0][0]
|
args = agent.send.call_args_list[0][0][0]
|
||||||
assert args.to == mock_settings.agent_settings.bdi_core_name
|
assert args.to == mock_settings.agent_settings.bdi_core_name
|
||||||
assert "Hello world." in args.body
|
assert "Hello world." in args.body
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,5 @@
|
|||||||
import json
|
import json
|
||||||
|
import uuid
|
||||||
from unittest.mock import AsyncMock
|
from unittest.mock import AsyncMock
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
@@ -6,7 +7,7 @@ from fastapi import FastAPI
|
|||||||
from fastapi.testclient import TestClient
|
from fastapi.testclient import TestClient
|
||||||
|
|
||||||
from control_backend.api.v1.endpoints import program
|
from control_backend.api.v1.endpoints import program
|
||||||
from control_backend.schemas.program import Program
|
from control_backend.schemas.program import BasicNorm, Goal, Phase, Plan, Program
|
||||||
|
|
||||||
|
|
||||||
@pytest.fixture
|
@pytest.fixture
|
||||||
@@ -25,29 +26,39 @@ def client(app):
|
|||||||
|
|
||||||
def make_valid_program_dict():
|
def make_valid_program_dict():
|
||||||
"""Helper to create a valid Program JSON structure."""
|
"""Helper to create a valid Program JSON structure."""
|
||||||
return {
|
# Converting to JSON using Pydantic because it knows how to convert a UUID object
|
||||||
"phases": [
|
program_json_str = Program(
|
||||||
{
|
phases=[
|
||||||
"id": "phase1",
|
Phase(
|
||||||
"label": "basephase",
|
id=uuid.uuid4(),
|
||||||
"norms": [{"id": "n1", "label": "norm", "norm": "be nice"}],
|
name="Basic Phase",
|
||||||
"goals": [
|
norms=[
|
||||||
{"id": "g1", "label": "goal", "description": "test goal", "achieved": False}
|
BasicNorm(
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
name="Some norm",
|
||||||
|
norm="Do normal.",
|
||||||
|
),
|
||||||
],
|
],
|
||||||
"triggers": [
|
goals=[
|
||||||
{
|
Goal(
|
||||||
"id": "t1",
|
id=uuid.uuid4(),
|
||||||
"label": "trigger",
|
name="Some goal",
|
||||||
"type": "keywords",
|
description="This description can be used to determine whether the goal "
|
||||||
"keywords": [
|
"has been achieved.",
|
||||||
{"id": "kw1", "keyword": "keyword1"},
|
plan=Plan(
|
||||||
{"id": "kw2", "keyword": "keyword2"},
|
id=uuid.uuid4(),
|
||||||
],
|
name="Goal Plan",
|
||||||
},
|
steps=[],
|
||||||
|
),
|
||||||
|
can_fail=False,
|
||||||
|
),
|
||||||
],
|
],
|
||||||
}
|
triggers=[],
|
||||||
]
|
),
|
||||||
}
|
],
|
||||||
|
).model_dump_json()
|
||||||
|
# Converting back to a dict because that's what's expected
|
||||||
|
return json.loads(program_json_str)
|
||||||
|
|
||||||
|
|
||||||
def test_receive_program_success(client):
|
def test_receive_program_success(client):
|
||||||
@@ -71,7 +82,8 @@ def test_receive_program_success(client):
|
|||||||
sent_bytes = args[0][1]
|
sent_bytes = args[0][1]
|
||||||
sent_obj = json.loads(sent_bytes.decode())
|
sent_obj = json.loads(sent_bytes.decode())
|
||||||
|
|
||||||
expected_obj = Program.model_validate(program_dict).model_dump()
|
# Converting to JSON using Pydantic because it knows how to handle UUIDs
|
||||||
|
expected_obj = json.loads(Program.model_validate(program_dict).model_dump_json())
|
||||||
assert sent_obj == expected_obj
|
assert sent_obj == expected_obj
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -1,49 +1,66 @@
|
|||||||
|
import uuid
|
||||||
|
|
||||||
import pytest
|
import pytest
|
||||||
from pydantic import ValidationError
|
from pydantic import ValidationError
|
||||||
|
|
||||||
from control_backend.schemas.program import (
|
from control_backend.schemas.program import (
|
||||||
|
BasicNorm,
|
||||||
|
ConditionalNorm,
|
||||||
