Compare commits
120 Commits
feat/extra
...
feat/face-
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ce99dc5ec3 | ||
| 68f445c8bc | |||
| 53ba8bb16b | |||
| 516fda4694 | |||
|
|
12b905ff22 | ||
|
|
11d7c1409e | ||
|
|
f89fb2266a | ||
| f9d477a6c8 | |||
|
|
0f964795f3 | ||
|
|
00a13426a0 | ||
|
|
f6477e5325 | ||
|
|
35d99e539a | ||
| d9e5de6e51 | |||
|
|
f2953fb1de | ||
|
|
4b6980a26e | ||
|
|
0413e0f710 | ||
|
|
941aa00b7b | ||
|
|
cc09c1b289 | ||
|
|
82aa7c76df | ||
|
|
bc9045c977 | ||
|
|
43d81002ec | ||
|
|
1e7c2ba229 | ||
|
|
2404c847ae | ||
|
|
7c8a56dfcc | ||
|
|
9b040ffc62 | ||
|
|
27f91150e1 | ||
|
|
215bafe27f | ||
| da0f48e96d | |||
|
|
7dd47c9de8 | ||
|
|
4f927bc025 | ||
| bc1fa2ea35 | |||
| 650050fa0f | |||
|
|
d8dc558d3e | ||
|
|
e7e305c4a3 | ||
| b9df47b7d1 | |||
|
|
a74ecc6c45 | ||
|
|
09d8cca309 | ||
|
|
0b1c2ce20a | ||
|
|
f9b807fc97 | ||
|
|
424294b0a3 | ||
|
|
bc0947fac1 | ||
|
|
cd80cdf93b | ||
| 230afef16f | |||
| 1cd5b46f97 | |||
| c0789e82a9 | |||
| 04d19cee5c | |||
|
|
985327de70 | ||
|
|
58881b5914 | ||
|
|
302c50934e | ||
|
|
f9c69cafb3 | ||
|
|
37da9992ba | ||
|
|
f41201dd8e | ||
|
|
2033e02116 | ||
|
|
ba79d09c5d | ||
| db64eaeb0b | |||
| 7f7e0c542e | |||
|
|
1b0b72d63a | ||
| 41bd3ffc50 | |||
| 8506c0d9ef | |||
|
|
0941b26703 | ||
|
|
48ae0c7a12 | ||
|
|
a09d8b3d9a | ||
|
|
7c10c50336 | ||
|
|
6d03ba8a41 | ||
|
|
ac20048f02 | ||
|
|
05804c158d | ||
| b1c18abffd | |||
|
|
0771b0d607 | ||
|
|
4cda4e5e70 | ||
|
|
a9df9208bc | ||
|
|
041fc4ab6e | ||
| 39e1bb1ead | |||
| 8f6662e64a | |||
| 0794c549a8 | |||
| ff24ab7a27 | |||
| 43ac8ad69f | |||
|
|
d7d697b293 | ||
|
|
9a55067a13 | ||
|
|
f7669c021b | ||
|
|
8f52f8bf0c | ||
|
|
2a94a45b34 | ||
|
|
1c88ae6078 | ||
| f87651f691 | |||
|
|
65e0b2d250 | ||
| 177e844349 | |||
|
|
0df6040444 | ||
|
|
af81bd8620 | ||
|
|
70e05b6c92 | ||
| c0b8fb8612 | |||
|
|
d499111ea4 | ||
|
|
72c2c57f26 | ||
|
|
4a014b577a | ||
|
|
c45a258b22 | ||
| 0f09276477 | |||
| 4e113c2d5c | |||
|
|
54c835cc0f | ||
|
|
c4ccbcd354 | ||
|
|
6b790de53a | ||
|
|
1932ac959b | ||
|
|
d202abcd1b | ||
|
|
c91b999104 | ||
|
|
5e2126fc21 | ||
|
|
500bbc2d82 | ||
|
|
bb0c1bd383 | ||
|
|
1360567820 | ||
|
|
cc0d5af28c | ||
|
|
3a8d1730a1 | ||
|
|
b27e5180c4 | ||
|
|
6b34f4b82c | ||
|
|
4bf2be6359 | ||
|
|
20e5e46639 | ||
|
|
365d449666 | ||
|
|
be88323cf7 | ||
|
|
be6bbbb849 | ||
|
|
76dfcb23ef | ||
|
|
34afca6652 | ||
|
|
324a63e5cc | ||
|
|
03954bef54 | ||
| 8c36dd0805 | |||
|
|
f881d4d99b |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -222,6 +222,9 @@ __marimo__/
|
||||
docs/*
|
||||
!docs/conf.py
|
||||
|
||||
# Generated files
|
||||
*.asl
|
||||
experiment-*.log
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -22,4 +22,5 @@ test:
|
||||
tags:
|
||||
- test
|
||||
script:
|
||||
- apt-get update && apt-get install ffmpeg libsm6 libxext6 -y
|
||||
- uv run --only-group test pytest test
|
||||
|
||||
@@ -1,36 +1,57 @@
|
||||
version: 1
|
||||
|
||||
custom_levels:
|
||||
OBSERVATION: 25
|
||||
ACTION: 26
|
||||
OBSERVATION: 24
|
||||
ACTION: 25
|
||||
CHAT: 26
|
||||
LLM: 9
|
||||
|
||||
formatters:
|
||||
# Console output
|
||||
colored:
|
||||
(): "colorlog.ColoredFormatter"
|
||||
class: colorlog.ColoredFormatter
|
||||
format: "{log_color}{asctime}.{msecs:03.0f} | {levelname:11} | {name:70} | {message}"
|
||||
style: "{"
|
||||
datefmt: "%H:%M:%S"
|
||||
|
||||
# User-facing UI (structured JSON)
|
||||
json_experiment:
|
||||
(): "pythonjsonlogger.jsonlogger.JsonFormatter"
|
||||
json:
|
||||
class: pythonjsonlogger.jsonlogger.JsonFormatter
|
||||
format: "{name} {levelname} {levelno} {message} {created} {relativeCreated}"
|
||||
style: "{"
|
||||
|
||||
# Experiment stream for console and file output, with optional `role` field
|
||||
experiment:
|
||||
class: control_backend.logging.OptionalFieldFormatter
|
||||
format: "%(asctime)s %(levelname)s %(role?)s %(message)s"
|
||||
defaults:
|
||||
role: "-"
|
||||
|
||||
filters:
|
||||
# Filter out any log records that have the extra field "partial" set to True, indicating that they
|
||||
# will be replaced later.
|
||||
partial:
|
||||
(): control_backend.logging.PartialFilter
|
||||
|
||||
handlers:
|
||||
console:
|
||||
class: logging.StreamHandler
|
||||
level: DEBUG
|
||||
formatter: colored
|
||||
filters: [partial]
|
||||
stream: ext://sys.stdout
|
||||
ui:
|
||||
class: zmq.log.handlers.PUBHandler
|
||||
level: LLM
|
||||
formatter: json_experiment
|
||||
formatter: json
|
||||
file:
|
||||
class: control_backend.logging.DatedFileHandler
|
||||
formatter: experiment
|
||||
filters: [partial]
|
||||
# Directory must match config.logging_settings.experiment_log_directory
|
||||
file_prefix: experiment_logs/experiment
|
||||
|
||||
# Level of external libraries
|
||||
# Level for external libraries
|
||||
root:
|
||||
level: WARN
|
||||
handlers: [console]
|
||||
@@ -39,3 +60,6 @@ loggers:
|
||||
control_backend:
|
||||
level: LLM
|
||||
handlers: [ui]
|
||||
experiment: # This name must match config.logging_settings.experiment_logger_name
|
||||
level: DEBUG
|
||||
handlers: [ui, file]
|
||||
|
||||
@@ -7,6 +7,7 @@ requires-python = ">=3.13"
|
||||
dependencies = [
|
||||
"agentspeak>=0.2.2",
|
||||
"colorlog>=6.10.1",
|
||||
"deepface>=0.0.96",
|
||||
"fastapi[all]>=0.115.6",
|
||||
"mlx-whisper>=0.4.3 ; sys_platform == 'darwin'",
|
||||
"numpy>=2.3.3",
|
||||
@@ -21,6 +22,7 @@ dependencies = [
|
||||
"silero-vad>=6.0.0",
|
||||
"sphinx>=7.3.7",
|
||||
"sphinx-rtd-theme>=3.0.2",
|
||||
"tf-keras>=2.20.1",
|
||||
"torch>=2.8.0",
|
||||
"uvicorn>=0.37.0",
|
||||
]
|
||||
@@ -48,6 +50,7 @@ test = [
|
||||
"pytest-asyncio>=1.2.0",
|
||||
"pytest-cov>=7.0.0",
|
||||
"pytest-mock>=3.15.1",
|
||||
"python-slugify>=8.0.4",
|
||||
"pyyaml>=6.0.3",
|
||||
"pyzmq>=27.1.0",
|
||||
"soundfile>=0.13.1",
|
||||
|
||||
@@ -0,0 +1,5 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
@@ -1 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
-------------------------------------------------------------------------------
|
||||
This package contains all agent implementations for the PepperPlus Control Backend.
