Compare commits
8 Commits
feat/face-
...
2e717ec277
| Author | SHA1 | Date | |
|---|---|---|---|
| 2e717ec277 | |||
| b53bf872a5 | |||
| 1337b1f06b | |||
| 51015dbbfe | |||
| 21690da679 | |||
|
|
45b8597f15 | ||
| 3579aee114 | |||
| f79b65a6fa |
@@ -40,6 +40,7 @@ dev = [
|
||||
]
|
||||
test = [
|
||||
"agentspeak>=0.2.2",
|
||||
"deepface>=0.0.97",
|
||||
"fastapi>=0.115.6",
|
||||
"httpx>=0.28.1",
|
||||
"mlx-whisper>=0.4.3 ; sys_platform == 'darwin'",
|
||||
@@ -54,6 +55,7 @@ test = [
|
||||
"pyyaml>=6.0.3",
|
||||
"pyzmq>=27.1.0",
|
||||
"soundfile>=0.13.1",
|
||||
"tf-keras>=2.20.1",
|
||||
]
|
||||
|
||||
[tool.pytest.ini_options]
|
||||
|
||||
@@ -4,6 +4,7 @@ University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
from functools import singledispatchmethod
|
||||
|
||||
from slugify import slugify
|
||||
@@ -30,7 +31,6 @@ from control_backend.schemas.program import (
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
EmotionBelief,
|
||||
FaceBelief,
|
||||
GestureAction,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
@@ -67,6 +67,7 @@ class AgentSpeakGenerator:
|
||||
"""
|
||||
|
||||
_asp: AstProgram
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
def generate(self, program: Program) -> str:
|
||||
"""
|
||||
@@ -480,7 +481,8 @@ class AgentSpeakGenerator:
|
||||
:param main_goal: Whether this is a main goal (for UI notification purposes).
|
||||
"""
|
||||
context: list[AstExpression] = [self._astify(phase)]
|
||||
context.append(~self._astify(goal, achieved=True))
|
||||
if goal.can_fail:
|
||||
context.append(~self._astify(goal, achieved=True))
|
||||
if previous_goal and previous_goal.can_fail:
|
||||
context.append(self._astify(previous_goal, achieved=True))
|
||||
if not continues_response:
|
||||
@@ -504,6 +506,10 @@ class AgentSpeakGenerator:
|
||||
if not goal.can_fail and not continues_response:
|
||||
body.append(AstStatement(StatementType.ADD_BELIEF, self._astify(goal, achieved=True)))
|
||||
|
||||
if len(body) == 0:
|
||||
self.logger.warning("Goal with no plan detected: %s", goal.name)
|
||||
body.append(AstStatement(StatementType.EMPTY, AstLiteral("true")))
|
||||
|
||||
self._asp.plans.append(AstPlan(TriggerType.ADDED_GOAL, self._astify(goal), context, body))
|
||||
|
||||
self._asp.plans.append(
|
||||
@@ -564,10 +570,10 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
)
|
||||
for step in trigger.plan.steps:
|
||||
body.append(self._step_to_statement(step))
|
||||
if isinstance(step, Goal):
|
||||
step.can_fail = False # triggers are continuous sequence
|
||||
subgoals.append(step)
|
||||
new_step = step.model_copy(update={"can_fail": False}) # triggers are sequence
|
||||
subgoals.append(new_step)
|
||||
body.append(self._step_to_statement(step))
|
||||
|
||||
# Arbitrary wait for UI to display nicely
|
||||
body.append(
|
||||
@@ -688,10 +694,6 @@ class AgentSpeakGenerator:
|
||||
def _(self, eb: EmotionBelief) -> AstExpression:
|
||||
return AstLiteral("emotion_detected", [AstAtom(eb.emotion)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, eb: FaceBelief) -> AstExpression:
|
||||
return AstLiteral("face_present")
|
||||
|
||||
@_astify.register
|
||||
def _(self, ib: InferredBelief) -> AstExpression:
|
||||
"""
|
||||
|
||||
@@ -19,7 +19,7 @@ from control_backend.agents.perception.visual_emotion_recognition_agent.visual_e
|
||||
from control_backend.core.config import settings
|
||||
|
||||
from ..actuation.robot_speech_agent import RobotSpeechAgent
|
||||
from ..perception import FacePerceptionAgent, VADAgent
|
||||
from ..perception import VADAgent
|
||||
|
||||
|
||||
class RICommunicationAgent(BaseAgent):
|
||||
@@ -181,7 +181,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
bind = port_data["bind"]
|
||||
|
||||
if not bind:
|
||||
addr = f"tcp://localhost:{port}"
|
||||
addr = f"tcp://{settings.ri_host}:{port}"
|
||||
else:
|
||||
addr = f"tcp://*:{port}"
|
||||
|
||||
@@ -224,13 +224,6 @@ class RICommunicationAgent(BaseAgent):
|
||||
)
|
||||
self.visual_emotion_recognition_agent = visual_emotion_agent
|
||||
await visual_emotion_agent.start()
|
||||
case "face":
|
||||
face_agent = FacePerceptionAgent(
|
||||
settings.agent_settings.face_agent_name,
|
||||
zmq_address=addr,
|
||||
zmq_bind=bind,
|
||||
)
|
||||
await face_agent.start()
|
||||
case _:
|
||||
self.logger.warning("Unhandled negotiation id: %s", id)
|
||||
|
||||
@@ -335,7 +328,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
|
||||
if self.speech_agent is not None:
|
||||
await self.speech_agent.stop()
|
||||
|
||||
|
||||
if self.visual_emotion_recognition_agent is not None:
|
||||
await self.visual_emotion_recognition_agent.stop()
|
||||
|
||||
@@ -345,3 +338,4 @@ class RICommunicationAgent(BaseAgent):
|
||||
self.logger.debug("Restarting communication negotiation.")