Goal,
|
Goal,
|
||||||
KeywordTrigger,
|
InferredBelief,
|
||||||
Norm,
|
KeywordBelief,
|
||||||
|
LogicalOperator,
|
||||||
Phase,
|
Phase,
|
||||||
|
Plan,
|
||||||
Program,
|
Program,
|
||||||
TriggerKeyword,
|
SemanticBelief,
|
||||||
|
Trigger,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def base_norm() -> Norm:
|
def base_norm() -> BasicNorm:
|
||||||
return Norm(
|
return BasicNorm(
|
||||||
id="norm1",
|
id=uuid.uuid4(),
|
||||||
label="testNorm",
|
name="testNormName",
|
||||||
norm="testNormNorm",
|
norm="testNormNorm",
|
||||||
|
critical=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def base_goal() -> Goal:
|
def base_goal() -> Goal:
|
||||||
return Goal(
|
return Goal(
|
||||||
id="goal1",
|
id=uuid.uuid4(),
|
||||||
label="testGoal",
|
name="testGoalName",
|
||||||
description="testGoalDescription",
|
description="This description can be used to determine whether the goal has been achieved.",
|
||||||
achieved=False,
|
plan=Plan(
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
name="testGoalPlanName",
|
||||||
|
steps=[],
|
||||||
|
),
|
||||||
|
can_fail=False,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def base_trigger() -> KeywordTrigger:
|
def base_trigger() -> Trigger:
|
||||||
return KeywordTrigger(
|
return Trigger(
|
||||||
id="trigger1",
|
id=uuid.uuid4(),
|
||||||
label="testTrigger",
|
name="testTriggerName",
|
||||||
type="keywords",
|
condition=KeywordBelief(
|
||||||
keywords=[
|
id=uuid.uuid4(),
|
||||||
TriggerKeyword(id="keyword1", keyword="testKeyword1"),
|
name="testTriggerKeywordBeliefTriggerName",
|
||||||
TriggerKeyword(id="keyword1", keyword="testKeyword2"),
|
keyword="Keyword",
|
||||||
],
|
),
|
||||||
|
plan=Plan(
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
name="testTriggerPlanName",
|
||||||
|
steps=[],
|
||||||
|
),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def base_phase() -> Phase:
|
def base_phase() -> Phase:
|
||||||
return Phase(
|
return Phase(
|
||||||
id="phase1",
|
id=uuid.uuid4(),
|
||||||
label="basephase",
|
|
||||||
norms=[base_norm()],
|
norms=[base_norm()],
|
||||||
goals=[base_goal()],
|
goals=[base_goal()],
|
||||||
triggers=[base_trigger()],
|
triggers=[base_trigger()],
|
||||||
@@ -58,7 +75,7 @@ def invalid_program() -> dict:
|
|||||||
# wrong types inside phases list (not Phase objects)
|
# wrong types inside phases list (not Phase objects)
|
||||||
return {
|
return {
|
||||||
"phases": [
|
"phases": [
|
||||||
{"id": "phase1"}, # incomplete
|
{"id": uuid.uuid4()}, # incomplete
|
||||||
{"not_a_phase": True},
|
{"not_a_phase": True},
|
||||||
]
|
]
|
||||||
}
|
}
|
||||||
@@ -77,11 +94,112 @@ def test_valid_deepprogram():
|
|||||||
# validate nested components directly
|
# validate nested components directly
|
||||||
phase = validated.phases[0]
|
phase = validated.phases[0]
|
||||||
assert isinstance(phase.goals[0], Goal)
|
assert isinstance(phase.goals[0], Goal)
|
||||||
assert isinstance(phase.triggers[0], KeywordTrigger)
|
assert isinstance(phase.triggers[0], Trigger)
|
||||||
assert isinstance(phase.norms[0], Norm)
|
assert isinstance(phase.norms[0], BasicNorm)
|
||||||
|
|
||||||
|
|
||||||
def test_invalid_program():
|
def test_invalid_program():
|
||||||
bad = invalid_program()
|
bad = invalid_program()
|
||||||
with pytest.raises(ValidationError):
|
with pytest.raises(ValidationError):
|
||||||
Program.model_validate(bad)
|
Program.model_validate(bad)
|
||||||
|
|
||||||
|
|
||||||
|
def test_conditional_norm_parsing():
|
||||||
|
"""
|
||||||
|
Check that pydantic is able to preserve the type of the norm, that it doesn't lose its
|
||||||
|
"condition" field when serializing and deserializing.
