Compare commits

..

31 Commits

Author SHA1 Message Date
Storm
ce99dc5ec3 Merge branch 'main' into feat/face-recognition 2026-01-30 17:23:01 +01:00
JobvAlewijk
12b905ff22 Merge branch 'main' of https://git.science.uu.nl/ics/sp/2025/n25b/pepperplus-cb into feat/face-recognition 2026-01-30 16:26:30 +01:00
JobvAlewijk
11d7c1409e chore: remove pipeline stuff 2026-01-30 16:02:40 +01:00
JobvAlewijk
f89fb2266a feat: added face recognition and tests
ref: N25B-397
2026-01-30 15:59:27 +01:00
Twirre Meulenbelt
0f964795f3 feat: subscribe instead of req/res for face detection
ref: N25B-395
2026-01-29 17:16:38 +01:00
JobvAlewijk
00a13426a0 Merge branch 'main' of https://git.science.uu.nl/ics/sp/2025/n25b/pepperplus-cb into feat/face-recognition 2026-01-29 16:21:55 +01:00
JobvAlewijk
f6477e5325 chore: blabla 2026-01-29 16:20:51 +01:00
JobvAlewijk
09d8cca309 Merge branch 'feat/visual-emotion-recognition' of https://git.science.uu.nl/ics/sp/2025/n25b/pepperplus-cb into feat/face-recognition 2026-01-21 17:57:23 +01:00
Storm
0b1c2ce20a feat: implemented pausing, implemented graceful stopping, removed old RI pausing code
ref: N25B-393
2026-01-20 18:53:24 +01:00
Storm
f9b807fc97 chore: quick push before demo; fixed image receiving from RI 2026-01-20 12:46:30 +01:00
Storm
424294b0a3 Merged feat/longer-pauses-possible into feat/visual-emotion-recognition 2026-01-19 18:35:07 +01:00
Pim Hutting
bc0947fac1 chore: added a dot 2026-01-19 18:26:15 +01:00
Storm
cd80cdf93b Merge branch 'feat/longer-pauses-possible' into feat/visual-emotion-recognition 2026-01-19 18:24:31 +01:00
Storm
985327de70 docs: updated docstrings and fixed styling
ref: N25B-393
2026-01-19 12:52:00 +01:00
Storm
302c50934e feat: implemented emotion recognition functionality in AgentSpeak
ref: N25B-393
2026-01-19 12:10:58 +01:00
Storm
f9c69cafb3 Merge branch 'feat/reset-experiment-and-phase' into feat/visual-emotion-recognition 2026-01-19 11:45:31 +01:00
JobvAlewijk
37da9992ba feat: added face detection and communication with
RI
ref: N25B-397
2026-01-17 14:02:34 +01:00
JobvAlewijk
f41201dd8e chore: revert 2026-01-16 16:44:49 +01:00
JobvAlewijk
2033e02116 Merge branch 'dev' of https://git.science.uu.nl/ics/sp/2025/n25b/pepperplus-cb into feat/face-recognition 2026-01-16 16:38:59 +01:00
Storm
1b0b72d63a chore: fixed broken uv.lock file 2026-01-16 15:10:55 +01:00
Storm
0941b26703 refactor: updated how changes are passed to bdi_core_agent after merge
ref: N25B-393
2026-01-16 15:05:13 +01:00
Storm
48ae0c7a12 Merge remote-tracking branch 'origin/feat/reset-experiment-and-phase' into feat/visual-emotion-recognition 2026-01-16 14:45:16 +01:00
Storm
a09d8b3d9a chore: small changes 2026-01-16 14:40:59 +01:00
Storm
ac20048f02 Merge branch 'dev' into feat/visual-emotion-recognition 2026-01-16 14:16:28 +01:00
Storm
05804c158d feat: fully implemented visual emotion recognition agent in pipeline
ref: N25B-393
2026-01-16 13:26:53 +01:00
Storm
0771b0d607 feat: implemented visual emotion recogntion agent
ref: N25B-393
2026-01-16 09:50:59 +01:00
Storm
1c88ae6078 feat: visual emotion recognition agent
ref: N25B-393
2026-01-13 12:41:18 +01:00
JobvAlewijk
6b790de53a Merge branch 'dev' of https://git.science.uu.nl/ics/sp/2025/n25b/pepperplus-cb into feat/face-recognition 2026-01-12 14:23:44 +01:00
JobvAlewijk
1932ac959b feat: connected with RI properly
ref: N25B-397
2026-01-12 14:23:00 +01:00
JobvAlewijk
bb0c1bd383 feat: cb can communicate face with ri
ref: N25B-397
2026-01-08 13:02:32 +01:00
JobvAlewijk
03954bef54 feat: face recognition agent
ref: N25B-397
2026-01-04 19:47:18 +01:00
17 changed files with 435 additions and 552 deletions

View File

@@ -24,7 +24,6 @@ dependencies = [
"sphinx-rtd-theme>=3.0.2",
"tf-keras>=2.20.1",
"torch>=2.8.0",
"tornado ; sys_platform == 'win32'",
"uvicorn>=0.37.0",
]
@@ -41,7 +40,6 @@ dev = [
]
test = [
"agentspeak>=0.2.2",
"deepface>=0.0.97",
"fastapi>=0.115.6",
"httpx>=0.28.1",
"mlx-whisper>=0.4.3 ; sys_platform == 'darwin'",
@@ -56,7 +54,6 @@ test = [
"pyyaml>=6.0.3",
"pyzmq>=27.1.0",
"soundfile>=0.13.1",
"tf-keras>=2.20.1",
]
[tool.pytest.ini_options]