|
||||
if await self._negotiate_connection(max_retries=2):
|
||||
self.connected = True
|
||||
|
||||
@@ -185,6 +185,9 @@ class LLMAgent(BaseAgent):
|
||||
full_message = ""
|
||||
current_chunk = ""
|
||||
async for token in self._stream_query_llm(messages):
|
||||
if self._interrupted:
|
||||
return
|
||||
|
||||
full_message += token
|
||||
current_chunk += token
|
||||
|
||||
|
||||
@@ -7,7 +7,6 @@ Agents responsible for processing sensory input, such as audio transcription and
|
||||
detection.
|
||||
"""
|
||||
|
||||
from .face_rec_agent import FacePerceptionAgent as FacePerceptionAgent
|
||||
from .transcription_agent.transcription_agent import (
|
||||
TranscriptionAgent as TranscriptionAgent,
|
||||
)
|
||||
|
||||
@@ -1,144 +0,0 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
|
||||
|
||||
class FacePerceptionAgent(BaseAgent):
|
||||
"""
|
||||
Receives face presence updates from the RICommunicationAgent
|
||||
via the internal PUB/SUB bus.
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, zmq_address: str, zmq_bind: bool):
|
||||
"""
|
||||
:param name: The name of the agent.
|
||||
:param zmq_address: The ZMQ address to subscribe to, an endpoint which sends face presence
|
||||
updates.
|
||||
:param zmq_bind: Whether to connect to the ZMQ endpoint, or to bind.
|
||||
"""
|
||||
super().__init__(name)
|
||||
self._zmq_address = zmq_address
|
||||
self._zmq_bind = zmq_bind
|
||||
self._socket: azmq.Socket | None = None
|
||||
|
||||
self._last_face_state: bool | None = None
|
||||
|
||||
# Pause functionality
|
||||
# NOTE: flag is set when running, cleared when paused
|
||||
self._paused = asyncio.Event()
|
||||
self._paused.set()
|
||||
|
||||
async def setup(self):
|
||||
self.logger.info("Starting FacePerceptionAgent")
|
||||
|
||||
if self._socket is None:
|
||||
self._connect_socket()
|
||||
|
||||
self.add_behavior(self._poll_loop())
|
||||
self.logger.info("Finished setting up %s", self.name)
|
||||
|
||||
def _connect_socket(self):
|
||||
if self._socket is not None:
|
||||
self.logger.warning("ZMQ socket already initialized. Did you call setup() twice?")
|
||||
return
|
||||
|
||||
self._socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
self._socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
if self._zmq_bind:
|
||||
self._socket.bind(self._zmq_address)
|
||||
else:
|
||||
self._socket.connect(self._zmq_address)
|
||||
|
||||
async def _poll_loop(self):
|
||||
if self._socket is None:
|
||||
self.logger.warning("Connection not initialized before poll loop. Call setup() first.")
|
||||
return
|
||||
|
||||
while self._running:
|
||||
try:
|
||||
await self._paused.wait()
|
||||
response = await asyncio.wait_for(
|
||||
self._socket.recv_json(), timeout=settings.behaviour_settings.sleep_s
|
||||
)
|
||||
|
||||
face_present = response.get("face_detected", False)
|
||||
|
||||
if self._last_face_state is None:
|
||||
self._last_face_state = face_present
|
||||
continue
|
||||
|
||||
if face_present != self._last_face_state:
|
||||
self._last_face_state = face_present
|
||||
self.logger.debug("Face detected" if face_present else "Face lost")
|
||||
await self._update_face_belief(face_present)
|
||||
except TimeoutError:
|
||||
pass
|
||||
except Exception as e:
|
||||
self.logger.error("Face polling failed", exc_info=e)
|
||||
|
||||
async def _post_face_belief(self, present: bool):
|
||||
"""
|
||||
Send a face_present belief update to the BDI Core Agent.
|
||||
"""
|
||||
if present:
|
||||
belief_msg = BeliefMessage(create=[{"name": "face_present", "arguments": []}])
|
||||
else:
|
||||
belief_msg = BeliefMessage(delete=[{"name": "face_present", "arguments": []}])
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
thread="beliefs",
|
||||
body=belief_msg.model_dump_json(),
|
||||
)
|
||||
|
||||
await self.send(msg)
|
||||
|
||||
async def _update_face_belief(self, present: bool):
|
||||
"""
|
||||
Add or remove the `face_present` belief in the BDI Core Agent.
|
||||
"""
|
||||
if present:
|
||||
payload = BeliefMessage(create=[Belief(name="face_present").model_dump()])
|
||||
else:
|
||||
payload = BeliefMessage(delete=[Belief(name="face_present").model_dump()])
|
||||
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
thread="beliefs",
|
||||
body=payload.model_dump_json(),
|
||||
)
|
||||
|
||||
await self.send(message)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming pause/resume commands from User Interrupt Agent.
|
||||
"""
|
||||
sender = msg.sender
|
||||
|
||||
if sender == settings.agent_settings.user_interrupt_name:
|
||||
if msg.body == "PAUSE":
|
||||
self.logger.info("Pausing Face Perception processing.")
|
||||
self._paused.clear()
|
||||
self._last_face_state = None
|
||||
elif msg.body == "RESUME":
|
||||
self.logger.info("Resuming Face Perception processing.")