|
||||||
|
"""
|
||||||
|
norm = ConditionalNorm(
|
||||||
|
name="testNormName",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
norm="testNormNorm",
|
||||||
|
critical=False,
|
||||||
|
condition=KeywordBelief(
|
||||||
|
name="testKeywordBelief",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
keyword="testKeywordBelief",
|
||||||
|
),
|
||||||
|
)
|
||||||
|
program = Program(
|
||||||
|
phases=[
|
||||||
|
Phase(
|
||||||
|
name="Some phase",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
norms=[norm],
|
||||||
|
goals=[],
|
||||||
|
triggers=[],
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
parsed_program = Program.model_validate_json(program.model_dump_json())
|
||||||
|
parsed_norm = parsed_program.phases[0].norms[0]
|
||||||
|
|
||||||
|
assert hasattr(parsed_norm, "condition")
|
||||||
|
assert isinstance(parsed_norm, ConditionalNorm)
|
||||||
|
|
||||||
|
|
||||||
|
def test_belief_type_parsing():
|
||||||
|
"""
|
||||||
|
Check that pydantic is able to discern between the different types of beliefs when serializing
|
||||||
|
and deserializing.
|
||||||
|
"""
|
||||||
|
keyword_belief = KeywordBelief(
|
||||||
|
name="testKeywordBelief",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
keyword="something",
|
||||||
|
)
|
||||||
|
semantic_belief = SemanticBelief(
|
||||||
|
name="testSemanticBelief",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
description="something",
|
||||||
|
)
|
||||||
|
inferred_belief = InferredBelief(
|
||||||
|
name="testInferredBelief",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
operator=LogicalOperator.OR,
|
||||||
|
left=keyword_belief,
|
||||||
|
right=semantic_belief,
|
||||||
|
)
|
||||||
|
|
||||||
|
program = Program(
|
||||||
|
phases=[
|
||||||
|
Phase(
|
||||||
|
name="Some phase",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
norms=[],
|
||||||
|
goals=[],
|
||||||
|
triggers=[
|
||||||
|
Trigger(
|
||||||
|
name="testTriggerKeywordTrigger",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
condition=keyword_belief,
|
||||||
|
plan=Plan(name="testTriggerPlanName", id=uuid.uuid4(), steps=[]),
|
||||||
|
),
|
||||||
|
Trigger(
|
||||||
|
name="testTriggerSemanticTrigger",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
condition=semantic_belief,
|
||||||
|
plan=Plan(name="testTriggerPlanName", id=uuid.uuid4(), steps=[]),
|
||||||
|
),
|
||||||
|
Trigger(
|
||||||
|
name="testTriggerInferredTrigger",
|
||||||
|
id=uuid.uuid4(),
|
||||||
|
condition=inferred_belief,
|
||||||
|
plan=Plan(name="testTriggerPlanName", id=uuid.uuid4(), steps=[]),
|
||||||
|
),
|
||||||
|
],
|
||||||
|
),
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
parsed_program = Program.model_validate_json(program.model_dump_json())
|
||||||
|
|
||||||
|
parsed_keyword_belief = parsed_program.phases[0].triggers[0].condition
|
||||||
|
assert isinstance(parsed_keyword_belief, KeywordBelief)
|
||||||
|
|
||||||
|
parsed_semantic_belief = parsed_program.phases[0].triggers[1].condition
|
||||||
|
assert isinstance(parsed_semantic_belief, SemanticBelief)
|
||||||
|
|
||||||
|
parsed_inferred_belief = parsed_program.phases[0].triggers[2].condition
|
||||||
|
assert isinstance(parsed_inferred_belief, InferredBelief)
|
||||||
|
|||||||
23
uv.lock
generated
23
uv.lock
generated
@@ -997,6 +997,7 @@ dependencies = [
|
|||||||
{ name = "pydantic" },
|
{ name = "pydantic" },
|
||||||
{ name = "pydantic-settings" },
|
{ name = "pydantic-settings" },
|
||||||
{ name = "python-json-logger" },
|
{ name = "python-json-logger" },
|
||||||
|
{ name = "python-slugify" },
|
||||||
{ name = "pyyaml" },
|
{ name = "pyyaml" },
|
||||||
{ name = "pyzmq" },
|
{ name = "pyzmq" },
|
||||||
{ name = "silero-vad" },
|
{ name = "silero-vad" },
|
||||||
@@ -1046,6 +1047,7 @@ requires-dist = [
|