|
||||
"""
|
||||
|
||||
from .base import BaseAgent as BaseAgent
|
||||
|
||||
@@ -1,2 +1,10 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
--------------------------------------------------------------------------------
|
||||
Agents responsible for controlling the robot's physical actions, such as speech and gestures.
|
||||
"""
|
||||
|
||||
from .robot_gesture_agent import RobotGestureAgent as RobotGestureAgent
|
||||
from .robot_speech_agent import RobotSpeechAgent as RobotSpeechAgent
|
||||
|
||||
@@ -1,4 +1,11 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
@@ -8,6 +15,8 @@ from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.ri_message import GestureCommand, RIEndpoint
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class RobotGestureAgent(BaseAgent):
|
||||
"""
|
||||
@@ -83,6 +92,8 @@ class RobotGestureAgent(BaseAgent):
|
||||
self.subsocket.close()
|
||||
if self.pubsocket:
|
||||
self.pubsocket.close()
|
||||
if self.repsocket:
|
||||
self.repsocket.close()
|
||||
await super().stop()
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
@@ -109,6 +120,7 @@ class RobotGestureAgent(BaseAgent):
|
||||
gesture_command.data,
|
||||
)
|
||||
return
|
||||
experiment_logger.action("Gesture: %s", gesture_command.data)
|
||||
await self.pubsocket.send_json(gesture_command.model_dump())
|
||||
except Exception:
|
||||
self.logger.exception("Error processing internal message.")
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import json
|
||||
|
||||
import zmq
|
||||
|
||||
@@ -1,9 +1,16 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
from abc import ABC
|
||||
|
||||
from control_backend.core.agent_system import BaseAgent as CoreBaseAgent
|
||||
|
||||
|
||||
class BaseAgent(CoreBaseAgent):
|
||||
class BaseAgent(CoreBaseAgent, ABC):
|
||||
"""
|
||||
The primary base class for all implementation agents.
|
||||
|
||||
|
||||
@@ -1,8 +1,14 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
--------------------------------------------------------------------------------
|
||||
Agents and utilities for the BDI (Belief-Desire-Intention) reasoning system,
|
||||
implementing AgentSpeak(L) logic.
|
||||
"""
|
||||
|
||||
from control_backend.agents.bdi.bdi_core_agent import BDICoreAgent as BDICoreAgent
|
||||
|
||||
from .belief_collector_agent import (
|
||||
BDIBeliefCollectorAgent as BDIBeliefCollectorAgent,
|
||||
)
|
||||
from .text_belief_extractor_agent import (
|
||||
TextBeliefExtractorAgent as TextBeliefExtractorAgent,
|
||||
)
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
@@ -8,31 +14,78 @@ from enum import StrEnum
|
||||
class AstNode(ABC):
|
||||
"""
|
||||
Abstract base class for all elements of an AgentSpeak program.
|
||||
|
||||
This class serves as the foundation for all AgentSpeak abstract syntax tree (AST) nodes.
|
||||
It defines the core interface that all AST nodes must implement to generate AgentSpeak code.
|
||||
"""
|
||||
|
||||
@abstractmethod
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Generates the AgentSpeak code string.
|
||||
|
||||
This method converts the AST node into its corresponding
|
||||
AgentSpeak source code representation.
|
||||
|
||||
:return: The AgentSpeak code string representation of this node.
|
||||
"""
|
||||
pass
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""
|
||||
Returns the string representation of this AST node.
|
||||
|
||||
This method provides a convenient way to get the AgentSpeak code representation
|
||||
by delegating to the _to_agentspeak method.
|
||||
|
||||
:return: The AgentSpeak code string representation of this node.
|
||||
"""
|
||||
return self._to_agentspeak()
|
||||
|
||||
|
||||
class AstExpression(AstNode, ABC):
|
||||
"""
|
||||
Intermediate class for anything that can be used in a logical expression.
|
||||
|
||||
This class extends AstNode to provide common functionality for all expressions
|
||||
that can be used in logical operations within AgentSpeak programs.
|
||||
"""
|
||||
|
||||
def __and__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||
"""
|
||||
Creates a logical AND operation between this expression and another.
|
||||
|
||||
This method allows for operator overloading of the & operator to create
|
||||
binary logical operations in a more intuitive syntax.
|
||||
|
||||
:param other: The right-hand side expression to combine with this one.
|
||||
:return: A new AstBinaryOp representing the logical AND operation.
|
||||
"""
|
||||
return AstBinaryOp(self, BinaryOperatorType.AND, _coalesce_expr(other))
|
||||
|
||||
def __or__(self, other: ExprCoalescible) -> AstBinaryOp:
|
||||
"""
|
||||
Creates a logical OR operation between this expression and another.
|
||||
|
||||
This method allows for operator overloading of the | operator to create
|
||||
binary logical operations in a more intuitive syntax.
|
||||
|
||||
:param other: The right-hand side expression to combine with this one.
|
||||
:return: A new AstBinaryOp representing the logical OR operation.
|
||||
"""
|
||||
return AstBinaryOp(self, BinaryOperatorType.OR, _coalesce_expr(other))
|
||||
|
||||
def __invert__(self) -> AstLogicalExpression:
|
||||
"""
|
||||
Creates a logical negation of this expression.
|
||||
|
||||
This method allows for operator overloading of the ~ operator to create
|
||||
negated expressions. If the expression is already a logical expression,
|
||||
it toggles the negation flag. Otherwise, it wraps the expression in a
|
||||
new AstLogicalExpression with negation set to True.
|
||||
|
||||
:return: An AstLogicalExpression representing the negated form of this expression.
|
||||
"""
|
||||
if isinstance(self, AstLogicalExpression):
|
||||
self.negated = not self.negated
|
||||
return self
|
||||
@@ -77,52 +130,128 @@ class AstTerm(AstExpression, ABC):
|
||||
return AstBinaryOp(self, BinaryOperatorType.NOT_EQUALS, _coalesce_expr(other))
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstAtom(AstTerm):
|
||||
"""
|
||||
Grounded expression in all lowercase.
|
||||
Represents a grounded atom in AgentSpeak (e.g., lowercase constants).
|
||||
|
||||
Atoms are the simplest form of terms in AgentSpeak, representing concrete,
|
||||
unchanging values. They are typically used as constants in logical expressions.
|
||||
|
||||
:ivar value: The string value of this atom, which will be converted to lowercase
|
||||
in the AgentSpeak representation.
|
||||
"""
|
||||
|
||||
value: str
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this atom to its AgentSpeak string representation.
|
||||
|
||||
Atoms are represented in lowercase in AgentSpeak to distinguish them
|
||||
from variables (which are capitalized).
|
||||
|
||||
:return: The lowercase string representation of this atom.
|
||||
"""
|
||||
return self.value.lower()
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstVar(AstTerm):
|
||||
"""
|
||||
Ungrounded variable expression. First letter capitalized.
|
||||
Represents an ungrounded variable in AgentSpeak (e.g., capitalized names).
|
||||
|
||||
Variables in AgentSpeak are placeholders that can be bound to specific values
|
||||
during execution. They are distinguished from atoms by their capitalization.
|
||||
|
||||
:ivar name: The name of this variable, which will be capitalized in the
|
||||
AgentSpeak representation.
|
||||
"""
|
||||
|
||||
name: str
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this variable to its AgentSpeak string representation.
|
||||
|
||||
Variables are represented with capitalized names in AgentSpeak to distinguish
|
||||
them from atoms (which are lowercase).
|
||||
|
||||
:return: The capitalized string representation of this variable.
|
||||
"""
|
||||
return self.name.capitalize()
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstNumber(AstTerm):
|
||||
"""
|
||||
Represents a numeric constant in AgentSpeak.
|
||||
|
||||
Numeric constants can be either integers or floating-point numbers and are
|
||||
used in logical expressions and comparisons.
|
||||
|
||||
:ivar value: The numeric value of this constant (can be int or float).
|
||||
"""
|
||||
|
||||
value: int | float
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this numeric constant to its AgentSpeak string representation.
|
||||
|
||||
:return: The string representation of the numeric value.
|
||||
"""
|
||||
return str(self.value)
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstString(AstTerm):
|
||||
"""
|
||||
Represents a string literal in AgentSpeak.
|
||||
|
||||
String literals are used to represent textual data and are enclosed in
|
||||
double quotes in the AgentSpeak representation.
|
||||
|
||||
:ivar value: The string content of this literal.
|
||||
"""
|
||||
|
||||
value: str
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this string literal to its AgentSpeak string representation.
|
||||
|
||||
String literals are enclosed in double quotes in AgentSpeak.
|
||||
|
||||
:return: The string literal enclosed in double quotes.
|
||||
"""
|
||||
return f'"{self.value}"'
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstLiteral(AstTerm):
|
||||
"""
|
||||
Represents a literal (functor and terms) in AgentSpeak.
|
||||
|
||||
Literals are the fundamental building blocks of AgentSpeak programs, consisting
|
||||
of a functor (predicate name) and an optional list of terms (arguments).
|
||||
|
||||
:ivar functor: The name of the predicate or function.
|
||||
:ivar terms: A list of terms (arguments) for this literal. Defaults to an empty list.