|
||||
self._paused.set()
|
||||
else:
|
||||
self.logger.warning("Unknown command from User Interrupt Agent: %s", msg.body)
|
||||
else:
|
||||
self.logger.debug("Ignoring message from unknown sender: %s", sender)
|
||||
@@ -3,7 +3,6 @@ import json
|
||||
import time
|
||||
from collections import Counter, defaultdict
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
@@ -64,6 +63,8 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
|
||||
self.video_in_socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
|
||||
self.video_in_socket.setsockopt(zmq.RCVHWM, 3)
|
||||
|
||||
if self.socket_bind:
|
||||
self.video_in_socket.bind(self.socket_address)
|
||||
else:
|
||||
@@ -71,12 +72,9 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
|
||||
self.video_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
self.video_in_socket.setsockopt(zmq.RCVTIMEO, self.timeout_ms)
|
||||
self.video_in_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
|
||||
self.add_behavior(self.emotion_update_loop())
|
||||
|
||||
self.logger.info("Finished setting up %s", self.name)
|
||||
|
||||
async def emotion_update_loop(self):
|
||||
"""
|
||||
Background loop to receive video frames, recognize emotions, and update beliefs.
|
||||
@@ -97,21 +95,18 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
try:
|
||||
await self._paused.wait()
|
||||
|
||||
frame_bytes = await self.video_in_socket.recv()
|
||||
width, height, image_bytes = await self.video_in_socket.recv_multipart()
|
||||
|
||||
width = int.from_bytes(width, 'little')
|
||||
height = int.from_bytes(height, 'little')
|
||||
|
||||
# Convert bytes to a numpy buffer
|
||||
nparr = np.frombuffer(frame_bytes, np.uint8)
|
||||
image_array = np.frombuffer(image_bytes, np.uint8)
|
||||
|
||||
# Decode image into the generic Numpy Array DeepFace expects
|
||||
frame_image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
|
||||
if frame_image is None:
|
||||
# Could not decode image, skip this frame
|
||||
self.logger.warning("Received invalid video frame, skipping.")
|
||||
continue
|
||||
frame = image_array.reshape((height, width, 3))
|
||||
|
||||
# Get the dominant emotion from each face
|
||||
current_emotions = self.emotion_recognizer.sorted_dominant_emotions(frame_image)
|
||||
current_emotions = self.emotion_recognizer.sorted_dominant_emotions(frame)
|
||||
# Update emotion counts for each detected face
|
||||
for i, emotion in enumerate(current_emotions):
|
||||
face_stats[i][emotion] += 1
|
||||
@@ -135,6 +130,10 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
except zmq.Again:
|
||||
self.logger.warning("No video frame received within timeout.")
|
||||
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in emotion recognition loop: {e}")
|
||||
|
||||
|
||||
async def update_emotions(self, prev_emotions: set[str], emotions: set[str]):
|
||||
"""
|
||||
Compare emotions from previous window and current emotions,
|
||||
@@ -180,7 +179,7 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
"""
|
||||
Handle incoming messages.
|
||||
|
||||
Expects messages to pause or resume the Visual Emotion Recognition
|
||||
Expects messages to pause or resume the Visual Emotion Recognition
|
||||
processing from User Interrupt Agent.
|
||||
|
||||
:param msg: The received internal message.
|
||||
@@ -205,3 +204,4 @@ class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
"""
|
||||
self.video_in_socket.close()
|
||||
await super().stop()
|
||||
|
||||
@@ -18,37 +18,36 @@ class VisualEmotionRecognizer(abc.ABC):
|
||||
To minimize false positives, consider filtering faces with low confidence.
|
||||
|
||||
:param image: The input image for emotion recognition.
|
||||
:return: List of dominant emotion detected for each face in the image,
|
||||
:return: List of dominant emotion detected for each face in the image,
|
||||
sorted per face.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class DeepFaceEmotionRecognizer(VisualEmotionRecognizer):
|
||||
"""
|
||||
DeepFace-based implementation of VisualEmotionRecognizer.
|
||||
DeepFape has proven to be quite a pessimistic model, so expect sad, fear and neutral
|
||||
DeepFape has proven to be quite a pessimistic model, so expect sad, fear and neutral
|
||||
emotions to be over-represented.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.load_model()
|
||||
|
||||
|
||||
def load_model(self):
|
||||
print("Loading Deepface Emotion Model...")
|
||||
dummy_img = np.zeros((224, 224, 3), dtype=np.uint8)
|
||||
# analyze does not take a model as an argument, calling it once on a dummy image to load
|
||||
# analyze does not take a model as an argument, calling it once on a dummy image to load
|
||||
# the model
|
||||
DeepFace.analyze(dummy_img, actions=["emotion"], enforce_detection=False)
|
||||
print("Deepface Emotion Model loaded.")
|
||||
DeepFace.analyze(dummy_img, actions=['emotion'], enforce_detection=False)
|
||||
|
||||
def sorted_dominant_emotions(self, image) -> list[str]:
|
||||
analysis = DeepFace.analyze(image, actions=["emotion"], enforce_detection=False)
|
||||
|
||||
analysis = DeepFace.analyze(image,
|
||||
actions=['emotion'],
|
||||
enforce_detection=False
|
||||
)
|
||||
|
||||
# Sort faces by x coordinate to maintain left-to-right order
|
||||
analysis.sort(key=lambda face: face["region"]["x"])
|
||||
analysis.sort(key=lambda face: face['region']['x'])
|
||||
|
||||
analysis = [face for face in analysis if face["face_confidence"] >= 0.90]
|
||||
|
||||
dominant_emotions = [face["dominant_emotion"] for face in analysis]
|
||||
analysis = [face for face in analysis if face['face_confidence'] >= 0.90]
|
||||
|
||||
dominant_emotions = [face['dominant_emotion'] for face in analysis]
|
||||
return dominant_emotions
|
||||
|
||||
@@ -404,28 +404,22 @@ class UserInterruptAgent(BaseAgent):
|
||||
if pause == "true":
|
||||
# Send pause to VAD and VED agent
|
||||
vad_message = InternalMessage(
|
||||
to=[
|
||||
settings.agent_settings.vad_name,
|
||||
settings.agent_settings.visual_emotion_recognition_name,
|
||||
settings.agent_settings.face_agent_name,
|
||||
],
|
||||
to=[settings.agent_settings.vad_name,
|
||||
settings.agent_settings.visual_emotion_recognition_name],
|
||||
sender=self.name,
|
||||
body="PAUSE",
|
||||
)
|
||||
await self.send(vad_message)
|
||||
# Voice Activity Detection and Visual Emotion Recognition agents
|
||||
self.logger.info("Sent pause command to perception agents.")
