Files
pepperplus-cb/src/control_backend/agents/llm/llm.py
2025-11-12 11:47:59 +01:00

164 lines
6.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import json
import re
from collections.abc import AsyncGenerator
import httpx
from spade.behaviour import CyclicBehaviour
from spade.message import Message
from control_backend.agents import BaseAgent
from control_backend.core.config import settings
from .llm_instructions import LLMInstructions
class LLMAgent(BaseAgent):
"""
Agent responsible for processing user text input and querying a locally
hosted LLM for text generation. Receives messages from the BDI Core Agent
and responds with processed LLM output.
"""
class ReceiveMessageBehaviour(CyclicBehaviour):
"""
Cyclic behaviour to continuously listen for incoming messages from
the BDI Core Agent and handle them.
"""
async def run(self):
"""
Receives SPADE messages and processes only those originating from the
configured BDI agent.
"""
msg = await self.receive(timeout=1)
if not msg:
return
sender = msg.sender.node
self.agent.logger.debug(
"Received message: %s from %s",
msg.body,
sender,
)
if sender == settings.agent_settings.bdi_core_agent_name:
self.agent.logger.debug("Processing message from BDI Core Agent")
await self._process_bdi_message(msg)
else:
self.agent.logger.debug("Message ignored (not from BDI Core Agent)")
async def _process_bdi_message(self, message: Message):
"""
Forwards user text from the BDI to the LLM and replies with the generated text in chunks
separated by punctuation.
"""
user_text = message.body
# Consume the streaming generator and send a reply for every chunk
async for chunk in self._query_llm(user_text):
await self._reply(chunk)
self.agent.logger.debug(
"Finished processing BDI message. Response sent in chunks to BDI Core Agent."
)
async def _reply(self, msg: str):
"""
Sends a response message back to the BDI Core Agent.
"""
reply = Message(
to=settings.agent_settings.bdi_core_agent_name + "@" + settings.agent_settings.host,
body=msg,
)
await self.send(reply)
async def _query_llm(self, prompt: str) -> AsyncGenerator[str]:
"""
Sends a chat completion request to the local LLM service and streams the response by
yielding fragments separated by punctuation like.
:param prompt: Input text prompt to pass to the LLM.
:yield: Fragments of the LLM-generated content.
"""
instructions = LLMInstructions(
"- Be friendly and respectful.\n"
"- Make the conversation feel natural and engaging.\n"
"- Speak like a pirate.\n"
"- When the user asks what you can do, tell them.",
"- Try to learn the user's name during conversation.\n"
"- Suggest playing a game of asking yes or no questions where you think of a word "
"and the user must guess it.",
)
messages = [
{
"role": "developer",
"content": instructions.build_developer_instruction(),
},
{
"role": "user",
"content": prompt,
},
]
try:
current_chunk = ""
async for token in self._stream_query_llm(messages):
current_chunk += token
# Stream the message in chunks separated by punctuation.
# We include the delimiter in the emitted chunk for natural flow.
pattern = re.compile(r".*?(?:,|;|:|—||\.{3}|…|\.|\?|!)\s*", re.DOTALL)
for m in pattern.finditer(current_chunk):
chunk = m.group(0)
if chunk:
yield current_chunk
current_chunk = ""
# Yield any remaining tail
if current_chunk:
yield current_chunk
except httpx.HTTPError as err:
self.agent.logger.error("HTTP error.", exc_info=err)
yield "LLM service unavailable."
except Exception as err:
self.agent.logger.error("Unexpected error.", exc_info=err)
yield "Error processing the request."
async def _stream_query_llm(self, messages) -> AsyncGenerator[str]:
"""Raises httpx.HTTPError when the API gives an error."""
async with httpx.AsyncClient(timeout=None) as client:
async with client.stream(
"POST",
settings.llm_settings.local_llm_url,
json={
"model": settings.llm_settings.local_llm_model,
"messages": messages,
"temperature": 0.3,
"stream": True,
},
) as response:
response.raise_for_status()
async for line in response.aiter_lines():
if not line or not line.startswith("data: "):
continue
data = line[len("data: ") :]
if data.strip() == "[DONE]":
break
try:
event = json.loads(data)
delta = event.get("choices", [{}])[0].get("delta", {}).get("content")
if delta:
yield delta
except json.JSONDecodeError:
self.agent.logger.error("Failed to parse LLM response: %s", data)
async def setup(self):
"""
Sets up the SPADE behaviour to filter and process messages from the
BDI Core Agent.
"""
behaviour = self.ReceiveMessageBehaviour()
self.add_behaviour(behaviour)
self.logger.info("LLMAgent setup complete")