|
||||
"""
|
||||
|
||||
functor: str
|
||||
terms: list[AstTerm] = field(default_factory=list)
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this literal to its AgentSpeak string representation.
|
||||
|
||||
If the literal has no terms, it returns just the functor name.
|
||||
Otherwise, it returns the functor followed by the terms in parentheses.
|
||||
|
||||
:return: The AgentSpeak string representation of this literal.
|
||||
"""
|
||||
if not self.terms:
|
||||
return self.functor
|
||||
args = ", ".join(map(str, self.terms))
|
||||
@@ -130,6 +259,13 @@ class AstLiteral(AstTerm):
|
||||
|
||||
|
||||
class BinaryOperatorType(StrEnum):
|
||||
"""
|
||||
Enumeration of binary operator types used in AgentSpeak expressions.
|
||||
|
||||
These operators are used to create binary operations between expressions,
|
||||
including logical operations (AND, OR) and comparison operations.
|
||||
"""
|
||||
|
||||
AND = "&"
|
||||
OR = "|"
|
||||
GREATER_THAN = ">"
|
||||
@@ -142,15 +278,41 @@ class BinaryOperatorType(StrEnum):
|
||||
|
||||
@dataclass
|
||||
class AstBinaryOp(AstExpression):
|
||||
"""
|
||||
Represents a binary logical or relational operation in AgentSpeak.
|
||||
|
||||
Binary operations combine two expressions using a logical or comparison operator.
|
||||
They are used to create complex logical conditions in AgentSpeak programs.
|
||||
|
||||
:ivar left: The left-hand side expression of the operation.
|
||||
:ivar operator: The binary operator type (AND, OR, comparison operators, etc.).
|
||||
:ivar right: The right-hand side expression of the operation.
|
||||
"""
|
||||
|
||||
left: AstExpression
|
||||
operator: BinaryOperatorType
|
||||
right: AstExpression
|
||||
|
||||
def __post_init__(self):
|
||||
"""
|
||||
Post-initialization processing to ensure proper expression types.
|
||||
|
||||
This method wraps the left and right expressions in AstLogicalExpression
|
||||
instances if they aren't already, ensuring consistent handling throughout
|
||||
the AST.
|
||||
"""
|
||||
self.left = _as_logical(self.left)
|
||||
self.right = _as_logical(self.right)
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this binary operation to its AgentSpeak string representation.
|
||||
|
||||
The method handles proper parenthesization of sub-expressions to maintain
|
||||
correct operator precedence and readability.
|
||||
|
||||
:return: The AgentSpeak string representation of this binary operation.
|
||||
"""
|
||||
l_str = str(self.left)
|
||||
r_str = str(self.right)
|
||||
|
||||
@@ -167,10 +329,29 @@ class AstBinaryOp(AstExpression):
|
||||
|
||||
@dataclass
|
||||
class AstLogicalExpression(AstExpression):
|
||||
"""
|
||||
Represents a logical expression, potentially negated, in AgentSpeak.
|
||||
|
||||
Logical expressions can be either positive or negated and form the basis
|
||||
of conditions and beliefs in AgentSpeak programs.
|
||||
|
||||
:ivar expression: The underlying expression being evaluated.
|
||||
:ivar negated: Boolean flag indicating whether this expression is negated.
|
||||
"""
|
||||
|
||||
expression: AstExpression
|
||||
negated: bool = False
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this logical expression to its AgentSpeak string representation.
|
||||
|
||||
If the expression is negated, it prepends 'not ' to the expression string.
|
||||
For complex expressions (binary operations), it adds parentheses when negated
|
||||
to maintain correct logical interpretation.
|
||||
|
||||
:return: The AgentSpeak string representation of this logical expression.
|
||||
"""
|
||||
expr_str = str(self.expression)
|
||||
if isinstance(self.expression, AstBinaryOp) and self.negated:
|
||||
expr_str = f"({expr_str})"
|
||||
@@ -178,65 +359,169 @@ class AstLogicalExpression(AstExpression):
|
||||
|
||||
|
||||
def _as_logical(expr: AstExpression) -> AstLogicalExpression:
|
||||
"""
|
||||
Converts an expression to a logical expression if it isn't already.
|
||||
|
||||
This helper function ensures that expressions are properly wrapped in
|
||||
AstLogicalExpression instances, which is necessary for consistent handling
|
||||
of logical operations in the AST.
|
||||
|
||||
:param expr: The expression to convert.
|
||||
:return: The expression wrapped in an AstLogicalExpression if it wasn't already.
|
||||
"""
|
||||
if isinstance(expr, AstLogicalExpression):
|
||||
return expr
|
||||
return AstLogicalExpression(expr)
|
||||
|
||||
|
||||
class StatementType(StrEnum):
|
||||
"""
|
||||
Enumeration of statement types that can appear in AgentSpeak plans.
|
||||
|
||||
These statement types define the different kinds of actions and operations
|
||||
that can be performed within the body of an AgentSpeak plan.
|
||||
"""
|
||||
|
||||
EMPTY = ""
|
||||
"""Empty statement (no operation, used when evaluating a plan to true)."""
|
||||
|
||||
DO_ACTION = "."
|
||||
"""Execute an action defined in Python."""
|
||||
|
||||
ACHIEVE_GOAL = "!"
|
||||
"""Achieve a goal (add a goal to be accomplished)."""
|
||||
|
||||
TEST_GOAL = "?"
|
||||
"""Test a goal (check if a goal can be achieved)."""
|
||||
|
||||
ADD_BELIEF = "+"
|
||||
"""Add a belief to the belief base."""
|
||||
|
||||
REMOVE_BELIEF = "-"
|
||||
"""Remove a belief from the belief base."""
|
||||
|
||||
REPLACE_BELIEF = "-+"
|
||||
"""Replace a belief in the belief base."""
|
||||
|
||||
|
||||
@dataclass
|
||||
class AstStatement(AstNode):
|
||||
"""
|
||||
A statement that can appear inside a plan.
|
||||
|
||||
Statements are the executable units within AgentSpeak plans. They consist
|
||||
of a statement type (defining the operation) and an expression (defining
|
||||
what to operate on).
|
||||
|
||||
:ivar type: The type of statement (action, goal, belief operation, etc.).
|
||||
:ivar expression: The expression that this statement operates on.
|
||||
"""
|
||||
|
||||
type: StatementType
|
||||
expression: AstExpression
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this statement to its AgentSpeak string representation.
|
||||
|
||||
The representation consists of the statement type prefix followed by
|
||||
the expression.
|
||||
|
||||
:return: The AgentSpeak string representation of this statement.
|
||||
"""
|
||||
return f"{self.type.value}{self.expression}"
|
||||
|
||||
|
||||
@dataclass
|
||||
class AstRule(AstNode):
|
||||
"""
|
||||
Represents an inference rule in AgentSpeak. If there is no condition, it always holds.
|
||||
|
||||
Rules define logical implications in AgentSpeak programs. They consist of a
|
||||
result (conclusion) and an optional condition (premise). When the condition
|
||||
holds, the result is inferred to be true.
|
||||
|
||||
:ivar result: The conclusion or result of this rule.
|
||||
:ivar condition: The premise or condition for this rule (optional).
|
||||
"""
|
||||
|
||||
result: AstExpression
|
||||
condition: AstExpression | None = None
|
||||
|
||||
def __post_init__(self):
|
||||
"""
|
||||
Post-initialization processing to ensure proper expression types.
|
||||
|
||||
If a condition is provided, this method wraps it in an AstLogicalExpression
|
||||
to ensure consistent handling throughout the AST.
|
||||
"""
|
||||
if self.condition is not None:
|
||||
self.condition = _as_logical(self.condition)
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this rule to its AgentSpeak string representation.
|
||||
|
||||
If no condition is specified, the rule is represented as a simple fact.
|
||||
If a condition is specified, it's represented as an implication (result :- condition).
|
||||
|
||||
:return: The AgentSpeak string representation of this rule.
|
||||
"""
|
||||
if not self.condition:
|
||||
return f"{self.result}."
|
||||
return f"{self.result} :- {self.condition}."
|
||||
|
||||
|
||||
class TriggerType(StrEnum):
|
||||
"""
|
||||
Enumeration of trigger types for AgentSpeak plans.
|
||||
|
||||
Trigger types define what kind of events can activate an AgentSpeak plan.
|
||||
Currently, the system supports triggers for added beliefs and added goals.
|
||||
"""
|
||||
|
||||
ADDED_BELIEF = "+"
|
||||
"""Trigger when a belief is added to the belief base."""
|
||||
|
||||
# REMOVED_BELIEF = "-" # TODO
|
||||
# MODIFIED_BELIEF = "^" # TODO
|
||||
|
||||
ADDED_GOAL = "+!"
|
||||
"""Trigger when a goal is added to be achieved."""
|
||||
|
||||
# REMOVED_GOAL = "-!" # TODO
|
||||
|
||||
|
||||
@dataclass
|
||||
class AstPlan(AstNode):
|
||||
"""
|
||||
Represents a plan in AgentSpeak, consisting of a trigger, context, and body.