|
||||
self.logger.info("Sent pause command to VAD and VED agents.")
|
||||
else:
|
||||
# Send resume to VAD and VED agents
|
||||
vad_message = InternalMessage(
|
||||
to=[
|
||||
settings.agent_settings.vad_name,
|
||||
settings.agent_settings.visual_emotion_recognition_name,
|
||||
settings.agent_settings.face_agent_name,
|
||||
],
|
||||
to=[settings.agent_settings.vad_name,
|
||||
settings.agent_settings.visual_emotion_recognition_name],
|
||||
sender=self.name,
|
||||
body="RESUME",
|
||||
)
|
||||
await self.send(vad_message)
|
||||
# Voice Activity Detection and Visual Emotion Recognition agents
|
||||
self.logger.info("Sent resume command to perception agents.")
|
||||
self.logger.info("Sent resume command to VAD and VED agents.")
|
||||
@@ -12,7 +12,7 @@ api_router = APIRouter()
|
||||
|
||||
api_router.include_router(message.router, tags=["Messages"])
|
||||
|
||||
api_router.include_router(robot.router, prefix="/robot", tags=["Pings", "Commands", "Face"])
|
||||
api_router.include_router(robot.router, prefix="/robot", tags=["Pings", "Commands"])
|
||||
|
||||
api_router.include_router(logs.router, tags=["Logs"])
|
||||
|
||||
|
||||
@@ -64,7 +64,6 @@ class AgentSettings(BaseModel):
|
||||
robot_speech_name: str = "robot_speech_agent"
|
||||
robot_gesture_name: str = "robot_gesture_agent"
|
||||
user_interrupt_name: str = "user_interrupt_agent"
|
||||
face_agent_name: str = "face_detection_agent"
|
||||
|
||||
|
||||
class BehaviourSettings(BaseModel):
|
||||
@@ -83,12 +82,12 @@ class BehaviourSettings(BaseModel):
|
||||
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
|
||||
:ivar transcription_token_buffer: Buffer for transcription tokens.
|
||||
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
|
||||
:ivar trigger_time_to_wait: Amount of milliseconds to wait before informing the UI about trigger
|
||||
completion.
|
||||
:ivar visual_emotion_recognition_window_duration_s: Duration in seconds over which to aggregate
|
||||
:ivar visual_emotion_recognition_window_duration_s: Duration in seconds over which to aggregate
|
||||
emotions and update emotion beliefs.
|
||||
:ivar visual_emotion_recognition_min_frames_per_face: Minimum number of frames per face required
|
||||
to consider a face valid.
|
||||
:ivar trigger_time_to_wait: Amount of milliseconds to wait before informing the UI about trigger
|
||||
completion.
|
||||
"""
|
||||
|
||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||
@@ -112,13 +111,12 @@ class BehaviourSettings(BaseModel):
|
||||
# Text belief extractor settings
|
||||
conversation_history_length_limit: int = 10
|
||||
|
||||
# AgentSpeak related settings
|
||||
trigger_time_to_wait: int = 2000
|
||||
agentspeak_file: str = "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
|
||||
# Visual Emotion Recognition settings
|
||||
visual_emotion_recognition_window_duration_s: int = 5
|
||||
visual_emotion_recognition_min_frames_per_face: int = 3
|
||||
# AgentSpeak related settings
|
||||
trigger_time_to_wait: int = 2000
|
||||
agentspeak_file: str = "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
|
||||
|
||||
class LLMSettings(BaseModel):
|
||||
|
||||
@@ -7,7 +7,7 @@ University within the Software Project course.
|
||||
from enum import Enum
|
||||
from typing import Literal
|
||||
|
||||
from pydantic import UUID4, BaseModel
|
||||
from pydantic import UUID4, BaseModel, field_validator
|
||||
|
||||
|
||||
class ProgramElement(BaseModel):
|
||||
@@ -24,6 +24,13 @@ class ProgramElement(BaseModel):
|
||||
# To make program elements hashable
|
||||
model_config = {"frozen": True}
|
||||
|
||||
@field_validator("name")
|
||||
@classmethod
|
||||
def name_must_not_start_with_number(cls, v: str) -> str:
|
||||
if v and v[0].isdigit():
|
||||
raise ValueError('Field "name" must not start with a number.')
|
||||
return v
|
||||
|
||||
|
||||
class LogicalOperator(Enum):
|
||||
"""
|
||||
@@ -41,8 +48,8 @@ class LogicalOperator(Enum):
|
||||
OR = "OR"
|
||||
|
||||
|
||||
type Belief = KeywordBelief | SemanticBelief | InferredBelief | EmotionBelief | FaceBelief
|
||||
type BasicBelief = KeywordBelief | SemanticBelief | EmotionBelief | FaceBelief
|
||||
type Belief = KeywordBelief | SemanticBelief | InferredBelief | EmotionBelief
|
||||
type BasicBelief = KeywordBelief | SemanticBelief | EmotionBelief
|
||||
|
||||
|
||||
class KeywordBelief(ProgramElement):
|
||||
@@ -117,16 +124,6 @@ class EmotionBelief(ProgramElement):
|
||||
emotion: str
|
||||
|
||||
|
||||
class FaceBelief(ProgramElement):
|
||||
"""
|
||||
Represents the belief that at least one face is currently detected.