View File

@@ -4,7 +4,6 @@ University within the Software Project course.
© Copyright Utrecht University (Department of Information and Computing Sciences)
"""
import logging
from functools import singledispatchmethod
from slugify import slugify
@@ -31,6 +30,7 @@ from control_backend.schemas.program import (
BasicNorm,
ConditionalNorm,
EmotionBelief,
FaceBelief,
GestureAction,
Goal,
InferredBelief,
@@ -67,7 +67,6 @@ class AgentSpeakGenerator:
"""
_asp: AstProgram
logger = logging.getLogger(__name__)
def generate(self, program: Program) -> str:
"""
@@ -107,7 +106,7 @@ class AgentSpeakGenerator:
check if a keyword is a substring of the user's message.
The generated rule has the form:
keyword_said(Keyword) :- user_said(Message) & .substring_case_insensitive(Keyword, Message, Pos) & Pos >= 0
keyword_said(Keyword) :- user_said(Message) & .substring(Keyword, Message, Pos) & Pos >= 0
This enables the system to trigger behaviors based on keyword detection.
"""
@@ -119,7 +118,7 @@ class AgentSpeakGenerator:
AstRule(
AstLiteral("keyword_said", [keyword]),
AstLiteral("user_said", [message])
& AstLiteral(".substring_case_insensitive", [keyword, message, position])
& AstLiteral(".substring", [keyword, message, position])
& (position >= 0),
)
)
@@ -135,6 +134,7 @@ class AgentSpeakGenerator:
"""
self._add_reply_with_goal_plan()
self._add_say_plan()
self._add_reply_plan()
self._add_notify_cycle_plan()
def _add_reply_with_goal_plan(self):
@@ -198,6 +198,40 @@ class AgentSpeakGenerator:
)
)
def _add_reply_plan(self):
"""
Adds a plan for general reply actions.
This plan handles general reply actions where the agent needs to respond
to user input without a specific conversational goal. It:
1. Marks that the agent has responded this turn
2. Gathers all active norms
3. Generates a reply based on the user message and norms
Trigger: +!reply
Context: user_said(Message)
"""
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("reply"),
[AstLiteral("user_said", [AstVar("Message")])],
[
AstStatement(StatementType.ADD_BELIEF, AstLiteral("responded_this_turn")),
AstStatement(
StatementType.DO_ACTION,
AstLiteral(
"findall",
[AstVar("Norm"), AstLiteral("norm", [AstVar("Norm")]), AstVar("Norms")],
),
),
AstStatement(
StatementType.DO_ACTION,
AstLiteral("reply", [AstVar("Message"), AstVar("Norms")]),
),
],
)
)
def _add_notify_cycle_plan(self):
"""
@@ -235,39 +269,6 @@ class AgentSpeakGenerator:
)
)
def _add_stop_plan(self, phase: Phase):
"""
Adds a plan to stop the program. This just skips to the end phase,
where there is no behavior defined.
"""
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("stop"),
[AstLiteral("phase", [AstString(phase.id)])],
[
AstStatement(
StatementType.DO_ACTION,
AstLiteral(
"notify_transition_phase",
[
AstString(phase.id),
AstString("end")
]
)
),
AstStatement(
StatementType.REMOVE_BELIEF,
AstLiteral("phase", [AstVar("Phase")]),
),
AstStatement(
StatementType.ADD_BELIEF,
AstLiteral("phase", [AstString("end")])
)
]
)
)
def _process_phases(self, phases: list[Phase]) -> None:
"""
Processes all phases in the program and their transitions.
@@ -284,6 +285,21 @@ class AgentSpeakGenerator:
self._process_phase(curr_phase)
self._add_phase_transition(curr_phase, next_phase)
# End phase behavior
# When deleting this, the entire `reply` plan and action can be deleted
self._asp.plans.append(
AstPlan(
type=TriggerType.ADDED_BELIEF,
trigger_literal=AstLiteral("user_said", [AstVar("Message")]),
context=[AstLiteral("phase", [AstString("end")])],
body=[
AstStatement(
StatementType.DO_ACTION, AstLiteral("notify_user_said", [AstVar("Message")])
),
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("reply")),
],
)
)
def _process_phase(self, phase: Phase) -> None:
"""
@@ -310,9 +326,6 @@ class AgentSpeakGenerator:
for trigger in phase.triggers:
self._process_trigger(trigger, phase)
# Add force transition to end phase
self._add_stop_plan(phase)
def _add_phase_transition(self, from_phase: Phase | None, to_phase: Phase | None) -> None:
"""
Adds plans for transitioning between phases.
@@ -488,13 +501,9 @@ class AgentSpeakGenerator:
if isinstance(step, Goal):
subgoals.append(step)
if not goal.can_fail:
if not goal.can_fail and not continues_response:
body.append(AstStatement(StatementType.ADD_BELIEF, self._astify(goal, achieved=True)))
if len(body) == 0:
self.logger.warning("Goal with no plan detected: %s", goal.name)
body.append(AstStatement(StatementType.EMPTY, AstLiteral("true")))
self._asp.plans.append(AstPlan(TriggerType.ADDED_GOAL, self._astify(goal), context, body))
self._asp.plans.append(
@@ -555,10 +564,10 @@ class AgentSpeakGenerator:
)
)
for step in trigger.plan.steps:
if isinstance(step, Goal):
new_step = step.model_copy(update={"can_fail": False}) # triggers are sequence
subgoals.append(new_step)
body.append(self._step_to_statement(step))
if isinstance(step, Goal):
step.can_fail = False # triggers are continuous sequence
subgoals.append(step)
# Arbitrary wait for UI to display nicely
body.append(
@@ -602,7 +611,6 @@ class AgentSpeakGenerator:
- check_triggers: When no triggers are applicable
- transition_phase: When phase transition conditions aren't met
- force_transition_phase: When forced transitions aren't possible
- stop: When we are already in the end phase
"""
# Trigger fallback
self._asp.plans.append(
@@ -634,16 +642,6 @@ class AgentSpeakGenerator:
)
)
# Stop fallback
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("stop"),
[],
[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
)
)
@singledispatchmethod
def _astify(self, element: ProgramElement) -> AstExpression:
"""
@@ -690,6 +688,10 @@ class AgentSpeakGenerator:
def _(self, eb: EmotionBelief) -> AstExpression:
return AstLiteral("emotion_detected", [AstAtom(eb.emotion)])
@_astify.register
def _(self, eb: FaceBelief) -> AstExpression:
return AstLiteral("face_present")
@_astify.register
def _(self, ib: InferredBelief) -> AstExpression:
"""