|
||||
|
||||
Plans define the reactive behavior of agents in AgentSpeak. They specify what
|
||||
actions to take when certain conditions are met (trigger and context).
|
||||
|
||||
:ivar type: The type of trigger that activates this plan.
|
||||
:ivar trigger_literal: The specific event or condition that triggers this plan.
|
||||
:ivar context: A list of conditions that must hold for this plan to be applicable.
|
||||
:ivar body: A list of statements to execute when this plan is triggered.
|
||||
"""
|
||||
|
||||
type: TriggerType
|
||||
trigger_literal: AstExpression
|
||||
context: list[AstExpression]
|
||||
body: list[AstStatement]
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this plan to its AgentSpeak string representation.
|
||||
|
||||
The representation follows the standard AgentSpeak plan format:
|
||||
trigger_type + trigger_literal
|
||||
: context_conditions
|
||||
<- body_statements.
|
||||
|
||||
:return: The AgentSpeak string representation of this plan.
|
||||
"""
|
||||
assert isinstance(self.trigger_literal, AstLiteral)
|
||||
|
||||
indent = " " * 6
|
||||
@@ -260,10 +545,28 @@ class AstPlan(AstNode):
|
||||
|
||||
@dataclass
|
||||
class AstProgram(AstNode):
|
||||
"""
|
||||
Represents a full AgentSpeak program, consisting of rules and plans.
|
||||
|
||||
This is the root node of the AgentSpeak AST, containing all the rules
|
||||
and plans that define the agent's behavior.
|
||||
|
||||
:ivar rules: A list of inference rules in this program.
|
||||
:ivar plans: A list of reactive plans in this program.
|
||||
"""
|
||||
|
||||
rules: list[AstRule] = field(default_factory=list)
|
||||
plans: list[AstPlan] = field(default_factory=list)
|
||||
|
||||
def _to_agentspeak(self) -> str:
|
||||
"""
|
||||
Converts this program to its AgentSpeak string representation.
|
||||
|
||||
The representation consists of all rules followed by all plans,
|
||||
separated by blank lines for readability.
|
||||
|
||||
:return: The complete AgentSpeak source code for this program.
|
||||
"""
|
||||
lines = []
|
||||
lines.extend(map(str, self.rules))
|
||||
|
||||
|
||||
@@ -1,11 +1,19 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from functools import singledispatchmethod
|
||||
|
||||
from slugify import slugify
|
||||
|
||||
from control_backend.agents.bdi.agentspeak_ast import (
|
||||
AstAtom,
|
||||
AstBinaryOp,
|
||||
AstExpression,
|
||||
AstLiteral,
|
||||
AstNumber,
|
||||
AstPlan,
|
||||
AstProgram,
|
||||
AstRule,
|
||||
@@ -16,9 +24,13 @@ from control_backend.agents.bdi.agentspeak_ast import (
|
||||
StatementType,
|
||||
TriggerType,
|
||||
)
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.program import (
|
||||
BaseGoal,
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
EmotionBelief,
|
||||
FaceBelief,
|
||||
GestureAction,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
@@ -37,12 +49,45 @@ from control_backend.schemas.program import (
|
||||
|
||||
|
||||
class AgentSpeakGenerator:
|
||||
"""
|
||||
Generator class that translates a high-level :class:`~control_backend.schemas.program.Program`
|
||||
into AgentSpeak(L) source code.
|
||||
|
||||
It handles the conversion of phases, norms, goals, and triggers into AgentSpeak rules and plans,
|
||||
ensuring the robot follows the defined behavioral logic.
|
||||
|
||||
The generator follows a systematic approach:
|
||||
1. Sets up initial phase and cycle notification rules
|
||||
2. Adds keyword inference capabilities for natural language processing
|
||||
3. Creates default plans for common operations
|
||||
4. Processes each phase with its norms, goals, and triggers
|
||||
5. Adds fallback plans for robust execution
|
||||
|
||||
:ivar _asp: The internal AgentSpeak program representation being built.
|
||||
"""
|
||||
|
||||
_asp: AstProgram
|
||||
|
||||
def generate(self, program: Program) -> str:
|
||||
"""
|
||||
Translates a Program object into an AgentSpeak source string.
|
||||
|
||||
This is the main entry point for the code generation process. It initializes
|
||||
the AgentSpeak program structure and orchestrates the conversion of all
|
||||
program elements into their AgentSpeak representations.
|
||||
|
||||
:param program: The behavior program to translate.
|
||||
:return: The generated AgentSpeak code as a string.
|
||||
"""
|
||||
self._asp = AstProgram()
|
||||
|
||||
self._asp.rules.append(AstRule(self._astify(program.phases[0])))
|
||||
if program.phases:
|
||||
self._asp.rules.append(AstRule(self._astify(program.phases[0])))
|
||||
else:
|
||||
self._asp.rules.append(AstRule(AstLiteral("phase", [AstString("end")])))
|
||||
|
||||
self._asp.rules.append(AstRule(AstLiteral("!notify_cycle")))
|
||||
|
||||
self._add_keyword_inference()
|
||||
self._add_default_plans()
|
||||
|
||||
@@ -53,6 +98,18 @@ class AgentSpeakGenerator:
|
||||
return str(self._asp)
|
||||
|
||||
def _add_keyword_inference(self) -> None:
|
||||
"""
|
||||
Adds inference rules for keyword detection in user messages.
|
||||
|
||||
This method creates rules that allow the system to detect when specific
|
||||
keywords are mentioned in user messages. It uses string operations to
|
||||
check if a keyword is a substring of the user's message.
|
||||
|
||||
The generated rule has the form:
|
||||
keyword_said(Keyword) :- user_said(Message) & .substring(Keyword, Message, Pos) & Pos >= 0
|
||||
|
||||
This enables the system to trigger behaviors based on keyword detection.
|
||||
"""
|
||||
keyword = AstVar("Keyword")
|
||||
message = AstVar("Message")
|
||||
position = AstVar("Pos")
|
||||
@@ -67,11 +124,32 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
|
||||
def _add_default_plans(self):
|
||||
"""
|
||||
Adds default plans for common operations.
|
||||
|
||||
This method sets up the standard plans that handle fundamental operations
|
||||
like replying with goals, simple speech actions, general replies, and
|
||||
cycle notifications. These plans provide the basic infrastructure for
|
||||
the agent's reactive behavior.
|
||||
"""
|
||||
self._add_reply_with_goal_plan()
|
||||
self._add_say_plan()
|
||||
self._add_reply_plan()
|
||||
self._add_notify_cycle_plan()
|
||||
|
||||
def _add_reply_with_goal_plan(self):
|
||||
"""
|
||||
Adds a plan for replying with a specific conversational goal.
|
||||
|
||||
This plan handles the case where the agent needs to respond to user input
|
||||
while pursuing a specific conversational goal. It:
|
||||
1. Marks that the agent has responded this turn
|
||||
2. Gathers all active norms
|
||||
3. Generates a reply that considers both the user message and the goal
|
||||
|
||||
Trigger: +!reply_with_goal(Goal)
|
||||
Context: user_said(Message)
|
||||
"""
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
@@ -97,6 +175,17 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
|
||||
def _add_say_plan(self):
|
||||
"""
|
||||
Adds a plan for simple speech actions.
|
||||
|
||||
This plan handles direct speech actions where the agent needs to say
|
||||
a specific text. It:
|
||||
1. Marks that the agent has responded this turn
|
||||
2. Executes the speech action
|
||||
|
||||
Trigger: +!say(Text)
|
||||
Context: None (can be executed anytime)
|
||||
"""
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
@@ -110,6 +199,18 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
|
||||
def _add_reply_plan(self):
|
||||
"""
|
||||
Adds a plan for general reply actions.
|
||||
|
||||
This plan handles general reply actions where the agent needs to respond
|
||||
to user input without a specific conversational goal. It:
|
||||
1. Marks that the agent has responded this turn
|
||||
2. Gathers all active norms
|
||||
3. Generates a reply based on the user message and norms
|
||||
|
||||
Trigger: +!reply
|
||||
Context: user_said(Message)
|
||||
"""
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
@@ -132,7 +233,53 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
)
|
||||
|
||||
def _add_notify_cycle_plan(self):
|
||||
"""
|
||||
Adds a plan for cycle notification.
|
||||
|
||||
This plan handles the periodic notification cycle that allows the system
|
||||
to monitor and report on the current state. It:
|
||||
1. Gathers all active norms
|
||||
2. Notifies the system about the current norms
|
||||
3. Waits briefly to allow processing
|
||||
4. Recursively triggers the next cycle
|
||||
|
||||
Trigger: +!notify_cycle
|
||||
Context: None (can be executed anytime)
|
||||
"""
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("notify_cycle"),
|
||||
[],
|
||||
[
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral(
|
||||
"findall",
|
||||
[AstVar("Norm"), AstLiteral("norm", [AstVar("Norm")]), AstVar("Norms")],
|
||||
),
|
||||
),
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION, AstLiteral("notify_norms", [AstVar("Norms")])
|
||||
),
|
||||
AstStatement(StatementType.DO_ACTION, AstLiteral("wait", [AstNumber(100)])),
|
||||
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("notify_cycle")),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
def _process_phases(self, phases: list[Phase]) -> None:
|
||||
"""
|
||||
Processes all phases in the program and their transitions.