|
||||
This belief is maintained by a perception agent (not inferred).
|
||||
"""
|
||||
|
||||
face_present: bool
|
||||
name: str = ""
|
||||
|
||||
|
||||
class Norm(ProgramElement):
|
||||
"""
|
||||
Base class for behavioral norms that guide the robot's interactions.
|
||||
|
||||
@@ -1,152 +0,0 @@
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
import pytest
|
||||
import zmq
|
||||
|
||||
import control_backend.agents.perception.face_rec_agent as face_module
|
||||
from control_backend.agents.perception.face_rec_agent import FacePerceptionAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
"""Return a FacePerceptionAgent instance for testing."""
|
||||
return FacePerceptionAgent(
|
||||
name="face_agent",
|
||||
zmq_address="inproc://test",
|
||||
zmq_bind=False,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def socket():
|
||||
"""Return a mocked ZMQ socket."""
|
||||
sock = AsyncMock()
|
||||
sock.setsockopt_string = MagicMock()
|
||||
sock.connect = MagicMock()
|
||||
sock.bind = MagicMock()
|
||||
return sock
|
||||
|
||||
|
||||
def test_connect_socket_connect(agent, socket, monkeypatch):
|
||||
"""Test that _connect_socket properly connects when zmq_bind=False."""
|
||||
ctx = MagicMock()
|
||||
ctx.socket.return_value = socket
|
||||
monkeypatch.setattr(face_module.azmq, "Context", MagicMock(instance=lambda: ctx))
|
||||
|
||||
agent._connect_socket()
|
||||
socket.setsockopt_string.assert_called_once_with(zmq.SUBSCRIBE, "")
|
||||
socket.connect.assert_called_once_with(agent._zmq_address)
|
||||
socket.bind.assert_not_called()
|
||||
|
||||
|
||||
def test_connect_socket_bind(agent, socket, monkeypatch):
|
||||
"""Test that _connect_socket properly binds when zmq_bind=True."""
|
||||
agent._zmq_bind = True
|
||||
ctx = MagicMock()
|
||||
ctx.socket.return_value = socket
|
||||
monkeypatch.setattr(face_module.azmq, "Context", MagicMock(instance=lambda: ctx))
|
||||
|
||||
agent._connect_socket()
|
||||
socket.bind.assert_called_once_with(agent._zmq_address)
|
||||
socket.connect.assert_not_called()
|
||||
|
||||
|
||||
def test_connect_socket_twice_is_noop(agent, socket):
|
||||
"""Test that calling _connect_socket twice does not overwrite an existing socket."""
|
||||
agent._socket = socket
|
||||
agent._connect_socket()
|
||||
assert agent._socket is socket
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_face_belief_present(agent):
|
||||
"""Test that _update_face_belief(True) creates the 'face_present' belief."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._update_face_belief(True)
|
||||
msg = agent.send.await_args.args[0]
|
||||
payload = BeliefMessage.model_validate_json(msg.body)
|
||||
assert payload.create[0].name == "face_present"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_face_belief_absent(agent):
|
||||
"""Test that _update_face_belief(False) deletes the 'face_present' belief."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._update_face_belief(False)
|
||||
msg = agent.send.await_args.args[0]
|
||||
payload = BeliefMessage.model_validate_json(msg.body)
|
||||
assert payload.delete[0].name == "face_present"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_post_face_belief_present(agent):
|
||||
"""Test that _post_face_belief(True) sends a belief creation message."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._post_face_belief(True)
|
||||
msg = agent.send.await_args.args[0]
|
||||
assert '"create"' in msg.body and '"face_present"' in msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_post_face_belief_absent(agent):
|
||||
"""Test that _post_face_belief(False) sends a belief deletion message."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._post_face_belief(False)
|
||||
msg = agent.send.await_args.args[0]
|
||||
assert '"delete"' in msg.body and '"face_present"' in msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_pause(agent):
|
||||
"""Test that a 'PAUSE' message clears _paused and resets _last_face_state."""
|
||||
agent._paused.set()
|
||||
agent._last_face_state = True
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender=face_module.settings.agent_settings.user_interrupt_name,
|
||||
thread="cmd",
|
||||
body="PAUSE",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
assert not agent._paused.is_set()
|
||||
assert agent._last_face_state is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_resume(agent):
|
||||
"""Test that a 'RESUME' message sets _paused."""
|
||||
agent._paused.clear()
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender=face_module.settings.agent_settings.user_interrupt_name,
|
||||
thread="cmd",
|
||||
body="RESUME",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
assert agent._paused.is_set()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_unknown_command(agent):
|
||||
"""Test that an unknown command from UserInterruptAgent is ignored (logs a warning)."""
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender=face_module.settings.agent_settings.user_interrupt_name,
|
||||
thread="cmd",
|
||||
body="???",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_unknown_sender(agent):
|
||||
"""Test that messages from unknown senders are ignored."""
