The Big One #43
@@ -332,7 +332,13 @@ class AgentSpeakGenerator:
|
||||
|
||||
@_astify.register
|
||||
def _(self, sb: SemanticBelief) -> AstExpression:
|
||||
return AstLiteral(f"semantic_{self._slugify_str(sb.description)}")
|
||||
return AstLiteral(self.get_semantic_belief_slug(sb))
|
||||
|
||||
@staticmethod
|
||||
def get_semantic_belief_slug(sb: SemanticBelief) -> str:
|
||||
# If you need a method like this for other types, make a public slugify singledispatch for
|
||||
# all types.
|
||||
return f"semantic_{AgentSpeakGenerator._slugify_str(sb.name)}"
|
||||
|
||||
@_astify.register
|
||||
def _(self, ib: InferredBelief) -> AstExpression:
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
import asyncio
|
||||
|
||||
import zmq
|
||||
from pydantic import ValidationError
|
||||
from zmq.asyncio import Context
|
||||
@@ -5,8 +7,9 @@ from zmq.asyncio import Context
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_list import BeliefList
|
||||
from control_backend.schemas.internal_message import InternalMessage
|
||||
from control_backend.schemas.program import Program
|
||||
from control_backend.schemas.program import Belief, ConditionalNorm, InferredBelief, Program
|
||||
|
||||
|
||||
class BDIProgramManager(BaseAgent):
|
||||
@@ -56,6 +59,45 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
await self.send(msg)
|
||||
|
||||
@staticmethod
|
||||
def _extract_beliefs_from_program(program: Program) -> list[Belief]:
|
||||
beliefs: list[Belief] = []
|
||||
|
||||
for phase in program.phases:
|
||||
for norm in phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
beliefs += BDIProgramManager._extract_beliefs_from_belief(norm.condition)
|
||||
|
||||
for trigger in phase.triggers:
|
||||
beliefs += BDIProgramManager._extract_beliefs_from_belief(trigger.condition)
|
||||
|
||||
return beliefs
|
||||
|
||||
@staticmethod
|
||||
def _extract_beliefs_from_belief(belief: Belief) -> list[Belief]:
|
||||
if isinstance(belief, InferredBelief):
|
||||
return BDIProgramManager._extract_beliefs_from_belief(
|
||||
belief.left
|
||||
) + BDIProgramManager._extract_beliefs_from_belief(belief.right)
|
||||
return [belief]
|
||||
|
||||
async def _send_beliefs_to_semantic_belief_extractor(self, program: Program):
|
||||
"""
|
||||
Extract beliefs from the program and send them to the Semantic Belief Extractor Agent.
|
||||
|
||||
:param program: The program received from the API.
|
||||
"""
|
||||
beliefs = BeliefList(beliefs=self._extract_beliefs_from_program(program))
|
||||
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=self.name,
|
||||
body=beliefs.model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
|
||||
await self.send(message)
|
||||
|
||||
async def _receive_programs(self):
|
||||
"""
|
||||
Continuous loop that receives program updates from the HTTP endpoint.
|
||||
@@ -72,7 +114,10 @@ class BDIProgramManager(BaseAgent):
|
||||
self.logger.exception("Received an invalid program.")
|
||||
continue
|
||||
|
||||
await self._create_agentspeak_and_send_to_bdi(program)
|
||||
await asyncio.gather(
|
||||
self._create_agentspeak_and_send_to_bdi(program),
|
||||
self._send_beliefs_to_semantic_belief_extractor(program),
|
||||
)
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
|
||||
@@ -3,21 +3,16 @@ import json
|
||||
|
||||
import httpx
|
||||
from pydantic import ValidationError
|
||||
from slugify import slugify
|
||||
|
||||
from control_backend.agents.base import BaseAgent
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_list import BeliefList
|
||||
from control_backend.schemas.belief_message import Belief as InternalBelief
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
|
||||
from control_backend.schemas.program import (
|
||||
Belief,
|
||||
ConditionalNorm,
|
||||
InferredBelief,
|
||||
Program,
|
||||
SemanticBelief,
|
||||
)
|
||||
from control_backend.schemas.program import SemanticBelief
|
||||
|
||||
|
||||
class TextBeliefExtractorAgent(BaseAgent):
|
||||
@@ -32,11 +27,12 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
the message itself.
|
||||
"""
|
||||
|
||||
def __init__(self, name: str):
|
||||
def __init__(self, name: str, temperature: float = settings.llm_settings.code_temperature):
|
||||
super().__init__(name)
|
||||
self.beliefs: dict[str, bool] = {}
|
||||
self.available_beliefs: list[SemanticBelief] = []
|
||||
self.conversation = ChatHistory(messages=[])
|
||||
self.temperature = temperature
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
@@ -85,44 +81,18 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
:param msg: The received message from the program manager.
|
||||
"""
|
||||
try:
|
||||
program = Program.model_validate_json(msg.body)
|
||||
belief_list = BeliefList.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
self.logger.warning(
|
||||
"Received message from program manager but it is not a valid program."