|
||||
|
||||
This method iterates through each phase and:
|
||||
1. Processes the current phase (norms, goals, triggers)
|
||||
2. Sets up transitions between phases
|
||||
3. Adds special handling for the end phase
|
||||
|
||||
:param phases: The list of phases to process.
|
||||
"""
|
||||
for curr_phase, next_phase in zip([None] + phases, phases + [None], strict=True):
|
||||
if curr_phase:
|
||||
self._process_phase(curr_phase)
|
||||
@@ -146,13 +293,26 @@ class AgentSpeakGenerator:
|
||||
trigger_literal=AstLiteral("user_said", [AstVar("Message")]),
|
||||
context=[AstLiteral("phase", [AstString("end")])],
|
||||
body=[
|
||||
AstStatement(StatementType.DO_ACTION, AstLiteral("notify_user_said")),
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION, AstLiteral("notify_user_said", [AstVar("Message")])
|
||||
),
|
||||
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("reply")),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
def _process_phase(self, phase: Phase) -> None:
|
||||
"""
|
||||
Processes a single phase, including its norms, goals, and triggers.
|
||||
|
||||
This method handles the complete processing of a phase by:
|
||||
1. Processing all norms in the phase
|
||||
2. Setting up the default execution loop for the phase
|
||||
3. Processing all goals in sequence
|
||||
4. Processing all triggers for reactive behavior
|
||||
|
||||
:param phase: The phase to process.
|
||||
"""
|
||||
for norm in phase.norms:
|
||||
self._process_norm(norm, phase)
|
||||
|
||||
@@ -167,6 +327,21 @@ class AgentSpeakGenerator:
|
||||
self._process_trigger(trigger, phase)
|
||||
|
||||
def _add_phase_transition(self, from_phase: Phase | None, to_phase: Phase | None) -> None:
|
||||
"""
|
||||
Adds plans for transitioning between phases.
|
||||
|
||||
This method creates two plans for each phase transition:
|
||||
1. A check plan that verifies if transition conditions are met
|
||||
2. A force plan that actually performs the transition (can be forced externally)
|
||||
|
||||
The transition involves:
|
||||
- Notifying the system about the phase change
|
||||
- Removing the current phase belief
|
||||
- Adding the next phase belief
|
||||
|
||||
:param from_phase: The phase being transitioned from (or None for initial setup).
|
||||
:param to_phase: The phase being transitioned to (or None for end phase).
|
||||
"""
|
||||
if from_phase is None:
|
||||
return
|
||||
from_phase_ast = self._astify(from_phase)
|
||||
@@ -174,30 +349,14 @@ class AgentSpeakGenerator:
|
||||
self._astify(to_phase) if to_phase else AstLiteral("phase", [AstString("end")])
|
||||
)
|
||||
|
||||
context = [from_phase_ast]
|
||||
check_context = [from_phase_ast]
|
||||
if from_phase:
|
||||
for goal in from_phase.goals:
|
||||
context.append(self._astify(goal, achieved=True))
|
||||
check_context.append(self._astify(goal, achieved=True))
|
||||
|
||||
force_context = [from_phase_ast]
|
||||
|
||||
body = [
|
||||
AstStatement(StatementType.REMOVE_BELIEF, from_phase_ast),
|
||||
AstStatement(StatementType.ADD_BELIEF, to_phase_ast),
|
||||
]
|
||||
|
||||
# if from_phase:
|
||||
# body.extend(
|
||||
# [
|
||||
# AstStatement(
|
||||
# StatementType.TEST_GOAL, AstLiteral("user_said", [AstVar("Message")])
|
||||
# ),
|
||||
# AstStatement(
|
||||
# StatementType.REPLACE_BELIEF, AstLiteral("user_said", [AstVar("Message")])
|
||||
# ),
|
||||
# ]
|
||||
# )
|
||||
|
||||
# Notify outside world about transition
|
||||
body.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral(
|
||||
@@ -207,19 +366,51 @@ class AgentSpeakGenerator:
|
||||
AstString(str(to_phase.id) if to_phase else "end"),
|
||||
],
|
||||
),
|
||||
),
|
||||
AstStatement(StatementType.REMOVE_BELIEF, from_phase_ast),
|
||||
AstStatement(StatementType.ADD_BELIEF, to_phase_ast),
|
||||
]
|
||||
|
||||
# Check
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("transition_phase"),
|
||||
check_context,
|
||||
[
|
||||
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("force_transition_phase")),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
# Force
|
||||
self._asp.plans.append(
|
||||
AstPlan(TriggerType.ADDED_GOAL, AstLiteral("transition_phase"), context, body)
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL, AstLiteral("force_transition_phase"), force_context, body
|
||||
)
|
||||
)
|
||||
|
||||
def _process_norm(self, norm: Norm, phase: Phase) -> None:
|
||||
"""
|
||||
Processes a norm and adds it as an inference rule.
|
||||
|
||||
This method converts norms into AgentSpeak rules that define when
|
||||
the norm should be active. It handles both basic norms (always active
|
||||
in their phase) and conditional norms (active only when their condition
|
||||
is met).
|
||||
|
||||
:param norm: The norm to process.
|
||||
:param phase: The phase this norm belongs to.
|
||||
"""
|
||||
rule: AstRule | None = None
|
||||
|
||||
match norm:
|
||||
case ConditionalNorm(condition=cond):
|
||||
rule = AstRule(self._astify(norm), self._astify(phase) & self._astify(cond))
|
||||
rule = AstRule(
|
||||
self._astify(norm),
|
||||
self._astify(phase) & self._astify(cond)
|
||||
| AstAtom(f"force_{self.slugify(norm)}"),
|
||||
)
|
||||
case BasicNorm():
|
||||
rule = AstRule(self._astify(norm), self._astify(phase))
|
||||
|
||||
@@ -229,6 +420,18 @@ class AgentSpeakGenerator:
|
||||
self._asp.rules.append(rule)
|
||||
|
||||
def _add_default_loop(self, phase: Phase) -> None:
|
||||
"""
|
||||
Adds the default execution loop for a phase.
|
||||
|
||||
This method creates the main reactive loop that runs when the agent
|
||||
receives user input during a phase. The loop:
|
||||
1. Notifies the system about the user input
|
||||
2. Resets the response tracking
|
||||
3. Executes all phase goals
|
||||
4. Attempts phase transition
|
||||
|
||||
:param phase: The phase to create the loop for.
|
||||
"""
|
||||
actions = []
|
||||
|
||||
actions.append(
|
||||
@@ -237,7 +440,6 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
)
|
||||
actions.append(AstStatement(StatementType.REMOVE_BELIEF, AstLiteral("responded_this_turn")))
|
||||
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("check_triggers")))
|
||||
|
||||
for goal in phase.goals:
|
||||
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, self._astify(goal)))
|
||||
@@ -261,6 +463,22 @@ class AgentSpeakGenerator:
|
||||
continues_response: bool = False,
|
||||
main_goal: bool = False,
|
||||
) -> None:
|
||||
"""
|
||||
Processes a goal and creates plans for achieving it.
|
||||
|
||||
This method creates two plans for each goal:
|
||||
1. A main plan that executes the goal's steps when conditions are met
|
||||
2. A fallback plan that provides a default empty implementation (prevents crashes)
|
||||
|
||||
The method also recursively processes any subgoals contained within
|
||||
the goal's plan.
|
||||
|
||||
:param goal: The goal to process.
|
||||
:param phase: The phase this goal belongs to.
|
||||
:param previous_goal: The previous goal in sequence (for dependency tracking).
|
||||
:param continues_response: Whether this goal continues an existing response.
|
||||
:param main_goal: Whether this is a main goal (for UI notification purposes).
|
||||
"""
|
||||
context: list[AstExpression] = [self._astify(phase)]
|
||||
context.append(~self._astify(goal, achieved=True))
|
||||
if previous_goal and previous_goal.can_fail:
|
||||
@@ -303,14 +521,39 @@ class AgentSpeakGenerator:
|
||||
prev_goal = subgoal
|
||||
|
||||
def _step_to_statement(self, step: PlanElement) -> AstStatement:
|
||||
"""
|
||||
Converts a plan step to an AgentSpeak statement.
|
||||
|
||||
This method transforms different types of plan elements into their
|
||||
corresponding AgentSpeak statements. Goals and speech-related actions
|
||||
become achieve-goal statements, while gesture actions become do-action
|
||||
statements.
|
||||
|
||||
:param step: The plan element to convert.
|
||||
:return: The corresponding AgentSpeak statement.
|
||||
"""
|
||||
match step:
|
||||
# Note that SpeechAction gets included in the ACHIEVE_GOAL, since it's a goal internally
|
||||
case Goal() | SpeechAction() | LLMAction() as a:
|
||||
return AstStatement(StatementType.ACHIEVE_GOAL, self._astify(a))
|
||||
case GestureAction() as a:
|
||||
return AstStatement(StatementType.DO_ACTION, self._astify(a))
|
||||
|
||||
# TODO: separate handling of keyword and others
|
||||
def _process_trigger(self, trigger: Trigger, phase: Phase) -> None:
|
||||
"""
|
||||
Processes a trigger and creates plans for its execution.