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender="someone_else",
|
||||
thread="cmd",
|
||||
body="PAUSE",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
@@ -0,0 +1,338 @@
|
||||
import asyncio
|
||||
import json
|
||||
import time
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import zmq
|
||||
from pydantic_core import ValidationError
|
||||
|
||||
# Adjust the import path to match your project structure
|
||||
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent import ( # noqa
|
||||
VisualEmotionRecognitionAgent,
|
||||
)
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Fixtures
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
@pytest.fixture
|
||||
def mock_settings():
|
||||
with patch("control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent.settings") as mock: # noqa
|
||||
# Set default values required by the agent
|
||||
mock.behaviour_settings.visual_emotion_recognition_window_duration_s = 5
|
||||
mock.behaviour_settings.visual_emotion_recognition_min_frames_per_face = 3
|
||||
mock.agent_settings.bdi_core_name = "bdi_core_agent"
|
||||
mock.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
yield mock
|
||||
|
||||
@pytest.fixture
|
||||
def mock_deepface():
|
||||
with patch("control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent.DeepFaceEmotionRecognizer") as mock: # noqa
|
||||
instance = mock.return_value
|
||||
instance.sorted_dominant_emotions.return_value = []
|
||||
yield instance
|
||||
|
||||
@pytest.fixture
|
||||
def mock_zmq_context():
|
||||
with patch("zmq.asyncio.Context.instance") as mock_ctx:
|
||||
mock_socket = MagicMock()
|
||||
# Mock socket methods to return None or AsyncMock for async methods
|
||||
mock_socket.bind = MagicMock()
|
||||
mock_socket.connect = MagicMock()
|
||||
mock_socket.setsockopt = MagicMock()
|
||||
mock_socket.setsockopt_string = MagicMock()
|
||||
mock_socket.recv_multipart = AsyncMock()
|
||||
mock_socket.close = MagicMock()
|
||||
|
||||
mock_ctx.return_value.socket.return_value = mock_socket
|
||||
yield mock_ctx
|
||||
|
||||
@pytest.fixture
|
||||
def agent(mock_settings, mock_deepface, mock_zmq_context):
|
||||
# Initialize agent with specific params to control testing
|
||||
agent = VisualEmotionRecognitionAgent(
|
||||
name="test_agent",
|
||||
socket_address="tcp://localhost:5555",
|
||||
bind=False,
|
||||
timeout_ms=100,
|
||||
window_duration=2,
|
||||
min_frames_required=2
|
||||
)
|
||||
# Mock the internal send method from BaseAgent
|
||||
agent.send = AsyncMock()
|
||||
# Mock the add_behavior method from BaseAgent
|
||||
agent.add_behavior = MagicMock()
|
||||
# Mock the logger
|
||||
agent.logger = MagicMock()
|
||||
|
||||
return agent
|
||||
|
||||
# -----------------------------------------------------------------------------
|
||||
# Tests
|
||||
# -----------------------------------------------------------------------------
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_initialization(agent):
|
||||
"""Test that the agent initializes with correct attributes."""
|
||||
assert agent.name == "test_agent"
|
||||
assert agent.socket_address == "tcp://localhost:5555"
|
||||
assert agent.socket_bind is False
|
||||
assert agent.timeout_ms == 100
|
||||
assert agent._paused.is_set()
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup_connect(agent, mock_zmq_context, mock_deepface):
|
||||
"""Test setup routine when binding is False (connect)."""
|
||||
agent.socket_bind = False
|
||||
await agent.setup()
|
||||
|
||||
socket = agent.video_in_socket
|
||||
socket.connect.assert_called_with("tcp://localhost:5555")
|
||||
socket.bind.assert_not_called()
|
||||
socket.setsockopt.assert_any_call(zmq.RCVHWM, 3)
|
||||
socket.setsockopt.assert_any_call(zmq.RCVTIMEO, 100)
|
||||
agent.add_behavior.assert_called_once()
|
||||
assert agent.emotion_recognizer == mock_deepface
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup_bind(agent, mock_zmq_context):
|
||||
"""Test setup routine when binding is True."""
|
||||
agent.socket_bind = True
|
||||
await agent.setup()
|
||||
|
||||
socket = agent.video_in_socket
|
||||
socket.bind.assert_called_with("tcp://localhost:5555")
|
||||
socket.connect.assert_not_called()
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_emotion_update_loop_normal_flow(agent, mock_deepface):
|
||||
"""
|
||||
Test the main loop logic:
|
||||
1. Receive frames
|
||||
2. Aggregate stats
|
||||
3. Trigger window update
|
||||
4. Call update_emotions
|
||||
"""
|
||||
# Setup dependencies
|
||||
await agent.setup()
|
||||
agent._running = True
|
||||
|
||||
# Create fake image data (10x10 pixels)
|
||||
width, height = 10, 10
|
||||
image_bytes = np.zeros((10, 10, 3), dtype=np.uint8).tobytes()
|
||||
w_bytes = width.to_bytes(4, 'little')
|
||||
h_bytes = height.to_bytes(4, 'little')
|
||||
|
||||
# Mock ZMQ receive to return data 3 times, then stop the loop
|
||||
# We use a side_effect on recv_multipart to simulate frames and then stop the loop
|
||||
async def recv_side_effect():
|
||||
if agent._running:
|
||||
return w_bytes, h_bytes, image_bytes
|
||||
raise asyncio.CancelledError()
|
||||
|
||||
agent.video_in_socket.recv_multipart.side_effect = recv_side_effect
|
||||
|
||||
# Mock DeepFace to return emotions
|
||||
# Frame 1: Happy
|
||||
# Frame 2: Happy
|
||||
# Frame 3: Happy (Trigger window)
|
||||
mock_deepface.sorted_dominant_emotions.side_effect = [
|
||||
["happy"],
|
||||
["happy"],
|
||||
["happy"]
|
||||
]
|
||||
|
||||
# Mock update_emotions to verify it's called
|
||||
agent.update_emotions = AsyncMock()
|
||||
|
||||
# Mock time.time to simulate window passage
|
||||
# We need time to advance significantly after the frames are collected
|
||||
start_time = time.time()
|
||||
|
||||
with patch("time.time") as mock_time:
|
||||
# Sequence of time calls:
|
||||
# 1. Init next_window_time calculation
|
||||
# 2. Loop 1 check
|
||||
# 3. Loop 2 check
|
||||
# 4. Loop 3 check (Make this one pass the window threshold)
|
||||
mock_time.side_effect = [
|
||||
start_time, # init
|
||||
start_time + 0.1, # frame 1 check
|
||||
start_time + 0.2, # frame 2 check
|
||||
start_time + 10.0, # frame 3 check (triggers window reset)
|
||||
start_time + 10.1, # next init
|
||||
start_time + 10.2 # break loop
|
||||
]
|
||||
|
||||
# We need to manually break the infinite loop after the update
|
||||
# We can do this by wrapping update_emotions to set _running = False
|
||||
async def stop_loop(*args, **kwargs):
|
||||
agent._running = False
|
||||
|
||||
agent.update_emotions.side_effect = stop_loop
|
||||
|
||||
# Run the loop
|
||||
await agent.emotion_update_loop()
|
||||
|
||||
# Verifications
|
||||
assert agent.update_emotions.called
|
||||
# Check that it detected 'happy' as dominant (2 required, 3 found)
|
||||
call_args = agent.update_emotions.call_args
|
||||
assert call_args is not None
|
||||
# args: (prev_emotions, window_dominant_emotions)
|
||||
assert call_args[0][1] == {"happy"}
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_emotion_update_loop_insufficient_frames(agent, mock_deepface):
|
||||
"""Test that emotions are NOT updated if min_frames_required is not met."""