|
||||
"Received message from program manager but it is not a valid list of beliefs."
|
||||
)
|
||||
return
|
||||
|
||||
self.logger.debug("Received a program from the program manager.")
|
||||
|
||||
self.available_beliefs = self._extract_basic_beliefs_from_program(program)
|
||||
|
||||
# TODO Copied from an incomplete version of the program manager. Use that one instead.
|
||||
@staticmethod
|
||||
def _extract_basic_beliefs_from_program(program: Program) -> list[SemanticBelief]:
|
||||
beliefs = []
|
||||
|
||||
for phase in program.phases:
|
||||
for norm in phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
beliefs += TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(
|
||||
norm.condition
|
||||
)
|
||||
|
||||
for trigger in phase.triggers:
|
||||
beliefs += TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(
|
||||
trigger.condition
|
||||
)
|
||||
|
||||
return beliefs
|
||||
|
||||
# TODO Copied from an incomplete version of the program manager. Use that one instead.
|
||||
@staticmethod
|
||||
def _extract_basic_beliefs_from_belief(belief: Belief) -> list[SemanticBelief]:
|
||||
if isinstance(belief, InferredBelief):
|
||||
return TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(
|
||||
belief.left
|
||||
) + TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(belief.right)
|
||||
return [belief]
|
||||
self.available_beliefs = [b for b in belief_list.beliefs if isinstance(b, SemanticBelief)]
|
||||
self.logger.debug(
|
||||
"Received %d beliefs from the program manager.",
|
||||
len(self.available_beliefs),
|
||||
)
|
||||
|
||||
async def _user_said(self, text: str):
|
||||
"""
|
||||
@@ -207,8 +177,7 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
|
||||
@staticmethod
|
||||
def _create_belief_schema(belief: SemanticBelief) -> tuple[str, dict]:
|
||||
# TODO: use real belief names
|
||||
return belief.name or slugify(belief.description), {
|
||||
return AgentSpeakGenerator.get_semantic_belief_slug(belief), {
|
||||
"type": ["boolean", "null"],
|
||||
"description": belief.description,
|
||||
}
|
||||
@@ -237,10 +206,9 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
|
||||
@staticmethod
|
||||
def _format_beliefs(beliefs: list[SemanticBelief]):
|
||||
# TODO: use real belief names
|
||||
return "\n".join(
|
||||
[
|
||||
f"- {belief.name or slugify(belief.description)}: {belief.description}"
|
||||
f"- {AgentSpeakGenerator.get_semantic_belief_slug(belief)}: {belief.description}"
|
||||
for belief in beliefs
|
||||
]
|
||||
)
|
||||
@@ -267,7 +235,7 @@ Given the above conversation, what beliefs can be inferred?
|
||||
If there is no relevant information about a belief belief, give null.
|
||||
In case messages conflict, prefer using the most recent messages for inference.
|
||||
|
||||
Choose from the following list of beliefs, formatted as (belief_name, description):
|
||||
Choose from the following list of beliefs, formatted as `- <belief_name>: <description>`:
|
||||
{self._format_beliefs(beliefs)}
|
||||
|
||||
Respond with a JSON similar to the following, but with the property names as given above:
|
||||
@@ -304,8 +272,7 @@ Respond with a JSON similar to the following, but with the property names as giv
|
||||
|
||||
return None
|
||||
|
||||
@staticmethod
|
||||
async def _query_llm(prompt: str, schema: dict) -> dict:
|
||||
async def _query_llm(self, prompt: str, schema: dict) -> dict:
|
||||
"""
|
||||
Query an LLM with the given prompt and schema, return an instance of a dict conforming to
|
||||
that schema.
|
||||
@@ -333,7 +300,7 @@ Respond with a JSON similar to the following, but with the property names as giv
|
||||
},
|
||||
},
|
||||
"reasoning_effort": "low",
|
||||
"temperature": settings.llm_settings.code_temperature,
|
||||
"temperature": self.temperature,
|
||||
"stream": False,
|
||||
},
|
||||
timeout=None,
|
||||
@@ -342,4 +309,5 @@ Respond with a JSON similar to the following, but with the property names as giv
|
||||
|
||||
response_json = response.json()
|
||||
json_message = response_json["choices"][0]["message"]["content"]
|
||||
return json.loads(json_message)
|
||||
beliefs = json.loads(json_message)
|
||||
return beliefs
|
||||
|
||||
14
src/control_backend/schemas/belief_list.py
Normal file
14
src/control_backend/schemas/belief_list.py
Normal file
@@ -0,0 +1,14 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
from control_backend.schemas.program import Belief as ProgramBelief
|
||||
|
||||
|
||||
class BeliefList(BaseModel):
|
||||
"""
|
||||
Represents a list of beliefs, separated from a program. Useful in agents which need to
|
||||
communicate beliefs.
|
||||
|
||||
:ivar: beliefs: The list of beliefs.