|
||||
|
||||
This method creates plans that execute when trigger conditions are met.
|
||||
It handles both automatic triggering (when conditions are detected) and
|
||||
manual forcing (from UI). The trigger execution includes:
|
||||
1. Notifying the system about trigger start
|
||||
2. Executing all trigger steps
|
||||
3. Waiting briefly for UI display
|
||||
4. Notifying the system about trigger end
|
||||
|
||||
:param trigger: The trigger to process.
|
||||
:param phase: The phase this trigger belongs to.
|
||||
"""
|
||||
body = []
|
||||
subgoals = []
|
||||
|
||||
@@ -325,6 +568,15 @@ class AgentSpeakGenerator:
|
||||
if isinstance(step, Goal):
|
||||
step.can_fail = False # triggers are continuous sequence
|
||||
subgoals.append(step)
|
||||
|
||||
# Arbitrary wait for UI to display nicely
|
||||
body.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral("wait", [AstNumber(settings.behaviour_settings.trigger_time_to_wait)]),
|
||||
)
|
||||
)
|
||||
|
||||
body.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
@@ -348,6 +600,18 @@ class AgentSpeakGenerator:
|
||||
self._process_goal(subgoal, phase, continues_response=True)
|
||||
|
||||
def _add_fallbacks(self):
|
||||
"""
|
||||
Adds fallback plans for robust execution, preventing crashes.
|
||||
|
||||
This method creates fallback plans that provide default empty implementations
|
||||
for key goals. These fallbacks ensure that the system can continue execution
|
||||
even when no specific plans are applicable, preventing crashes.
|
||||
|
||||
The fallbacks are created for:
|
||||
- check_triggers: When no triggers are applicable
|
||||
- transition_phase: When phase transition conditions aren't met
|
||||
- force_transition_phase: When forced transitions aren't possible
|
||||
"""
|
||||
# Trigger fallback
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
@@ -368,20 +632,77 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
)
|
||||
|
||||
# Force phase transition fallback
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("force_transition_phase"),
|
||||
[],
|
||||
[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
|
||||
)
|
||||
)
|
||||
|
||||
@singledispatchmethod
|
||||
def _astify(self, element: ProgramElement) -> AstExpression:
|
||||
"""
|
||||
Converts program elements to AgentSpeak expressions (base method).
|
||||
|
||||
This is the base method for the singledispatch mechanism that handles
|
||||
conversion of different program element types to their AgentSpeak
|
||||
representations. Specific implementations are provided for each
|
||||
element type through registered methods.
|
||||
|
||||
:param element: The program element to convert.
|
||||
:return: The corresponding AgentSpeak expression.
|
||||
:raises NotImplementedError: If no specific implementation exists for the element type.
|
||||
"""
|
||||
raise NotImplementedError(f"Cannot convert element {element} to an AgentSpeak expression.")
|
||||
|
||||
@_astify.register
|
||||
def _(self, kwb: KeywordBelief) -> AstExpression:
|
||||
"""
|
||||
Converts a KeywordBelief to an AgentSpeak expression.
|
||||
|
||||
Keyword beliefs are converted to keyword_said literals that check
|
||||
if the keyword was mentioned in user input.
|
||||
|
||||
:param kwb: The KeywordBelief to convert.
|
||||
:return: An AstLiteral representing the keyword detection.
|
||||
"""
|
||||
return AstLiteral("keyword_said", [AstString(kwb.keyword)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, sb: SemanticBelief) -> AstExpression:
|
||||
"""
|
||||
Converts a SemanticBelief to an AgentSpeak expression.
|
||||
|
||||
Semantic beliefs are converted to literals using their slugified names,
|
||||
which are used for LLM-based belief evaluation.
|
||||
|
||||
:param sb: The SemanticBelief to convert.
|
||||
:return: An AstLiteral representing the semantic belief.
|
||||
"""
|
||||
return AstLiteral(self.slugify(sb))
|
||||
|
||||
@_astify.register
|
||||
def _(self, eb: EmotionBelief) -> AstExpression:
|
||||
return AstLiteral("emotion_detected", [AstAtom(eb.emotion)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, eb: FaceBelief) -> AstExpression:
|
||||
return AstLiteral("face_present")
|
||||
|
||||
@_astify.register
|
||||
def _(self, ib: InferredBelief) -> AstExpression:
|
||||
"""
|
||||
Converts an InferredBelief to an AgentSpeak expression.
|
||||
|
||||
Inferred beliefs are converted to binary operations that combine
|
||||
their left and right operands using the appropriate logical operator.
|
||||
|
||||
:param ib: The InferredBelief to convert.
|
||||
:return: An AstBinaryOp representing the logical combination.
|
||||
"""
|
||||
return AstBinaryOp(
|
||||
self._astify(ib.left),
|
||||
BinaryOperatorType.AND if ib.operator == LogicalOperator.AND else BinaryOperatorType.OR,
|
||||
@@ -390,54 +711,187 @@ class AgentSpeakGenerator:
|
||||
|
||||
@_astify.register
|
||||
def _(self, norm: Norm) -> AstExpression:
|
||||
"""
|
||||
Converts a Norm to an AgentSpeak expression.
|
||||
|
||||
Norms are converted to literals with either 'norm' or 'critical_norm'
|
||||
functors depending on their critical flag, with the norm text as an argument.
|
||||
|
||||
Note that currently, critical norms are not yet functionally supported. They are possible
|
||||
to astify for future use.
|
||||
|
||||
:param norm: The Norm to convert.
|
||||
:return: An AstLiteral representing the norm.
|
||||
"""
|
||||
functor = "critical_norm" if norm.critical else "norm"
|
||||
return AstLiteral(functor, [AstString(norm.norm)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, phase: Phase) -> AstExpression:
|
||||
"""
|
||||
Converts a Phase to an AgentSpeak expression.
|
||||
|
||||
Phases are converted to phase literals with their unique identifier
|
||||
as an argument, which is used for phase tracking and transitions.
|
||||
|
||||
:param phase: The Phase to convert.
|
||||
:return: An AstLiteral representing the phase.
|
||||
"""
|
||||
return AstLiteral("phase", [AstString(str(phase.id))])
|
||||
|
||||
@_astify.register
|
||||
def _(self, goal: Goal, achieved: bool = False) -> AstExpression:
|
||||
"""
|
||||
Converts a Goal to an AgentSpeak expression.
|
||||
|
||||
Goals are converted to literals using their slugified names. If the
|
||||
achieved parameter is True, the literal is prefixed with 'achieved_'.
|
||||
|
||||
:param goal: The Goal to convert.
|
||||
:param achieved: Whether to represent this as an achieved goal.
|
||||
:return: An AstLiteral representing the goal.
|
||||
"""
|
||||
return AstLiteral(f"{'achieved_' if achieved else ''}{self._slugify_str(goal.name)}")
|
||||
|
||||
@_astify.register
|
||||
def _(self, trigger: Trigger) -> AstExpression:
|
||||
"""
|
||||
Converts a Trigger to an AgentSpeak expression.
|
||||
|
||||
Triggers are converted to literals using their slugified names,
|
||||
which are used to identify and execute trigger plans.
|
||||
|
||||
:param trigger: The Trigger to convert.
|
||||
:return: An AstLiteral representing the trigger.
|
||||
"""
|
||||
return AstLiteral(self.slugify(trigger))
|
||||
|
||||
@_astify.register
|
||||
def _(self, sa: SpeechAction) -> AstExpression:
|
||||
"""
|
||||
Converts a SpeechAction to an AgentSpeak expression.
|
||||
|
||||
Speech actions are converted to say literals with the text content
|
||||
as an argument, which are used for direct speech output.
|
||||
|
||||
:param sa: The SpeechAction to convert.
|
||||
:return: An AstLiteral representing the speech action.
|
||||
"""
|
||||
return AstLiteral("say", [AstString(sa.text)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, ga: GestureAction) -> AstExpression:
|
||||
"""
|
||||
Converts a GestureAction to an AgentSpeak expression.
|
||||
|
||||
Gesture actions are converted to gesture literals with the gesture
|
||||
type and name as arguments, which are used for physical robot gestures.
|
||||
|
||||
:param ga: The GestureAction to convert.
|
||||
:return: An AstLiteral representing the gesture action.
|
||||
"""
|
||||
gesture = ga.gesture
|
||||
return AstLiteral("gesture", [AstString(gesture.type), AstString(gesture.name)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, la: LLMAction) -> AstExpression:
|
||||
"""
|
||||
Converts an LLMAction to an AgentSpeak expression.
|
||||
|
||||
LLM actions are converted to reply_with_goal literals with the
|
||||
conversational goal as an argument, which are used for LLM-generated
|
||||
responses guided by specific goals.
|
||||
|
||||
:param la: The LLMAction to convert.
|
||||
:return: An AstLiteral representing the LLM action.