|
||||
await agent.setup()
|
||||
agent._running = True
|
||||
agent.min_frames_required = 5 # Set high requirement
|
||||
|
||||
width, height = 10, 10
|
||||
image_bytes = np.zeros((10, 10, 3), dtype=np.uint8).tobytes()
|
||||
w_bytes = width.to_bytes(4, 'little')
|
||||
h_bytes = height.to_bytes(4, 'little')
|
||||
|
||||
agent.video_in_socket.recv_multipart.return_value = (w_bytes, h_bytes, image_bytes)
|
||||
mock_deepface.sorted_dominant_emotions.return_value = ["sad"]
|
||||
|
||||
agent.update_emotions = AsyncMock()
|
||||
|
||||
with patch("time.time") as mock_time:
|
||||
# Time setup to trigger window processing immediately
|
||||
mock_time.side_effect = [0, 100, 101]
|
||||
|
||||
# Stop loop after first pass
|
||||
async def stop_loop(*args, **kwargs):
|
||||
agent._running = False
|
||||
agent.update_emotions.side_effect = stop_loop
|
||||
|
||||
await agent.emotion_update_loop()
|
||||
|
||||
# It should call update_emotions with EMPTY set because min frames (5) > detected (1)
|
||||
call_args = agent.update_emotions.call_args
|
||||
assert call_args[0][1] == set()
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_emotion_update_loop_zmq_again_and_exception(agent):
|
||||
"""Test that the loop handles ZMQ timeouts (Again) and generic exceptions."""
|
||||
await agent.setup()
|
||||
agent._running = True
|
||||
|
||||
# Side effect:
|
||||
# 1. Raise ZMQ Again (Timeout) -> should log warning
|
||||
# 2. Raise Generic Exception -> should log error
|
||||
# 3. Raise CancelledError -> stop loop (simulating stop)
|
||||
agent.video_in_socket.recv_multipart.side_effect = [
|
||||
zmq.Again(),
|
||||
RuntimeError("Random Failure"),
|
||||
asyncio.CancelledError() # To break loop cleanly
|
||||
]
|
||||
|
||||
# We need to ensure the loop doesn't block on _paused
|
||||
agent._paused.set()
|
||||
|
||||
# Run loop
|
||||
try:
|
||||
await agent.emotion_update_loop()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_emotions_logic(agent, mock_settings):
|
||||
"""Test the logic for calculating diffs and sending messages."""
|
||||
agent.name = "viz_agent"
|
||||
|
||||
# Case 1: No change
|
||||
await agent.update_emotions({"happy"}, {"happy"})
|
||||
agent.send.assert_not_called()
|
||||
|
||||
# Case 2: Remove 'happy', Add 'sad'
|
||||
await agent.update_emotions({"happy"}, {"sad"})
|
||||
|
||||
assert agent.send.called
|
||||
call_args = agent.send.call_args
|
||||
msg = call_args[0][0] # InternalMessage object
|
||||
|
||||
assert msg.to == mock_settings.agent_settings.bdi_core_name
|
||||
assert msg.sender == "viz_agent"
|
||||
assert msg.thread == "beliefs"
|
||||
|
||||
payload = json.loads(msg.body)
|
||||
|
||||
# Check Created Beliefs
|
||||
assert len(payload["create"]) == 1
|
||||
assert payload["create"][0]["name"] == "emotion_detected"
|
||||
assert payload["create"][0]["arguments"] == ["sad"]
|
||||
|
||||
# Check Deleted Beliefs
|
||||
assert len(payload["delete"]) == 1
|
||||
assert payload["delete"][0]["name"] == "emotion_detected"
|
||||
assert payload["delete"][0]["arguments"] == ["happy"]
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_emotions_validation_error(agent):
|
||||
"""Test that ValidationErrors during Belief creation are caught."""