|
||||
"""
|
||||
|
||||
beliefs: list[ProgramBelief]
|
||||
@@ -43,7 +43,6 @@ class SemanticBelief(ProgramElement):
|
||||
:ivar description: Description of how to form the belief, used by the LLM.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
description: str
|
||||
|
||||
|
||||
@@ -113,10 +112,12 @@ class Goal(ProgramElement):
|
||||
for example when the achieving of the goal is dependent on the user's reply, this means
|
||||
that the achieved status will be set from somewhere else in the program.
|
||||
|
||||
:ivar description: A description of the goal, used to determine if it has been achieved.
|
||||
:ivar plan: The plan to execute.
|
||||
:ivar can_fail: Whether we can fail to achieve the goal after executing the plan.
|
||||
"""
|
||||
|
||||
description: str
|
||||
plan: Plan
|
||||
can_fail: bool = True
|
||||
|
||||
|
||||
@@ -20,7 +20,7 @@ def mock_agentspeak_env():
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
agent = BDICoreAgent("bdi_agent", "dummy.asl")
|
||||
agent = BDICoreAgent("bdi_agent")
|
||||
agent.send = AsyncMock()
|
||||
agent.bdi_agent = MagicMock()
|
||||
return agent
|
||||
@@ -133,14 +133,14 @@ async def test_custom_actions(agent):
|
||||
|
||||
# Invoke action
|
||||
mock_term = MagicMock()
|
||||
mock_term.args = ["Hello", "Norm", "Goal"]
|
||||
mock_term.args = ["Hello", "Norm"]
|
||||
mock_intention = MagicMock()
|
||||
|
||||
# Run generator
|
||||
gen = action_fn(agent, mock_term, mock_intention)
|
||||
next(gen) # Execute
|
||||
|
||||
agent._send_to_llm.assert_called_with("Hello", "Norm", "Goal")
|
||||
agent._send_to_llm.assert_called_with("Hello", "Norm", "")
|
||||
|
||||
|
||||
def test_add_belief_sets_event(agent):
|
||||
|
||||
@@ -32,6 +32,8 @@ def make_valid_program_json(norm="N1", goal="G1") -> str:
|
||||
Goal(
|
||||
id=uuid.uuid4(),
|
||||
name=goal,
|
||||
description="This description can be used to determine whether the goal "
|
||||
"has been achieved.",
|
||||
plan=Plan(
|
||||
id=uuid.uuid4(),
|
||||
name="Goal Plan",
|
||||
@@ -75,6 +77,7 @@ async def test_receive_programs_valid_and_invalid():
|
||||
]
|
||||
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager._internal_pub_socket = AsyncMock()
|
||||
manager.sub_socket = sub
|
||||
manager._create_agentspeak_and_send_to_bdi = AsyncMock()
|
||||
|
||||
|
||||
@@ -8,9 +8,11 @@ import pytest
|
||||
from control_backend.agents.bdi import TextBeliefExtractorAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_list import BeliefList
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.program import (
|
||||
ConditionalNorm,
|
||||
KeywordBelief,
|
||||
LLMAction,
|
||||
Phase,
|
||||
Plan,
|
||||
@@ -186,13 +188,31 @@ async def test_retry_query_llm_fail_immediately(agent):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_extracting_beliefs_from_program(agent, sample_program):
|
||||
async def test_extracting_semantic_beliefs(agent):
|
||||
"""
|
||||
The Program Manager sends beliefs to this agent. Test whether the agent handles them correctly.
|
||||
"""
|
||||
assert len(agent.available_beliefs) == 0
|
||||
beliefs = BeliefList(
|
||||
beliefs=[
|
||||
KeywordBelief(
|
||||
id=uuid.uuid4(),
|
||||
name="keyword_hello",
|
||||
keyword="hello",
|
||||
),
|
||||
SemanticBelief(
|
||||
id=uuid.uuid4(), name="semantic_hello_1", description="Some semantic belief 1"
|
||||
),
|
||||
SemanticBelief(
|
||||
id=uuid.uuid4(), name="semantic_hello_2", description="Some semantic belief 2"
|
||||
),
|
||||
]
|
||||
)
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=settings.agent_settings.bdi_program_manager_name,
|
||||
body=sample_program.model_dump_json(),
|
||||
body=beliefs.model_dump_json(),
|
||||
),
|
||||
)
|
||||
assert len(agent.available_beliefs) == 2
|
||||
|
||||
@@ -43,6 +43,8 @@ def make_valid_program_dict():
|
||||
Goal(
|
||||
id=uuid.uuid4(),
|
||||
name="Some goal",
|
||||
description="This description can be used to determine whether the goal "
|
||||
"has been achieved.",
|
||||
plan=Plan(
|
||||
id=uuid.uuid4(),
|
||||
name="Goal Plan",
|
||||
|
||||
@@ -31,6 +31,7 @@ def base_goal() -> Goal:
|
||||
return Goal(
|
||||
id=uuid.uuid4(),
|
||||
name="testGoalName",
|
||||
description="This description can be used to determine whether the goal has been achieved.",
|
||||
plan=Plan(
|
||||
id=uuid.uuid4(),
|
||||
name="testGoalPlanName",
|
||||
|
||||
Reference in New Issue
Block a user