View File

@@ -176,8 +176,6 @@ class BDICoreAgent(BaseAgent):
self._force_norm(msg.body)
case "force_next_phase":
self._force_next_phase()
case "stop":
self._stop()
case _:
self.logger.warning("Received unknown user interruption: %s", msg)
@@ -337,11 +335,6 @@ class BDICoreAgent(BaseAgent):
self.logger.info("Manually forced phase transition.")
def _stop(self):
self._set_goal("stop")
self.logger.info("Stopped the program (skipped to end phase).")
def _add_custom_actions(self) -> None:
"""
Add any custom actions here. Inside `@self.actions.add()`, the first argument is
@@ -349,28 +342,6 @@ class BDICoreAgent(BaseAgent):
the function expects (which will be located in `term.args`).
"""
@self.actions.add(".substring_case_insensitive", 3)
@agentspeak.optimizer.function_like
def _substring(agent, term, intention):
"""
Find out if a string is a substring of another (case insensitive). Copied mostly from
the agentspeak library method .substring.
"""
needle = agentspeak.asl_str(agentspeak.grounded(term.args[0], intention.scope)).lower()
haystack = agentspeak.asl_str(agentspeak.grounded(term.args[1], intention.scope)).lower()
choicepoint = object()
pos = haystack.find(needle)
while pos != -1:
intention.stack.append(choicepoint)
if agentspeak.unify(term.args[2], pos, intention.scope, intention.stack):
yield
agentspeak.reroll(intention.scope, intention.stack, choicepoint)
pos = haystack.find(needle, pos + 1)
@self.actions.add(".reply", 2)
def _reply(agent, term, intention):
"""
@@ -496,6 +467,7 @@ class BDICoreAgent(BaseAgent):
body=str(trigger_name),
)
# TODO: check with Pim
self.add_behavior(self.send(msg))
yield

View File

@@ -19,7 +19,7 @@ from control_backend.agents.perception.visual_emotion_recognition_agent.visual_e
from control_backend.core.config import settings
from ..actuation.robot_speech_agent import RobotSpeechAgent
from ..perception import VADAgent
from ..perception import FacePerceptionAgent, VADAgent
class RICommunicationAgent(BaseAgent):
@@ -181,7 +181,7 @@ class RICommunicationAgent(BaseAgent):
bind = port_data["bind"]
if not bind:
addr = f"tcp://{settings.ri_host}:{port}"
addr = f"tcp://localhost:{port}"
else:
addr = f"tcp://*:{port}"
@@ -224,6 +224,13 @@ class RICommunicationAgent(BaseAgent):
)
self.visual_emotion_recognition_agent = visual_emotion_agent
await visual_emotion_agent.start()
case "face":
face_agent = FacePerceptionAgent(
settings.agent_settings.face_agent_name,
zmq_address=addr,
zmq_bind=bind,
)
await face_agent.start()
case _:
self.logger.warning("Unhandled negotiation id: %s", id)
@@ -328,7 +335,7 @@ class RICommunicationAgent(BaseAgent):
if self.speech_agent is not None:
await self.speech_agent.stop()
if self.visual_emotion_recognition_agent is not None:
await self.visual_emotion_recognition_agent.stop()
@@ -338,4 +345,3 @@ class RICommunicationAgent(BaseAgent):
self.logger.debug("Restarting communication negotiation.")
if await self._negotiate_connection(max_retries=2):
self.connected = True

View File

@@ -185,9 +185,6 @@ class LLMAgent(BaseAgent):
full_message = ""
current_chunk = ""
async for token in self._stream_query_llm(messages):
if self._interrupted:
return
full_message += token
current_chunk += token

View File

@@ -7,6 +7,7 @@ Agents responsible for processing sensory input, such as audio transcription and
detection.
"""
from .face_rec_agent import FacePerceptionAgent as FacePerceptionAgent
from .transcription_agent.transcription_agent import (
TranscriptionAgent as TranscriptionAgent,
)

View File

@@ -0,0 +1,144 @@
"""
This program has been developed by students from the bachelor Computer Science at Utrecht
University within the Software Project course.
© Copyright Utrecht University (Department of Information and Computing Sciences)
"""
import asyncio
import zmq
import zmq.asyncio as azmq
from control_backend.agents import BaseAgent
from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.belief_message import Belief, BeliefMessage
class FacePerceptionAgent(BaseAgent):
"""
Receives face presence updates from the RICommunicationAgent
via the internal PUB/SUB bus.
"""
def __init__(self, name: str, zmq_address: str, zmq_bind: bool):
"""
:param name: The name of the agent.
:param zmq_address: The ZMQ address to subscribe to, an endpoint which sends face presence
updates.
:param zmq_bind: Whether to connect to the ZMQ endpoint, or to bind.
"""
super().__init__(name)
self._zmq_address = zmq_address
self._zmq_bind = zmq_bind
self._socket: azmq.Socket | None = None
self._last_face_state: bool | None = None
# Pause functionality
# NOTE: flag is set when running, cleared when paused
self._paused = asyncio.Event()
self._paused.set()
async def setup(self):
self.logger.info("Starting FacePerceptionAgent")
if self._socket is None:
self._connect_socket()
self.add_behavior(self._poll_loop())
self.logger.info("Finished setting up %s", self.name)
def _connect_socket(self):
if self._socket is not None:
self.logger.warning("ZMQ socket already initialized. Did you call setup() twice?")
return
self._socket = azmq.Context.instance().socket(zmq.SUB)
self._socket.setsockopt_string(zmq.SUBSCRIBE, "")
if self._zmq_bind:
self._socket.bind(self._zmq_address)
else:
self._socket.connect(self._zmq_address)
async def _poll_loop(self):
if self._socket is None:
self.logger.warning("Connection not initialized before poll loop. Call setup() first.")
return
while self._running:
try:
await self._paused.wait()
response = await asyncio.wait_for(
self._socket.recv_json(), timeout=settings.behaviour_settings.sleep_s
)
face_present = response.get("face_detected", False)
if self._last_face_state is None:
self._last_face_state = face_present
continue
if face_present != self._last_face_state:
self._last_face_state = face_present
self.logger.debug("Face detected" if face_present else "Face lost")
await self._update_face_belief(face_present)
except TimeoutError:
pass
except Exception as e:
self.logger.error("Face polling failed", exc_info=e)
async def _post_face_belief(self, present: bool):
"""
Send a face_present belief update to the BDI Core Agent.
"""
if present:
belief_msg = BeliefMessage(create=[{"name": "face_present", "arguments": []}])
else:
belief_msg = BeliefMessage(delete=[{"name": "face_present", "arguments": []}])
msg = InternalMessage(
to=settings.agent_settings.bdi_core_name,
sender=self.name,
thread="beliefs",
body=belief_msg.model_dump_json(),
)
await self.send(msg)
async def _update_face_belief(self, present: bool):
"""
Add or remove the `face_present` belief in the BDI Core Agent.
"""
if present:
payload = BeliefMessage(create=[Belief(name="face_present").model_dump()])
else:
payload = BeliefMessage(delete=[Belief(name="face_present").model_dump()])
message = InternalMessage(
to=settings.agent_settings.bdi_core_name,
sender=self.name,
thread="beliefs",
body=payload.model_dump_json(),
)
await self.send(message)
async def handle_message(self, msg: InternalMessage):
"""
Handle incoming pause/resume commands from User Interrupt Agent.
"""
sender = msg.sender
if sender == settings.agent_settings.user_interrupt_name:
if msg.body == "PAUSE":
self.logger.info("Pausing Face Perception processing.")
self._paused.clear()
self._last_face_state = None
elif msg.body == "RESUME":
self.logger.info("Resuming Face Perception processing.")
self._paused.set()
else:
self.logger.warning("Unknown command from User Interrupt Agent: %s", msg.body)
else:
self.logger.debug("Ignoring message from unknown sender: %s", sender)

