The Big One #43

Merged
k.marinus merged 93 commits from feat/reset-experiment-and-phase into dev 2026-01-26 19:20:45 +00:00
8 changed files with 276 additions and 59 deletions
Showing only changes of commit 3d49e44cf7 - Show all commits

View File

@@ -157,7 +157,7 @@ class AgentSpeakGenerator:
previous_goal = None
for goal in phase.goals:
self._process_goal(goal, phase, previous_goal)
self._process_goal(goal, phase, previous_goal, main_goal=True)
previous_goal = goal
for trigger in phase.triggers:
@@ -192,6 +192,20 @@ class AgentSpeakGenerator:
]
)
# Notify outside world about transition
body.append(
AstStatement(
StatementType.DO_ACTION,
AstLiteral(
"notify_transition_phase",
[
AstString(str(from_phase.id)),
AstString(str(to_phase.id) if to_phase else "end"),
],
),
)
)
self._asp.plans.append(
AstPlan(TriggerType.ADDED_GOAL, AstLiteral("transition_phase"), context, body)
)
@@ -213,6 +227,11 @@ class AgentSpeakGenerator:
def _add_default_loop(self, phase: Phase) -> None:
actions = []
actions.append(
AstStatement(
StatementType.DO_ACTION, AstLiteral("notify_user_said", [AstVar("Message")])
)
)
actions.append(AstStatement(StatementType.REMOVE_BELIEF, AstLiteral("responded_this_turn")))
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("check_triggers")))
@@ -236,6 +255,7 @@ class AgentSpeakGenerator:
phase: Phase,
previous_goal: Goal | None = None,
continues_response: bool = False,
main_goal: bool = False,
) -> None:
context: list[AstExpression] = [self._astify(phase)]
context.append(~self._astify(goal, achieved=True))
@@ -245,6 +265,13 @@ class AgentSpeakGenerator:
context.append(~AstLiteral("responded_this_turn"))
body = []
if main_goal: # UI only needs to know about the main goals
body.append(
AstStatement(
StatementType.DO_ACTION,
AstLiteral("notify_goal_start", [AstString(self.slugify(goal))]),
)
)
subgoals = []
for step in goal.plan.steps:
@@ -283,11 +310,23 @@ class AgentSpeakGenerator:
body = []
subgoals = []
body.append(
AstStatement(
StatementType.DO_ACTION,
AstLiteral("notify_trigger_start", [AstString(self.slugify(trigger))]),
)
)
for step in trigger.plan.steps:
body.append(self._step_to_statement(step))
if isinstance(step, Goal):
step.can_fail = False # triggers are continuous sequence
subgoals.append(step)
body.append(
AstStatement(
StatementType.DO_ACTION,
AstLiteral("notify_trigger_end", [AstString(self.slugify(trigger))]),
)
)
self._asp.plans.append(
AstPlan(
@@ -298,6 +337,9 @@ class AgentSpeakGenerator:
)
)
# Force trigger (from UI)
self._asp.plans.append(AstPlan(TriggerType.ADDED_GOAL, self._astify(trigger), [], body))
for subgoal in subgoals:
self._process_goal(subgoal, phase, continues_response=True)
@@ -332,13 +374,7 @@ class AgentSpeakGenerator:
@_astify.register
def _(self, sb: SemanticBelief) -> AstExpression:
return AstLiteral(self.get_semantic_belief_slug(sb))
@staticmethod
def get_semantic_belief_slug(sb: SemanticBelief) -> str:
# If you need a method like this for other types, make a public slugify singledispatch for
# all types.
return f"semantic_{AgentSpeakGenerator._slugify_str(sb.name)}"
return AstLiteral(self.slugify(sb))
@_astify.register
def _(self, ib: InferredBelief) -> AstExpression:

View File

@@ -1,5 +1,6 @@
import asyncio
import copy
import json
import time
from collections.abc import Iterable
@@ -13,7 +14,7 @@ from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.belief_message import BeliefMessage
from control_backend.schemas.llm_prompt_message import LLMPromptMessage
from control_backend.schemas.ri_message import SpeechCommand
from control_backend.schemas.ri_message import GestureCommand, RIEndpoint, SpeechCommand
DELIMITER = ";\n" # TODO: temporary until we support lists in AgentSpeak
@@ -155,6 +156,17 @@ class BDICoreAgent(BaseAgent):
body=cmd.model_dump_json(),
)
await self.send(out_msg)
case settings.agent_settings.user_interrupt_name:
content = msg.body
self.logger.debug("Received user interruption: %s", content)
match msg.thread:
case "force_phase_transition":
self._set_goal("transition_phase")
case "force_trigger":
self._force_trigger(msg.body)
case _:
self.logger.warning("Received unknow user interruption: %s", msg)
def _apply_belief_changes(self, belief_changes: BeliefMessage):
"""
@@ -250,6 +262,37 @@ class BDICoreAgent(BaseAgent):
self.logger.debug(f"Removed {removed_count} beliefs.")
def _set_goal(self, name: str, args: Iterable[str] | None = None):
args = args or []
if args:
merged_args = DELIMITER.join(arg for arg in args)
new_args = (agentspeak.Literal(merged_args),)
term = agentspeak.Literal(name, new_args)
else:
term = agentspeak.Literal(name)
self.bdi_agent.call(
agentspeak.Trigger.addition,
agentspeak.GoalType.achievement,
term,
agentspeak.runtime.Intention(),
)
self._wake_bdi_loop.set()
self.logger.debug(f"Set goal !{self.format_belief_string(name, args)}.")
def _force_trigger(self, name: str):
self.bdi_agent.call(
agentspeak.Trigger.addition,
agentspeak.GoalType.achievement,
agentspeak.Literal(name),
agentspeak.runtime.Intention(),
)
self.logger.info("Manually forced trigger %s.", name)
def _add_custom_actions(self) -> None:
"""
Add any custom actions here. Inside `@self.actions.add()`, the first argument is
@@ -258,7 +301,7 @@ class BDICoreAgent(BaseAgent):
"""
@self.actions.add(".reply", 2)
def _reply(agent: "BDICoreAgent", term, intention):
def _reply(agent, term, intention):
"""
Let the LLM generate a response to a user's utterance with the current norms and goals.
"""
@@ -291,7 +334,7 @@ class BDICoreAgent(BaseAgent):
yield
@self.actions.add(".say", 1)
def _say(agent: "BDICoreAgent", term, intention):
def _say(agent, term, intention):
"""
Make the robot say the given text instantly.
"""
@@ -305,12 +348,21 @@ class BDICoreAgent(BaseAgent):
sender=settings.agent_settings.bdi_core_name,
body=speech_command.model_dump_json(),
)
# TODO: add to conversation history
self.add_behavior(self.send(speech_message))
chat_history_message = InternalMessage(
to=settings.agent_settings.llm_name,
thread="assistant_message",
body=str(message_text),
)
self.add_behavior(self.send(chat_history_message))
yield
@self.actions.add(".gesture", 2)
def _gesture(agent: "BDICoreAgent", term, intention):
def _gesture(agent, term, intention):
"""
Make the robot perform the given gesture instantly.
"""
@@ -323,13 +375,113 @@ class BDICoreAgent(BaseAgent):
gesture_name,
)
# gesture = Gesture(type=gesture_type, name=gesture_name)
# gesture_message = InternalMessage(
# to=settings.agent_settings.robot_gesture_name,
# sender=settings.agent_settings.bdi_core_name,
# body=gesture.model_dump_json(),
# )
# asyncio.create_task(agent.send(gesture_message))
if str(gesture_type) == "single":
endpoint = RIEndpoint.GESTURE_SINGLE
elif str(gesture_type) == "tag":
endpoint = RIEndpoint.GESTURE_TAG
else:
self.logger.warning("Gesture type %s could not be resolved.", gesture_type)
endpoint = RIEndpoint.GESTURE_SINGLE
gesture_command = GestureCommand(endpoint=endpoint, data=gesture_name)
gesture_message = InternalMessage(
to=settings.agent_settings.robot_gesture_name,
sender=settings.agent_settings.bdi_core_name,
body=gesture_command.model_dump_json(),
)
self.add_behavior(self.send(gesture_message))
yield
@self.actions.add(".notify_user_said", 1)
def _notify_user_said(agent, term, intention):
user_said = agentspeak.grounded(term.args[0], intention.scope)
msg = InternalMessage(
to=settings.agent_settings.llm_name, thread="user_message", body=str(user_said)
)
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_trigger_start", 1)
def _notify_trigger_start(agent, term, intention):
"""
Notify the UI about the trigger we just started doing.
"""
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
self.logger.debug("Started trigger %s", trigger_name)
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
sender=self.name,
thread="trigger_start",
body=str(trigger_name),
)
# TODO: check with Pim
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_trigger_end", 1)
def _notify_trigger_end(agent, term, intention):
"""
Notify the UI about the trigger we just started doing.
"""
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
self.logger.debug("Finished trigger %s", trigger_name)
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
sender=self.name,
thread="trigger_end",
body=str(trigger_name),
)
# TODO: check with Pim
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_goal_start", 1)
def _notify_goal_start(agent, term, intention):
"""
Notify the UI about the goal we just started chasing.
"""
goal_name = agentspeak.grounded(term.args[0], intention.scope)
self.logger.debug("Started chasing goal %s", goal_name)
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
sender=self.name,
thread="goal_start",
body=str(goal_name),
)
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_transition_phase", 2)
def _notify_transition_phase(agent, term, intention):
"""
Notify the BDI program manager about a phase transition.
"""
old = agentspeak.grounded(term.args[0], intention.scope)
new = agentspeak.grounded(term.args[1], intention.scope)
msg = InternalMessage(
to=settings.agent_settings.bdi_program_manager_name,
thread="transition_phase",
body=json.dumps({"old": str(old), "new": str(new)}),
)
self.add_behavior(self.send(msg))
yield
async def _send_to_llm(self, text: str, norms: str, goals: str):
@@ -341,6 +493,7 @@ class BDICoreAgent(BaseAgent):
to=settings.agent_settings.llm_name,
sender=self.name,
body=prompt.model_dump_json(),
thread="prompt_message",
)
await self.send(msg)
self.logger.info("Message sent to LLM agent: %s", text)