|
||||
"""
|
||||
return AstLiteral("reply_with_goal", [AstString(la.goal)])
|
||||
|
||||
@singledispatchmethod
|
||||
@staticmethod
|
||||
def slugify(element: ProgramElement) -> str:
|
||||
"""
|
||||
Converts program elements to slugs (base method).
|
||||
|
||||
This is the base method for the singledispatch mechanism that handles
|
||||
conversion of different program element types to their slug representations.
|
||||
Specific implementations are provided for each element type through
|
||||
registered methods.
|
||||
|
||||
Slugs are used outside of AgentSpeak, mostly for identifying what to send to the AgentSpeak
|
||||
program as beliefs.
|
||||
|
||||
:param element: The program element to convert to a slug.
|
||||
:return: The slug string representation.
|
||||
:raises NotImplementedError: If no specific implementation exists for the element type.
|
||||
"""
|
||||
raise NotImplementedError(f"Cannot convert element {element} to a slug.")
|
||||
|
||||
@slugify.register
|
||||
@staticmethod
|
||||
def _(n: Norm) -> str:
|
||||
"""
|
||||
Converts a Norm to a slug.
|
||||
|
||||
Norms are converted to slugs with the 'norm_' prefix followed by
|
||||
the slugified norm text.
|
||||
|
||||
:param n: The Norm to convert.
|
||||
:return: The slug string representation.
|
||||
"""
|
||||
return f"norm_{AgentSpeakGenerator._slugify_str(n.norm)}"
|
||||
|
||||
@slugify.register
|
||||
@staticmethod
|
||||
def _(sb: SemanticBelief) -> str:
|
||||
"""
|
||||
Converts a SemanticBelief to a slug.
|
||||
|
||||
Semantic beliefs are converted to slugs with the 'semantic_' prefix
|
||||
followed by the slugified belief name.
|
||||
|
||||
:param sb: The SemanticBelief to convert.
|
||||
:return: The slug string representation.
|
||||
"""
|
||||
return f"semantic_{AgentSpeakGenerator._slugify_str(sb.name)}"
|
||||
|
||||
@slugify.register
|
||||
@staticmethod
|
||||
def _(g: Goal) -> str:
|
||||
def _(g: BaseGoal) -> str:
|
||||
"""
|
||||
Converts a BaseGoal to a slug.
|
||||
|
||||
Goals are converted to slugs using their slugified names directly.
|
||||
|
||||
:param g: The BaseGoal to convert.
|
||||
:return: The slug string representation.
|
||||
"""
|
||||
return AgentSpeakGenerator._slugify_str(g.name)
|
||||
|
||||
@slugify.register
|
||||
@staticmethod
|
||||
def _(t: Trigger):
|
||||
def _(t: Trigger) -> str:
|
||||
"""
|
||||
Converts a Trigger to a slug.
|
||||
|
||||
Triggers are converted to slugs with the 'trigger_' prefix followed by
|
||||
the slugified trigger name.
|
||||
|
||||
:param t: The Trigger to convert.
|
||||
:return: The slug string representation.
|
||||
"""
|
||||
return f"trigger_{AgentSpeakGenerator._slugify_str(t.name)}"
|
||||
|
||||
@staticmethod
|
||||
def _slugify_str(text: str) -> str:
|
||||
"""
|
||||
Converts a text string to a slug.
|
||||
|
||||
This helper method converts arbitrary text to a URL-friendly slug format
|
||||
by converting to lowercase, removing special characters, and replacing
|
||||
spaces with underscores. It also removes common stopwords.
|
||||
|
||||
:param text: The text string to convert.
|
||||
:return: The slugified string.
|
||||
"""
|
||||
return slugify(text, separator="_", stopwords=["a", "an", "the", "we", "you", "I"])
|
||||
|
||||
@@ -1,203 +0,0 @@
|
||||
import typing
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
# --- Types ---
|
||||
|
||||
|
||||
@dataclass
|
||||
class BeliefLiteral:
|
||||
"""
|
||||
Represents a literal or atom.
|
||||
Example: phase(1), user_said("hello"), ~started
|
||||
"""
|
||||
|
||||
functor: str
|
||||
args: list[str] = field(default_factory=list)
|
||||
negated: bool = False
|
||||
|
||||
def __str__(self):
|
||||
# In ASL, 'not' is usually for closed-world assumption (prolog style),
|
||||
# '~' is for explicit negation in beliefs.
|
||||
# For simplicity in behavior trees, we often use 'not' for conditions.
|
||||
prefix = "not " if self.negated else ""
|
||||
if not self.args:
|
||||
return f"{prefix}{self.functor}"
|
||||
|
||||
# Clean args to ensure strings are quoted if they look like strings,
|
||||
# but usually the converter handles the quoting of string literals.
|
||||
args_str = ", ".join(self.args)
|
||||
return f"{prefix}{self.functor}({args_str})"
|
||||
|
||||
|
||||
@dataclass
|
||||
class GoalLiteral:
|
||||
name: str
|
||||
|
||||
def __str__(self):
|
||||
return f"!{self.name}"
|
||||
|
||||
|
||||
@dataclass
|
||||
class ActionLiteral:
|
||||
"""
|
||||
Represents a step in a plan body.
|
||||
Example: .say("Hello") or !achieve_goal
|
||||
"""
|
||||
|
||||
code: str
|
||||
|
||||
def __str__(self):
|
||||
return self.code
|
||||
|
||||
|
||||
@dataclass
|
||||
class BinaryOp:
|
||||
"""
|
||||
Represents logical operations.
|
||||
Example: (A & B) | C
|
||||
"""
|
||||
|
||||
left: "Expression | str"
|
||||
operator: typing.Literal["&", "|"]
|
||||
right: "Expression | str"
|
||||
|
||||
def __str__(self):
|
||||
l_str = str(self.left)
|
||||
r_str = str(self.right)
|
||||
|
||||
if isinstance(self.left, BinaryOp):
|
||||
l_str = f"({l_str})"
|
||||
if isinstance(self.right, BinaryOp):
|
||||
r_str = f"({r_str})"
|
||||
|
||||
return f"{l_str} {self.operator} {r_str}"
|
||||
|
||||
|
||||
Literal = BeliefLiteral | GoalLiteral | ActionLiteral
|
||||
Expression = Literal | BinaryOp | str
|
||||
|
||||
|
||||
@dataclass
|
||||
class Rule:
|
||||
"""
|
||||
Represents an inference rule.
|
||||
Example: head :- body.
|
||||
"""
|
||||
|
||||
head: Expression
|
||||
body: Expression | None = None
|
||||
|
||||
def __str__(self):
|
||||
if not self.body:
|
||||
return f"{self.head}."
|
||||
return f"{self.head} :- {self.body}."
|
||||
|
||||
|
||||
@dataclass
|
||||
class PersistentRule:
|
||||
"""
|
||||
Represents an inference rule, where the inferred belief is persistent when formed.
|
||||
"""
|
||||
|
||||
head: Expression
|
||||
body: Expression
|
||||
|
||||
def __str__(self):
|
||||
if not self.body:
|
||||
raise Exception("Rule without body should not be persistent.")
|
||||
|
||||
lines = []
|
||||
|
||||
if isinstance(self.body, BinaryOp):
|
||||
lines.append(f"+{self.body.left}")
|
||||
if self.body.operator == "&":
|
||||
lines.append(f" : {self.body.right}")
|
||||
lines.append(f" <- +{self.head}.")
|
||||
if self.body.operator == "|":
|
||||
lines.append(f"+{self.body.right}")
|
||||
lines.append(f" <- +{self.head}.")
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Plan:
|
||||
"""
|
||||
Represents a plan.
|
||||
Syntax: +trigger : context <- body.
|
||||
"""
|
||||
|
||||
trigger: BeliefLiteral | GoalLiteral
|
||||
context: list[Expression] = field(default_factory=list)
|
||||
body: list[ActionLiteral] = field(default_factory=list)
|
||||
|
||||
def __str__(self):
|
||||
# Indentation settings
|
||||
INDENT = " "
|
||||
ARROW = "\n <- "
|
||||
COLON = "\n : "
|
||||
|
||||
# Build Header
|
||||
header = f"+{self.trigger}"
|
||||
if self.context:
|
||||
ctx_str = f" &\n{INDENT}".join(str(c) for c in self.context)
|
||||
header += f"{COLON}{ctx_str}"
|
||||
|
||||
# Case 1: Empty body
|
||||
if not self.body:
|
||||
return f"{header}."
|
||||
|
||||
# Case 2: Short body (optional optimization, keeping it uniform usually better)
|
||||
header += ARROW
|
||||
|
||||
lines = []
|
||||
# We start the first action on the same line or next line.
|
||||
# Let's put it on the next line for readability if there are multiple.
|
||||
|
||||
if len(self.body) == 1:
|
||||
return f"{header}{self.body[0]}."
|
||||
|
||||
# First item
|
||||
lines.append(f"{header}{self.body[0]};")
|
||||
# Middle items
|
||||
for item in self.body[1:-1]:
|
||||
lines.append(f"{INDENT}{item};")
|
||||
# Last item
|
||||
lines.append(f"{INDENT}{self.body[-1]}.")