View File

@@ -3,6 +3,7 @@ import json
import time
from collections import Counter, defaultdict
import cv2
import numpy as np
import zmq
import zmq.asyncio as azmq
@@ -63,8 +64,6 @@ class VisualEmotionRecognitionAgent(BaseAgent):
self.video_in_socket = azmq.Context.instance().socket(zmq.SUB)
self.video_in_socket.setsockopt(zmq.RCVHWM, 3)
if self.socket_bind:
self.video_in_socket.bind(self.socket_address)
else:
@@ -72,9 +71,12 @@ class VisualEmotionRecognitionAgent(BaseAgent):
self.video_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
self.video_in_socket.setsockopt(zmq.RCVTIMEO, self.timeout_ms)
self.video_in_socket.setsockopt(zmq.CONFLATE, 1)
self.add_behavior(self.emotion_update_loop())
self.logger.info("Finished setting up %s", self.name)
async def emotion_update_loop(self):
"""
Background loop to receive video frames, recognize emotions, and update beliefs.
@@ -95,18 +97,21 @@ class VisualEmotionRecognitionAgent(BaseAgent):
try:
await self._paused.wait()
width, height, image_bytes = await self.video_in_socket.recv_multipart()
width = int.from_bytes(width, 'little')
height = int.from_bytes(height, 'little')
frame_bytes = await self.video_in_socket.recv()
# Convert bytes to a numpy buffer
image_array = np.frombuffer(image_bytes, np.uint8)
nparr = np.frombuffer(frame_bytes, np.uint8)
frame = image_array.reshape((height, width, 3))
# Decode image into the generic Numpy Array DeepFace expects
frame_image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
if frame_image is None:
# Could not decode image, skip this frame
self.logger.warning("Received invalid video frame, skipping.")
continue
# Get the dominant emotion from each face
current_emotions = self.emotion_recognizer.sorted_dominant_emotions(frame)
current_emotions = self.emotion_recognizer.sorted_dominant_emotions(frame_image)
# Update emotion counts for each detected face
for i, emotion in enumerate(current_emotions):
face_stats[i][emotion] += 1
@@ -128,12 +133,8 @@ class VisualEmotionRecognitionAgent(BaseAgent):
next_window_time = time.time() + self.window_duration
except zmq.Again:
pass
self.logger.warning("No video frame received within timeout.")
except Exception as e:
self.logger.error(f"Error in emotion recognition loop: {e}")
async def update_emotions(self, prev_emotions: set[str], emotions: set[str]):
"""
Compare emotions from previous window and current emotions,
@@ -179,7 +180,7 @@ class VisualEmotionRecognitionAgent(BaseAgent):
"""
Handle incoming messages.
Expects messages to pause or resume the Visual Emotion Recognition
Expects messages to pause or resume the Visual Emotion Recognition
processing from User Interrupt Agent.
:param msg: The received internal message.
@@ -204,4 +205,3 @@ class VisualEmotionRecognitionAgent(BaseAgent):
"""
self.video_in_socket.close()
await super().stop()

View File

@@ -18,36 +18,37 @@ class VisualEmotionRecognizer(abc.ABC):
To minimize false positives, consider filtering faces with low confidence.
:param image: The input image for emotion recognition.
:return: List of dominant emotion detected for each face in the image,
:return: List of dominant emotion detected for each face in the image,
sorted per face.
"""
pass
class DeepFaceEmotionRecognizer(VisualEmotionRecognizer):
"""
DeepFace-based implementation of VisualEmotionRecognizer.
DeepFape has proven to be quite a pessimistic model, so expect sad, fear and neutral
DeepFape has proven to be quite a pessimistic model, so expect sad, fear and neutral
emotions to be over-represented.
"""
def __init__(self):
self.load_model()
def load_model(self):
print("Loading Deepface Emotion Model...")
dummy_img = np.zeros((224, 224, 3), dtype=np.uint8)
# analyze does not take a model as an argument, calling it once on a dummy image to load
# analyze does not take a model as an argument, calling it once on a dummy image to load
# the model
DeepFace.analyze(dummy_img, actions=['emotion'], enforce_detection=False)
DeepFace.analyze(dummy_img, actions=["emotion"], enforce_detection=False)
print("Deepface Emotion Model loaded.")
def sorted_dominant_emotions(self, image) -> list[str]:
analysis = DeepFace.analyze(image,
actions=['emotion'],
enforce_detection=False
)
# Sort faces by x coordinate to maintain left-to-right order
analysis.sort(key=lambda face: face['region']['x'])
analysis = DeepFace.analyze(image, actions=["emotion"], enforce_detection=False)
analysis = [face for face in analysis if face['face_confidence'] >= 0.90]
dominant_emotions = [face['dominant_emotion'] for face in analysis]
# Sort faces by x coordinate to maintain left-to-right order
analysis.sort(key=lambda face: face["region"]["x"])
analysis = [face for face in analysis if face["face_confidence"] >= 0.90]
dominant_emotions = [face["dominant_emotion"] for face in analysis]
return dominant_emotions