View File

@@ -1,4 +1,5 @@
import asyncio
import json
import zmq
from pydantic import ValidationError
@@ -9,7 +10,7 @@ from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
from control_backend.core.config import settings
from control_backend.schemas.belief_list import BeliefList
from control_backend.schemas.internal_message import InternalMessage
from control_backend.schemas.program import Belief, ConditionalNorm, InferredBelief, Program
from control_backend.schemas.program import Belief, ConditionalNorm, InferredBelief, Phase, Program
class BDIProgramManager(BaseAgent):
@@ -24,20 +25,20 @@ class BDIProgramManager(BaseAgent):
:ivar sub_socket: The ZMQ SUB socket used to receive program updates.
"""
_program: Program
_phase: Phase | None
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.sub_socket = None
def _initialize_internal_state(self, program: Program):
self._program = program
self._phase = program.phases[0] # start in first phase
async def _create_agentspeak_and_send_to_bdi(self, program: Program):
"""
Convert a received program into BDI beliefs and send them to the BDI Core Agent.
Currently, it takes the **first phase** of the program and extracts:
- **Norms**: Constraints or rules the agent must follow.
- **Goals**: Objectives the agent must achieve.
These are sent as a ``BeliefMessage`` with ``replace=True``, meaning they will
overwrite any existing norms/goals of the same name in the BDI agent.
Convert a received program into an AgentSpeak file and send it to the BDI Core Agent.
:param program: The program object received from the API.
"""
@@ -59,17 +60,44 @@ class BDIProgramManager(BaseAgent):
await self.send(msg)
@staticmethod
def _extract_beliefs_from_program(program: Program) -> list[Belief]:
def handle_message(self, msg: InternalMessage):
match msg.thread:
case "transition_phase":
phases = json.loads(msg.body)
self._transition_phase(phases["old"], phases["new"])
def _transition_phase(self, old: str, new: str):
assert old == str(self._phase.id)
if new == "end":
self._phase = None
return
for phase in self._program.phases:
if str(phase.id) == new:
self._phase = phase
self._send_beliefs_to_semantic_belief_extractor()
# Notify user interaction agent
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
thread="transition_phase",
body=str(self._phase.id),
)
self.add_behavior(self.send(msg))
def _extract_current_beliefs(self) -> list[Belief]:
beliefs: list[Belief] = []
for phase in program.phases:
for norm in phase.norms:
for norm in self._phase.norms:
if isinstance(norm, ConditionalNorm):
beliefs += BDIProgramManager._extract_beliefs_from_belief(norm.condition)
beliefs += self._extract_beliefs_from_belief(norm.condition)
for trigger in phase.triggers:
beliefs += BDIProgramManager._extract_beliefs_from_belief(trigger.condition)
for trigger in self._phase.triggers:
beliefs += self._extract_beliefs_from_belief(trigger.condition)
return beliefs
@@ -81,13 +109,11 @@ class BDIProgramManager(BaseAgent):
) + BDIProgramManager._extract_beliefs_from_belief(belief.right)
return [belief]
async def _send_beliefs_to_semantic_belief_extractor(self, program: Program):
async def _send_beliefs_to_semantic_belief_extractor(self):
"""
Extract beliefs from the program and send them to the Semantic Belief Extractor Agent.
:param program: The program received from the API.
"""
beliefs = BeliefList(beliefs=self._extract_beliefs_from_program(program))
beliefs = BeliefList(beliefs=self._extract_current_beliefs())
message = InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
@@ -111,12 +137,14 @@ class BDIProgramManager(BaseAgent):
try:
program = Program.model_validate_json(body)
except ValidationError:
self.logger.exception("Received an invalid program.")
self.logger.warning("Received an invalid program.")
continue
self._initialize_internal_state(program)
await asyncio.gather(
self._create_agentspeak_and_send_to_bdi(program),
self._send_beliefs_to_semantic_belief_extractor(program),
self._send_beliefs_to_semantic_belief_extractor(),
)
async def setup(self):