|||||||
{ name = "pydantic", specifier = ">=2.12.0" },
|
{ name = "pydantic", specifier = ">=2.12.0" },
|
||||||
{ name = "pydantic-settings", specifier = ">=2.11.0" },
|
{ name = "pydantic-settings", specifier = ">=2.11.0" },
|
||||||
{ name = "python-json-logger", specifier = ">=4.0.0" },
|
{ name = "python-json-logger", specifier = ">=4.0.0" },
|
||||||
|
{ name = "python-slugify", specifier = ">=8.0.4" },
|
||||||
{ name = "pyyaml", specifier = ">=6.0.3" },
|
{ name = "pyyaml", specifier = ">=6.0.3" },
|
||||||
{ name = "pyzmq", specifier = ">=27.1.0" },
|
{ name = "pyzmq", specifier = ">=27.1.0" },
|
||||||
{ name = "silero-vad", specifier = ">=6.0.0" },
|
{ name = "silero-vad", specifier = ">=6.0.0" },
|
||||||
@@ -1341,6 +1343,18 @@ wheels = [
|
|||||||
{ url = "https://files.pythonhosted.org/packages/45/58/38b5afbc1a800eeea951b9285d3912613f2603bdf897a4ab0f4bd7f405fc/python_multipart-0.0.20-py3-none-any.whl", hash = "sha256:8a62d3a8335e06589fe01f2a3e178cdcc632f3fbe0d492ad9ee0ec35aab1f104", size = 24546, upload-time = "2024-12-16T19:45:44.423Z" },
|
{ url = "https://files.pythonhosted.org/packages/45/58/38b5afbc1a800eeea951b9285d3912613f2603bdf897a4ab0f4bd7f405fc/python_multipart-0.0.20-py3-none-any.whl", hash = "sha256:8a62d3a8335e06589fe01f2a3e178cdcc632f3fbe0d492ad9ee0ec35aab1f104", size = 24546, upload-time = "2024-12-16T19:45:44.423Z" },
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "python-slugify"
|
||||||
|
version = "8.0.4"
|
||||||
|
source = { registry = "https://pypi.org/simple" }
|
||||||
|
dependencies = [
|
||||||
|
{ name = "text-unidecode" },
|
||||||
|
]
|
||||||
|
sdist = { url = "https://files.pythonhosted.org/packages/87/c7/5e1547c44e31da50a460df93af11a535ace568ef89d7a811069ead340c4a/python-slugify-8.0.4.tar.gz", hash = "sha256:59202371d1d05b54a9e7720c5e038f928f45daaffe41dd10822f3907b937c856", size = 10921, upload-time = "2024-02-08T18:32:45.488Z" }
|
||||||
|
wheels = [
|
||||||
|
{ url = "https://files.pythonhosted.org/packages/a4/62/02da182e544a51a5c3ccf4b03ab79df279f9c60c5e82d5e8bec7ca26ac11/python_slugify-8.0.4-py2.py3-none-any.whl", hash = "sha256:276540b79961052b66b7d116620b36518847f52d5fd9e3a70164fc8c50faa6b8", size = 10051, upload-time = "2024-02-08T18:32:43.911Z" },
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "pyyaml"
|
name = "pyyaml"
|
||||||
version = "6.0.3"
|
version = "6.0.3"
|
||||||
@@ -1864,6 +1878,15 @@ wheels = [
|
|||||||
{ url = "https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl", hash = "sha256:e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5", size = 6299353, upload-time = "2025-04-27T18:04:59.103Z" },
|
{ url = "https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl", hash = "sha256:e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5", size = 6299353, upload-time = "2025-04-27T18:04:59.103Z" },
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "text-unidecode"
|
||||||
|
version = "1.3"
|
||||||
|
source = { registry = "https://pypi.org/simple" }
|
||||||
|
sdist = { url = "https://files.pythonhosted.org/packages/ab/e2/e9a00f0ccb71718418230718b3d900e71a5d16e701a3dae079a21e9cd8f8/text-unidecode-1.3.tar.gz", hash = "sha256:bad6603bb14d279193107714b288be206cac565dfa49aa5b105294dd5c4aab93", size = 76885, upload-time = "2019-08-30T21:36:45.405Z" }
|
||||||
|
wheels = [
|
||||||
|
{ url = "https://files.pythonhosted.org/packages/a6/a5/c0b6468d3824fe3fde30dbb5e1f687b291608f9473681bbf7dabbf5a87d7/text_unidecode-1.3-py2.py3-none-any.whl", hash = "sha256:1311f10e8b895935241623731c2ba64f4c455287888b18189350b67134a822e8", size = 78154, upload-time = "2019-08-30T21:37:03.543Z" },
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "tiktoken"
|
name = "tiktoken"
|
||||||
version = "0.12.0"
|
version = "0.12.0"
|
||||||
|
|||||||
Reference in New Issue
Block a user