View File

@@ -164,12 +164,6 @@ class UserInterruptAgent(BaseAgent):
else:
self.logger.info("Sent resume command.")
case "stop":
self.logger.debug(
"Received stop command."
)
await self._send_stop_command()
case "next_phase" | "reset_phase":
await self._send_experiment_control_to_bdi_core(event_type)
case _:
@@ -410,34 +404,28 @@ class UserInterruptAgent(BaseAgent):
if pause == "true":
# Send pause to VAD and VED agent
vad_message = InternalMessage(
to=[settings.agent_settings.vad_name,
settings.agent_settings.visual_emotion_recognition_name],
to=[
settings.agent_settings.vad_name,
settings.agent_settings.visual_emotion_recognition_name,
settings.agent_settings.face_agent_name,
],
sender=self.name,
body="PAUSE",
)
await self.send(vad_message)
# Voice Activity Detection and Visual Emotion Recognition agents
self.logger.info("Sent pause command to VAD and VED agents.")
self.logger.info("Sent pause command to perception agents.")
else:
# Send resume to VAD and VED agents
vad_message = InternalMessage(
to=[settings.agent_settings.vad_name,
settings.agent_settings.visual_emotion_recognition_name],
to=[
settings.agent_settings.vad_name,
settings.agent_settings.visual_emotion_recognition_name,
settings.agent_settings.face_agent_name,
],
sender=self.name,
body="RESUME",
)
await self.send(vad_message)
# Voice Activity Detection and Visual Emotion Recognition agents
self.logger.info("Sent resume command to VAD and VED agents.")
async def _send_stop_command(self):
"""
Send a command to the BDI to stop the program (i.e., skip to end phase).
"""
msg = InternalMessage(
to=settings.agent_settings.bdi_core_name,
body="",
thread="stop"
)
await self.send(msg)
self.logger.info("Sent resume command to perception agents.")

View File

@@ -12,7 +12,7 @@ api_router = APIRouter()
api_router.include_router(message.router, tags=["Messages"])
api_router.include_router(robot.router, prefix="/robot", tags=["Pings", "Commands"])
api_router.include_router(robot.router, prefix="/robot", tags=["Pings", "Commands", "Face"])
api_router.include_router(logs.router, tags=["Logs"])

View File

@@ -64,6 +64,7 @@ class AgentSettings(BaseModel):
robot_speech_name: str = "robot_speech_agent"
robot_gesture_name: str = "robot_gesture_agent"
user_interrupt_name: str = "user_interrupt_agent"
face_agent_name: str = "face_detection_agent"
class BehaviourSettings(BaseModel):
@@ -82,12 +83,12 @@ class BehaviourSettings(BaseModel):
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
:ivar transcription_token_buffer: Buffer for transcription tokens.
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
:ivar visual_emotion_recognition_window_duration_s: Duration in seconds over which to aggregate
:ivar trigger_time_to_wait: Amount of milliseconds to wait before informing the UI about trigger
completion.
:ivar visual_emotion_recognition_window_duration_s: Duration in seconds over which to aggregate
emotions and update emotion beliefs.
:ivar visual_emotion_recognition_min_frames_per_face: Minimum number of frames per face required
to consider a face valid.
:ivar trigger_time_to_wait: Amount of milliseconds to wait before informing the UI about trigger
completion.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
@@ -111,13 +112,14 @@ class BehaviourSettings(BaseModel):
# Text belief extractor settings
conversation_history_length_limit: int = 10
# Visual Emotion Recognition settings
visual_emotion_recognition_window_duration_s: int = 5
visual_emotion_recognition_min_frames_per_face: int = 3
# AgentSpeak related settings
trigger_time_to_wait: int = 2000
agentspeak_file: str = "src/control_backend/agents/bdi/agentspeak.asl"
# Visual Emotion Recognition settings
visual_emotion_recognition_window_duration_s: int = 5
visual_emotion_recognition_min_frames_per_face: int = 3
class LLMSettings(BaseModel):
"""

View File

@@ -7,7 +7,7 @@ University within the Software Project course.
from enum import Enum
from typing import Literal
from pydantic import UUID4, BaseModel, field_validator
from pydantic import UUID4, BaseModel
class ProgramElement(BaseModel):
@@ -24,13 +24,6 @@ class ProgramElement(BaseModel):
# To make program elements hashable
model_config = {"frozen": True}
@field_validator("name")
@classmethod
def name_must_not_start_with_number(cls, v: str) -> str:
if v and v[0].isdigit():
raise ValueError('Field "name" must not start with a number.')
return v
class LogicalOperator(Enum):
"""
@@ -48,8 +41,8 @@ class LogicalOperator(Enum):
OR = "OR"
type Belief = KeywordBelief | SemanticBelief | InferredBelief | EmotionBelief
type BasicBelief = KeywordBelief | SemanticBelief | EmotionBelief
type Belief = KeywordBelief | SemanticBelief | InferredBelief | EmotionBelief | FaceBelief
type BasicBelief = KeywordBelief | SemanticBelief | EmotionBelief | FaceBelief
class KeywordBelief(ProgramElement):
@@ -124,6 +117,16 @@ class EmotionBelief(ProgramElement):
emotion: str
class FaceBelief(ProgramElement):
"""
Represents the belief that at least one face is currently detected.
This belief is maintained by a perception agent (not inferred).
"""
face_present: bool
name: str = ""
class Norm(ProgramElement):
"""
Base class for behavioral norms that guide the robot's interactions.