View File

@@ -248,6 +248,7 @@ class RICommunicationAgent(BaseAgent):
self._req_socket.recv_json(), timeout=seconds_to_wait_total / 2
)
if message["endpoint"] and message["endpoint"] != "ping":
self.logger.debug(f'Received message "{message}" from RI.')
if "endpoint" not in message:
self.logger.warning("No received endpoint in message, expected ping endpoint.")

View File

@@ -46,12 +46,17 @@ class LLMAgent(BaseAgent):
:param msg: The received internal message.
"""
if msg.sender == settings.agent_settings.bdi_core_name:
self.logger.debug("Processing message from BDI core.")
match msg.thread:
case "prompt_message":
try:
prompt_message = LLMPromptMessage.model_validate_json(msg.body)
await self._process_bdi_message(prompt_message)
except ValidationError:
self.logger.debug("Prompt message from BDI core is invalid.")
case "assistant_message":
self.history.append({"role": "assistant", "content": msg.body})
case "user_message":
self.history.append({"role": "user", "content": msg.body})
else:
self.logger.debug("Message ignored (not from BDI core.")
@@ -114,13 +119,6 @@ class LLMAgent(BaseAgent):
:param goals: Goals the LLM should achieve.
:yield: Fragments of the LLM-generated content (e.g., sentences/phrases).
"""
self.history.append(
{
"role": "user",
"content": prompt,
}
)
instructions = LLMInstructions(norms if norms else None, goals if goals else None)
messages = [
{

View File

@@ -131,6 +131,7 @@ class BaseAgent(ABC):
:param message: The message to send.
"""
target = AgentDirectory.get(message.to)
message.sender = self.name
if target:
await target.inbox.put(message)
self.logger.debug(f"Sent message {message.body} to {message.to} via regular inbox.")

View File

@@ -75,7 +75,7 @@ class BehaviourSettings(BaseModel):
# VAD settings
vad_prob_threshold: float = 0.5
vad_initial_since_speech: int = 100
vad_non_speech_patience_chunks: int = 3
vad_non_speech_patience_chunks: int = 15
# transcription behaviour
transcription_max_concurrent_tasks: int = 3

View File

@@ -12,6 +12,6 @@ class InternalMessage(BaseModel):
"""
to: str
sender: str
sender: str | None = None
body: str
thread: str | None = None