|
||||
|
||||
# We patch Belief to raise ValidationError
|
||||
with patch("control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent.Belief") as MockBelief: # noqa
|
||||
MockBelief.side_effect = ValidationError.from_exception_data("Simulated Error", [])
|
||||
|
||||
# Try to update emotions
|
||||
await agent.update_emotions(prev_emotions={"happy"}, emotions={"sad"})
|
||||
|
||||
# Verify empty payload is sent (or payload with valid ones if mixed)
|
||||
# In this case both failed, so payload lists should be empty
|
||||
assert agent.send.called
|
||||
msg = agent.send.call_args[0][0]
|
||||
payload = json.loads(msg.body)
|
||||
assert payload["create"] == []
|
||||
assert payload["delete"] == []
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message(agent, mock_settings):
|
||||
"""Test message handling for Pause/Resume."""
|
||||
|
||||
# Setup
|
||||
ui_name = mock_settings.agent_settings.user_interrupt_name
|
||||
|
||||
# 1. PAUSE message
|
||||
msg_pause = InternalMessage(to="me", sender=ui_name, body="PAUSE")
|
||||
await agent.handle_message(msg_pause)
|
||||
assert not agent._paused.is_set() # Should be cleared (paused)
|
||||
agent.logger.info.assert_called_with("Pausing Visual Emotion Recognition processing.")
|
||||
|
||||
# 2. RESUME message
|
||||
msg_resume = InternalMessage(to="me", sender=ui_name, body="RESUME")
|
||||
await agent.handle_message(msg_resume)
|
||||
assert agent._paused.is_set() # Should be set (running)
|
||||
|
||||
# 3. Unknown command
|
||||
msg_unknown = InternalMessage(to="me", sender=ui_name, body="DANCE")
|
||||
await agent.handle_message(msg_unknown)
|
||||
|
||||
# 4. Unknown sender
|
||||
msg_random = InternalMessage(to="me", sender="random_guy", body="PAUSE")
|
||||
await agent.handle_message(msg_random)
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_stop(agent, mock_zmq_context):
|
||||
"""Test the stop method cleans up resources."""
|
||||
# We need to mock super().stop(). Since we can't easily patch super(),
|
||||
# and the provided BaseAgent code shows stop() just sets _running and cancels tasks,
|
||||
# we can rely on the fact that VisualEmotionRecognitionAgent calls it.
|
||||
|
||||
# However, since we provided a 'agent' fixture that mocks things, we should verify specific cleanups. # noqa
|
||||
await agent.setup()
|
||||
|
||||
with patch("control_backend.agents.BaseAgent.stop", new_callable=AsyncMock) as mock_super_stop:
|
||||
await agent.stop()
|
||||
|
||||
# Verify socket closed
|
||||
agent.video_in_socket.close.assert_called_once()
|
||||
# Verify parent stop called
|
||||
mock_super_stop.assert_called_once()
|
||||
@@ -303,6 +303,33 @@ async def test_send_experiment_control(agent):
|
||||
assert msg.thread == "reset_experiment"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_pause_command(agent):
|
||||
# --- Test PAUSE ---
|
||||
await agent._send_pause_command("true")
|
||||
|
||||
# Should send exactly 1 message
|
||||
assert agent.send.await_count == 1
|
||||
|
||||
# Extract the message object from the mock call
|
||||
# call_args[0] are positional args, and [0] is the first arg (the message)
|
||||
msg = agent.send.call_args[0][0]
|
||||
|
||||
# Verify Body
|
||||
assert msg.body == "PAUSE"
|
||||
|
||||
# --- Test RESUME ---
|
||||
agent.send.reset_mock()
|
||||
await agent._send_pause_command("false")
|
||||
|
||||
# Should send exactly 1 message
|
||||
assert agent.send.await_count == 1
|
||||
|
||||
msg = agent.send.call_args[0][0]
|
||||
|
||||
# Verify Body
|
||||
assert msg.body == "RESUME"
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup(agent):
|
||||
"""Test the setup method initializes sockets correctly."""
|
||||
|
||||
6
uv.lock
generated
6
uv.lock
generated
@@ -1,5 +1,5 @@
|
||||
version = 1
|
||||
revision = 2
|
||||
revision = 3
|
||||
requires-python = ">=3.13"
|
||||
resolution-markers = [
|
||||
"python_full_version >= '3.14' and sys_platform == 'darwin'",
|
||||
@@ -1540,6 +1540,7 @@ dev = [
|
||||
]
|
||||
test = [
|
||||
{ name = "agentspeak" },
|
||||
{ name = "deepface" },
|
||||
{ name = "fastapi" },
|
||||
{ name = "httpx" },
|
||||
{ name = "mlx-whisper", marker = "sys_platform == 'darwin'" },
|
||||
@@ -1554,6 +1555,7 @@ test = [
|
||||
{ name = "pyyaml" },
|
||||
{ name = "pyzmq" },
|
||||
{ name = "soundfile" },
|
||||
{ name = "tf-keras" },
|
||||
]
|
||||
|
||||
[package.metadata]
|
||||
@@ -1593,6 +1595,7 @@ dev = [
|
||||
]
|
||||
test = [
|
||||
{ name = "agentspeak", specifier = ">=0.2.2" },
|
||||
{ name = "deepface", specifier = ">=0.0.97" },
|
||||
{ name = "fastapi", specifier = ">=0.115.6" },
|
||||
{ name = "httpx", specifier = ">=0.28.1" },
|
||||
{ name = "mlx-whisper", marker = "sys_platform == 'darwin'", specifier = ">=0.4.3" },
|
||||
@@ -1607,6 +1610,7 @@ test = [
|
||||
{ name = "pyyaml", specifier = ">=6.0.3" },
|
||||
{ name = "pyzmq", specifier = ">=27.1.0" },
|
||||
{ name = "soundfile", specifier = ">=0.13.1" },
|
||||
{ name = "tf-keras", specifier = ">=2.20.1" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
|
||||
Reference in New Issue
Block a user