View File

@@ -0,0 +1,152 @@
from unittest.mock import AsyncMock, MagicMock
import pytest
import zmq
import control_backend.agents.perception.face_rec_agent as face_module
from control_backend.agents.perception.face_rec_agent import FacePerceptionAgent
from control_backend.core.agent_system import InternalMessage
from control_backend.schemas.belief_message import BeliefMessage
@pytest.fixture
def agent():
"""Return a FacePerceptionAgent instance for testing."""
return FacePerceptionAgent(
name="face_agent",
zmq_address="inproc://test",
zmq_bind=False,
)
@pytest.fixture
def socket():
"""Return a mocked ZMQ socket."""
sock = AsyncMock()
sock.setsockopt_string = MagicMock()
sock.connect = MagicMock()
sock.bind = MagicMock()
return sock
def test_connect_socket_connect(agent, socket, monkeypatch):
"""Test that _connect_socket properly connects when zmq_bind=False."""
ctx = MagicMock()
ctx.socket.return_value = socket
monkeypatch.setattr(face_module.azmq, "Context", MagicMock(instance=lambda: ctx))
agent._connect_socket()
socket.setsockopt_string.assert_called_once_with(zmq.SUBSCRIBE, "")
socket.connect.assert_called_once_with(agent._zmq_address)
socket.bind.assert_not_called()
def test_connect_socket_bind(agent, socket, monkeypatch):
"""Test that _connect_socket properly binds when zmq_bind=True."""
agent._zmq_bind = True
ctx = MagicMock()
ctx.socket.return_value = socket
monkeypatch.setattr(face_module.azmq, "Context", MagicMock(instance=lambda: ctx))
agent._connect_socket()
socket.bind.assert_called_once_with(agent._zmq_address)
socket.connect.assert_not_called()
def test_connect_socket_twice_is_noop(agent, socket):
"""Test that calling _connect_socket twice does not overwrite an existing socket."""
agent._socket = socket
agent._connect_socket()
assert agent._socket is socket
@pytest.mark.asyncio
async def test_update_face_belief_present(agent):
"""Test that _update_face_belief(True) creates the 'face_present' belief."""
agent.send = AsyncMock()
await agent._update_face_belief(True)
msg = agent.send.await_args.args[0]
payload = BeliefMessage.model_validate_json(msg.body)
assert payload.create[0].name == "face_present"
@pytest.mark.asyncio
async def test_update_face_belief_absent(agent):
"""Test that _update_face_belief(False) deletes the 'face_present' belief."""
agent.send = AsyncMock()
await agent._update_face_belief(False)
msg = agent.send.await_args.args[0]
payload = BeliefMessage.model_validate_json(msg.body)
assert payload.delete[0].name == "face_present"
@pytest.mark.asyncio
async def test_post_face_belief_present(agent):
"""Test that _post_face_belief(True) sends a belief creation message."""
agent.send = AsyncMock()
await agent._post_face_belief(True)
msg = agent.send.await_args.args[0]
assert '"create"' in msg.body and '"face_present"' in msg.body
@pytest.mark.asyncio
async def test_post_face_belief_absent(agent):
"""Test that _post_face_belief(False) sends a belief deletion message."""
agent.send = AsyncMock()
await agent._post_face_belief(False)
msg = agent.send.await_args.args[0]
assert '"delete"' in msg.body and '"face_present"' in msg.body
@pytest.mark.asyncio
async def test_handle_pause(agent):
"""Test that a 'PAUSE' message clears _paused and resets _last_face_state."""
agent._paused.set()
agent._last_face_state = True
msg = InternalMessage(
to=agent.name,
sender=face_module.settings.agent_settings.user_interrupt_name,
thread="cmd",
body="PAUSE",
)
await agent.handle_message(msg)
assert not agent._paused.is_set()
assert agent._last_face_state is None
@pytest.mark.asyncio
async def test_handle_resume(agent):
"""Test that a 'RESUME' message sets _paused."""
agent._paused.clear()
msg = InternalMessage(
to=agent.name,
sender=face_module.settings.agent_settings.user_interrupt_name,
thread="cmd",
body="RESUME",
)
await agent.handle_message(msg)
assert agent._paused.is_set()
@pytest.mark.asyncio
async def test_handle_unknown_command(agent):
"""Test that an unknown command from UserInterruptAgent is ignored (logs a warning)."""
msg = InternalMessage(
to=agent.name,
sender=face_module.settings.agent_settings.user_interrupt_name,
thread="cmd",
body="???",
)
await agent.handle_message(msg)
@pytest.mark.asyncio
async def test_handle_unknown_sender(agent):
"""Test that messages from unknown senders are ignored."""
msg = InternalMessage(
to=agent.name,
sender="someone_else",
thread="cmd",
body="PAUSE",
)
await agent.handle_message(msg)

View File

@@ -1,338 +0,0 @@
import asyncio
import json
import time
from unittest.mock import AsyncMock, MagicMock, patch
import numpy as np
import pytest
import zmq
from pydantic_core import ValidationError
# Adjust the import path to match your project structure
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent import ( # noqa
VisualEmotionRecognitionAgent,
)
from control_backend.core.agent_system import InternalMessage
# -----------------------------------------------------------------------------
# Fixtures
# -----------------------------------------------------------------------------
@pytest.fixture
def mock_settings():
with patch("control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent.settings") as mock: # noqa
# Set default values required by the agent
mock.behaviour_settings.visual_emotion_recognition_window_duration_s = 5
mock.behaviour_settings.visual_emotion_recognition_min_frames_per_face = 3
mock.agent_settings.bdi_core_name = "bdi_core_agent"
mock.agent_settings.user_interrupt_name = "user_interrupt_agent"
yield mock
@pytest.fixture
def mock_deepface():
with patch("control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent.DeepFaceEmotionRecognizer") as mock: # noqa
instance = mock.return_value
instance.sorted_dominant_emotions.return_value = []
yield instance
@pytest.fixture
def mock_zmq_context():
with patch("zmq.asyncio.Context.instance") as mock_ctx:
mock_socket = MagicMock()
# Mock socket methods to return None or AsyncMock for async methods
mock_socket.bind = MagicMock()
mock_socket.connect = MagicMock()
mock_socket.setsockopt = MagicMock()
mock_socket.setsockopt_string = MagicMock()
mock_socket.recv_multipart = AsyncMock()
mock_socket.close = MagicMock()
mock_ctx.return_value.socket.return_value = mock_socket
yield mock_ctx
@pytest.fixture
def agent(mock_settings, mock_deepface, mock_zmq_context):
# Initialize agent with specific params to control testing
agent = VisualEmotionRecognitionAgent(
name="test_agent",
socket_address="tcp://localhost:5555",
bind=False,
timeout_ms=100,
window_duration=2,
min_frames_required=2
)
# Mock the internal send method from BaseAgent
agent.send = AsyncMock()
# Mock the add_behavior method from BaseAgent
agent.add_behavior = MagicMock()
# Mock the logger
agent.logger = MagicMock()
return agent
# -----------------------------------------------------------------------------
# Tests
# -----------------------------------------------------------------------------
@pytest.mark.asyncio
async def test_initialization(agent):
"""Test that the agent initializes with correct attributes."""
assert agent.name == "test_agent"
assert agent.socket_address == "tcp://localhost:5555"
assert agent.socket_bind is False
assert agent.timeout_ms == 100
assert agent._paused.is_set()
@pytest.mark.asyncio
async def test_setup_connect(agent, mock_zmq_context, mock_deepface):
"""Test setup routine when binding is False (connect)."""
agent.socket_bind = False
await agent.setup()
socket = agent.video_in_socket
socket.connect.assert_called_with("tcp://localhost:5555")
socket.bind.assert_not_called()
socket.setsockopt.assert_any_call(zmq.RCVHWM, 3)
socket.setsockopt.assert_any_call(zmq.RCVTIMEO, 100)
agent.add_behavior.assert_called_once()
assert agent.emotion_recognizer == mock_deepface
@pytest.mark.asyncio
async def test_setup_bind(agent, mock_zmq_context):
"""Test setup routine when binding is True."""
agent.socket_bind = True
await agent.setup()
socket = agent.video_in_socket
socket.bind.assert_called_with("tcp://localhost:5555")
socket.connect.assert_not_called()
@pytest.mark.asyncio
async def test_emotion_update_loop_normal_flow(agent, mock_deepface):
"""
Test the main loop logic:
1. Receive frames
2. Aggregate stats
3. Trigger window update
4. Call update_emotions
"""
# Setup dependencies
await agent.setup()
agent._running = True
# Create fake image data (10x10 pixels)
width, height = 10, 10
image_bytes = np.zeros((10, 10, 3), dtype=np.uint8).tobytes()
w_bytes = width.to_bytes(4, 'little')
h_bytes = height.to_bytes(4, 'little')
# Mock ZMQ receive to return data 3 times, then stop the loop
# We use a side_effect on recv_multipart to simulate frames and then stop the loop
async def recv_side_effect():
if agent._running:
return w_bytes, h_bytes, image_bytes
raise asyncio.CancelledError()
agent.video_in_socket.recv_multipart.side_effect = recv_side_effect
# Mock DeepFace to return emotions
# Frame 1: Happy
# Frame 2: Happy
# Frame 3: Happy (Trigger window)
mock_deepface.sorted_dominant_emotions.side_effect = [
["happy"],
["happy"],
["happy"]
]
# Mock update_emotions to verify it's called
agent.update_emotions = AsyncMock()
# Mock time.time to simulate window passage
# We need time to advance significantly after the frames are collected
start_time = time.time()
with patch("time.time") as mock_time:
# Sequence of time calls:
# 1. Init next_window_time calculation
# 2. Loop 1 check
# 3. Loop 2 check
# 4. Loop 3 check (Make this one pass the window threshold)
mock_time.side_effect = [
start_time, # init
start_time + 0.1, # frame 1 check
start_time + 0.2, # frame 2 check
start_time + 10.0, # frame 3 check (triggers window reset)
start_time + 10.1, # next init
start_time + 10.2 # break loop
]
# We need to manually break the infinite loop after the update
# We can do this by wrapping update_emotions to set _running = False
async def stop_loop(*args, **kwargs):
agent._running = False
agent.update_emotions.side_effect = stop_loop
# Run the loop
await agent.emotion_update_loop()
# Verifications
assert agent.update_emotions.called
# Check that it detected 'happy' as dominant (2 required, 3 found)
call_args = agent.update_emotions.call_args
assert call_args is not None
# args: (prev_emotions, window_dominant_emotions)
assert call_args[0][1] == {"happy"}
@pytest.mark.asyncio
async def test_emotion_update_loop_insufficient_frames(agent, mock_deepface):
"""Test that emotions are NOT updated if min_frames_required is not met."""
await agent.setup()
agent._running = True
agent.min_frames_required = 5 # Set high requirement
width, height = 10, 10
image_bytes = np.zeros((10, 10, 3), dtype=np.uint8).tobytes()
w_bytes = width.to_bytes(4, 'little')
h_bytes = height.to_bytes(4, 'little')
agent.video_in_socket.recv_multipart.return_value = (w_bytes, h_bytes, image_bytes)
mock_deepface.sorted_dominant_emotions.return_value = ["sad"]
agent.update_emotions = AsyncMock()
with patch("time.time") as mock_time:
# Time setup to trigger window processing immediately
mock_time.side_effect = [0, 100, 101]
# Stop loop after first pass
async def stop_loop(*args, **kwargs):
agent._running = False
agent.update_emotions.side_effect = stop_loop
await agent.emotion_update_loop()
# It should call update_emotions with EMPTY set because min frames (5) > detected (1)
call_args = agent.update_emotions.call_args
assert call_args[0][1] == set()
@pytest.mark.asyncio
async def test_emotion_update_loop_zmq_again_and_exception(agent):
"""Test that the loop handles ZMQ timeouts (Again) and generic exceptions."""
await agent.setup()
agent._running = True
# Side effect:
# 1. Raise ZMQ Again (Timeout) -> should log warning
# 2. Raise Generic Exception -> should log error
# 3. Raise CancelledError -> stop loop (simulating stop)
agent.video_in_socket.recv_multipart.side_effect = [
zmq.Again(),
RuntimeError("Random Failure"),
asyncio.CancelledError() # To break loop cleanly
]
# We need to ensure the loop doesn't block on _paused
agent._paused.set()
# Run loop
try:
await agent.emotion_update_loop()
except asyncio.CancelledError:
pass
@pytest.mark.asyncio
async def test_update_emotions_logic(agent, mock_settings):
"""Test the logic for calculating diffs and sending messages."""
agent.name = "viz_agent"
# Case 1: No change
await agent.update_emotions({"happy"}, {"happy"})
agent.send.assert_not_called()
# Case 2: Remove 'happy', Add 'sad'
await agent.update_emotions({"happy"}, {"sad"})
assert agent.send.called
call_args = agent.send.call_args
msg = call_args[0][0] # InternalMessage object
assert msg.to == mock_settings.agent_settings.bdi_core_name
assert msg.sender == "viz_agent"
assert msg.thread == "beliefs"
payload = json.loads(msg.body)
# Check Created Beliefs
assert len(payload["create"]) == 1
assert payload["create"][0]["name"] == "emotion_detected"
assert payload["create"][0]["arguments"] == ["sad"]
# Check Deleted Beliefs
assert len(payload["delete"]) == 1
assert payload["delete"][0]["name"] == "emotion_detected"
assert payload["delete"][0]["arguments"] == ["happy"]
@pytest.mark.asyncio
async def test_update_emotions_validation_error(agent):
"""Test that ValidationErrors during Belief creation are caught."""
# We patch Belief to raise ValidationError
with patch("control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent.Belief") as MockBelief: # noqa
MockBelief.side_effect = ValidationError.from_exception_data("Simulated Error", [])
# Try to update emotions
await agent.update_emotions(prev_emotions={"happy"}, emotions={"sad"})
# Verify empty payload is sent (or payload with valid ones if mixed)
# In this case both failed, so payload lists should be empty
assert agent.send.called
msg = agent.send.call_args[0][0]
payload = json.loads(msg.body)
assert payload["create"] == []
assert payload["delete"] == []
@pytest.mark.asyncio
async def test_handle_message(agent, mock_settings):
"""Test message handling for Pause/Resume."""
# Setup
ui_name = mock_settings.agent_settings.user_interrupt_name
# 1. PAUSE message
msg_pause = InternalMessage(to="me", sender=ui_name, body="PAUSE")
await agent.handle_message(msg_pause)
assert not agent._paused.is_set() # Should be cleared (paused)
agent.logger.info.assert_called_with("Pausing Visual Emotion Recognition processing.")
# 2. RESUME message
msg_resume = InternalMessage(to="me", sender=ui_name, body="RESUME")
await agent.handle_message(msg_resume)
assert agent._paused.is_set() # Should be set (running)
# 3. Unknown command
msg_unknown = InternalMessage(to="me", sender=ui_name, body="DANCE")
await agent.handle_message(msg_unknown)
# 4. Unknown sender
msg_random = InternalMessage(to="me", sender="random_guy", body="PAUSE")
await agent.handle_message(msg_random)
@pytest.mark.asyncio
async def test_stop(agent, mock_zmq_context):
"""Test the stop method cleans up resources."""
# We need to mock super().stop(). Since we can't easily patch super(),
# and the provided BaseAgent code shows stop() just sets _running and cancels tasks,
# we can rely on the fact that VisualEmotionRecognitionAgent calls it.
# However, since we provided a 'agent' fixture that mocks things, we should verify specific cleanups. # noqa
await agent.setup()
with patch("control_backend.agents.BaseAgent.stop", new_callable=AsyncMock) as mock_super_stop:
await agent.stop()
# Verify socket closed
agent.video_in_socket.close.assert_called_once()
# Verify parent stop called
mock_super_stop.assert_called_once()

View File

@@ -303,33 +303,6 @@ async def test_send_experiment_control(agent):
assert msg.thread == "reset_experiment"
@pytest.mark.asyncio
async def test_send_pause_command(agent):
# --- Test PAUSE ---
await agent._send_pause_command("true")
# Should send exactly 1 message
assert agent.send.await_count == 1
# Extract the message object from the mock call
# call_args[0] are positional args, and [0] is the first arg (the message)
msg = agent.send.call_args[0][0]
# Verify Body
assert msg.body == "PAUSE"
# --- Test RESUME ---
agent.send.reset_mock()
await agent._send_pause_command("false")
# Should send exactly 1 message
assert agent.send.await_count == 1
msg = agent.send.call_args[0][0]
# Verify Body
assert msg.body == "RESUME"
@pytest.mark.asyncio
async def test_setup(agent):
"""Test the setup method initializes sockets correctly."""

17
uv.lock generated
View File

@@ -1524,7 +1524,6 @@ dependencies = [
{ name = "sphinx-rtd-theme" },
{ name = "tf-keras" },
{ name = "torch" },
{ name = "tornado", marker = "sys_platform == 'win32'" },
{ name = "uvicorn" },
]
@@ -1541,7 +1540,6 @@ dev = [
]
test = [
{ name = "agentspeak" },
{ name = "deepface" },
{ name = "fastapi" },
{ name = "httpx" },
{ name = "mlx-whisper", marker = "sys_platform == 'darwin'" },
@@ -1556,7 +1554,6 @@ test = [
{ name = "pyyaml" },
{ name = "pyzmq" },
{ name = "soundfile" },
{ name = "tf-keras" },
]
[package.metadata]
@@ -1580,7 +1577,6 @@ requires-dist = [
{ name = "sphinx-rtd-theme", specifier = ">=3.0.2" },
{ name = "tf-keras", specifier = ">=2.20.1" },
{ name = "torch", specifier = ">=2.8.0" },
{ name = "tornado", marker = "sys_platform == 'win32'" },
{ name = "uvicorn", specifier = ">=0.37.0" },
]
@@ -1597,7 +1593,6 @@ dev = [
]
test = [
{ name = "agentspeak", specifier = ">=0.2.2" },
{ name = "deepface", specifier = ">=0.0.97" },
{ name = "fastapi", specifier = ">=0.115.6" },
{ name = "httpx", specifier = ">=0.28.1" },
{ name = "mlx-whisper", marker = "sys_platform == 'darwin'", specifier = ">=0.4.3" },
@@ -1612,7 +1607,6 @@ test = [
{ name = "pyyaml", specifier = ">=6.0.3" },
{ name = "pyzmq", specifier = ">=27.1.0" },
{ name = "soundfile", specifier = ">=0.13.1" },
{ name = "tf-keras", specifier = ">=2.20.1" },
]
[[package]]
@@ -2726,17 +2720,6 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/52/27/7fc2d7435af044ffbe0b9b8e98d99eac096d43f128a5cde23c04825d5dcf/torchaudio-2.8.0-cp313-cp313t-win_amd64.whl", hash = "sha256:d4a715d09ac28c920d031ee1e60ecbc91e8a5079ad8c61c0277e658436c821a6", size = 2549553, upload-time = "2025-08-06T14:59:00.019Z" },
]
[[package]]
name = "tornado"
version = "6.5.4"
source = { registry = "https://pypi.org/simple" }
sdist = { url = "https://files.pythonhosted.org/packages/37/1d/0a336abf618272d53f62ebe274f712e213f5a03c0b2339575430b8362ef2/tornado-6.5.4.tar.gz", hash = "sha256:a22fa9047405d03260b483980635f0b041989d8bcc9a313f8fe18b411d84b1d7", size = 513632, upload-time = "2025-12-15T19:21:03.836Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/0c/1a/d7592328d037d36f2d2462f4bc1fbb383eec9278bc786c1b111cbbd44cfa/tornado-6.5.4-cp39-abi3-win32.whl", hash = "sha256:1768110f2411d5cd281bac0a090f707223ce77fd110424361092859e089b38d1", size = 446481, upload-time = "2025-12-15T19:21:00.008Z" },
{ url = "https://files.pythonhosted.org/packages/d6/6d/c69be695a0a64fd37a97db12355a035a6d90f79067a3cf936ec2b1dc38cd/tornado-6.5.4-cp39-abi3-win_amd64.whl", hash = "sha256:fa07d31e0cd85c60713f2b995da613588aa03e1303d75705dca6af8babc18ddc", size = 446886, upload-time = "2025-12-15T19:21:01.287Z" },
{ url = "https://files.pythonhosted.org/packages/50/49/8dc3fd90902f70084bd2cd059d576ddb4f8bb44c2c7c0e33a11422acb17e/tornado-6.5.4-cp39-abi3-win_arm64.whl", hash = "sha256:053e6e16701eb6cbe641f308f4c1a9541f91b6261991160391bfc342e8a551a1", size = 445910, upload-time = "2025-12-15T19:21:02.571Z" },
]
[[package]]
name = "tqdm"
version = "4.67.1"