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
@dataclass
|
||||
class AgentSpeakFile:
|
||||
"""
|
||||
Root element representing the entire generated file.
|
||||
"""
|
||||
|
||||
initial_beliefs: list[Rule] = field(default_factory=list)
|
||||
inference_rules: list[Rule | PersistentRule] = field(default_factory=list)
|
||||
plans: list[Plan] = field(default_factory=list)
|
||||
|
||||
def __str__(self):
|
||||
sections = []
|
||||
|
||||
if self.initial_beliefs:
|
||||
sections.append("// --- Initial Beliefs & Facts ---")
|
||||
sections.extend(str(rule) for rule in self.initial_beliefs)
|
||||
sections.append("")
|
||||
|
||||
if self.inference_rules:
|
||||
sections.append("// --- Inference Rules ---")
|
||||
sections.extend(str(rule) for rule in self.inference_rules if isinstance(rule, Rule))
|
||||
sections.append("")
|
||||
sections.extend(
|
||||
str(rule) for rule in self.inference_rules if isinstance(rule, PersistentRule)
|
||||
)
|
||||
sections.append("")
|
||||
|
||||
if self.plans:
|
||||
sections.append("// --- Plans ---")
|
||||
# Separate plans by a newline for readability
|
||||
sections.extend(str(plan) + "\n" for plan in self.plans)
|
||||
|
||||
return "\n".join(sections)
|
||||
@@ -1,425 +0,0 @@
|
||||
import asyncio
|
||||
import time
|
||||
from functools import singledispatchmethod
|
||||
|
||||
from slugify import slugify
|
||||
|
||||
from control_backend.agents.bdi import BDICoreAgent
|
||||
from control_backend.agents.bdi.asl_ast import (
|
||||
ActionLiteral,
|
||||
AgentSpeakFile,
|
||||
BeliefLiteral,
|
||||
BinaryOp,
|
||||
Expression,
|
||||
GoalLiteral,
|
||||
PersistentRule,
|
||||
Plan,
|
||||
Rule,
|
||||
)
|
||||
from control_backend.agents.bdi.bdi_program_manager import test_program
|
||||
from control_backend.schemas.program import (
|
||||
BasicBelief,
|
||||
Belief,
|
||||
ConditionalNorm,
|
||||
GestureAction,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
KeywordBelief,
|
||||
LLMAction,
|
||||
LogicalOperator,
|
||||
Phase,
|
||||
Program,
|
||||
ProgramElement,
|
||||
SemanticBelief,
|
||||
SpeechAction,
|
||||
)
|
||||
|
||||
|
||||
async def do_things():
|
||||
res = input("Wanna generate")
|
||||
if res == "y":
|
||||
program = AgentSpeakGenerator().generate(test_program)
|
||||
filename = f"{int(time.time())}.asl"
|
||||
with open(filename, "w") as f:
|
||||
f.write(program)
|
||||
else:
|
||||
# filename = "0test.asl"
|
||||
filename = "1766062491.asl"
|
||||
bdi_agent = BDICoreAgent("BDICoreAgent", filename)
|
||||
flag = asyncio.Event()
|
||||
await bdi_agent.start()
|
||||
await flag.wait()
|
||||
|
||||
|
||||
def do_other_things():
|
||||
print(AgentSpeakGenerator().generate(test_program))
|
||||
|
||||
|
||||
class AgentSpeakGenerator:
|
||||
"""
|
||||
Converts a Pydantic Program behavior model into an AgentSpeak(L) AST,
|
||||
then renders it to a string.
|
||||
"""
|
||||
|
||||
def generate(self, program: Program) -> str:
|
||||
asl = AgentSpeakFile()
|
||||
|
||||
self._generate_startup(program, asl)
|
||||
|
||||
for i, phase in enumerate(program.phases):
|
||||
next_phase = program.phases[i + 1] if i < len(program.phases) - 1 else None
|
||||
|
||||
self._generate_phase_flow(phase, next_phase, asl)
|
||||
|
||||
self._generate_norms(phase, asl)
|
||||
|
||||
self._generate_goals(phase, asl)
|
||||
|
||||
self._generate_triggers(phase, asl)
|
||||
|
||||
self._generate_fallbacks(program, asl)
|
||||
|
||||
return str(asl)
|
||||
|
||||
# --- Section: Startup & Phase Management ---
|
||||
|
||||
def _generate_startup(self, program: Program, asl: AgentSpeakFile):
|
||||
if not program.phases:
|
||||
return
|
||||
|
||||
# Initial belief: phase(start).
|
||||
asl.initial_beliefs.append(Rule(head=BeliefLiteral("phase", ['"start"'])))
|
||||
|
||||
# Startup plan: +started : phase(start) <- -phase(start); +phase(first_id).
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=BeliefLiteral("started"),
|
||||
context=[BeliefLiteral("phase", ['"start"'])],
|
||||
body=[
|
||||
ActionLiteral('-phase("start")'),
|
||||
ActionLiteral(f'+phase("{program.phases[0].id}")'),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
# Initial plans:
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=GoalLiteral("generate_response_with_goal(Goal)"),
|
||||
context=[BeliefLiteral("user_said", ["Message"])],
|
||||
body=[
|
||||
ActionLiteral("+responded_this_turn"),
|
||||
ActionLiteral(".findall(Norm, norm(Norm), Norms)"),
|
||||
ActionLiteral(".reply_with_goal(Message, Norms, Goal)"),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
def _generate_phase_flow(self, phase: Phase, next_phase: Phase | None, asl: AgentSpeakFile):
|
||||
"""Generates the main loop listener and the transition logic for this phase."""
|
||||
|
||||
# +user_said(Message) : phase(ID) <- !goal1; !goal2; !transition_phase.
|
||||
goal_actions = [ActionLiteral("-responded_this_turn")]
|
||||
goal_actions += [
|
||||
ActionLiteral(f"!check_{self._slugify_str(keyword)}")
|
||||
for keyword in self._get_keyword_conditionals(phase)
|
||||
]
|
||||
goal_actions += [ActionLiteral(f"!{self._slugify(g)}") for g in phase.goals]
|
||||
goal_actions.append(ActionLiteral("!transition_phase"))
|
||||
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=BeliefLiteral("user_said", ["Message"]),
|
||||
context=[BeliefLiteral("phase", [f'"{phase.id}"'])],
|
||||
body=goal_actions,
|
||||
)
|
||||
)
|
||||
|
||||
# +!transition_phase : phase(ID) <- -phase(ID); +(NEXT_ID).
|
||||
next_id = str(next_phase.id) if next_phase else "end"
|
||||
|
||||
transition_context = [BeliefLiteral("phase", [f'"{phase.id}"'])]
|
||||
if phase.goals:
|
||||
transition_context.append(BeliefLiteral(f"achieved_{self._slugify(phase.goals[-1])}"))
|
||||
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=GoalLiteral("transition_phase"),
|
||||
context=transition_context,
|
||||
body=[
|
||||
ActionLiteral(f'-phase("{phase.id}")'),
|
||||
ActionLiteral(f'+phase("{next_id}")'),
|
||||
ActionLiteral("user_said(Anything)"),
|
||||
ActionLiteral("-+user_said(Anything)"),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
def _get_keyword_conditionals(self, phase: Phase) -> list[str]:
|
||||
res = []
|
||||
for belief in self._extract_basic_beliefs_from_phase(phase):
|
||||
if isinstance(belief, KeywordBelief):
|
||||
res.append(belief.keyword)
|
||||
|
||||
return res
|
||||
|
||||
# --- Section: Norms & Beliefs ---
|
||||
|
||||
def _generate_norms(self, phase: Phase, asl: AgentSpeakFile):
|
||||
for norm in phase.norms:
|
||||
norm_slug = f'"{norm.norm}"'
|
||||
head = BeliefLiteral("norm", [norm_slug])
|
||||
|
||||
# Base context is the phase
|
||||
phase_lit = BeliefLiteral("phase", [f'"{phase.id}"'])
|
||||
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
self._ensure_belief_inference(norm.condition, asl)
|
||||
|
||||
condition_expr = self._belief_to_expr(norm.condition)
|
||||
body = BinaryOp(phase_lit, "&", condition_expr)
|
||||
else:
|
||||
body = phase_lit
|
||||
|
||||
asl.inference_rules.append(Rule(head=head, body=body))
|
||||
|
||||
def _ensure_belief_inference(self, belief: Belief, asl: AgentSpeakFile):
|
||||
"""
|
||||
Recursively adds rules to infer beliefs.
|
||||
Checks strictly to avoid duplicates if necessary,
|
||||
though ASL engines often handle redefinition or we can use a set to track processed IDs.
|
||||
"""
|
||||
if isinstance(belief, KeywordBelief):
|
||||
pass
|
||||
# # Rule: keyword_said("word") :- user_said(M) & .substring("word", M, P) & P >= 0.
|
||||
# kwd_slug = f'"{belief.keyword}"'
|
||||
# head = BeliefLiteral("keyword_said", [kwd_slug])
|
||||
#
|
||||
# # Avoid duplicates
|
||||
# if any(str(r.head) == str(head) for r in asl.inference_rules):
|
||||
# return
|
||||
#
|
||||
# body = BinaryOp(
|
||||
# BeliefLiteral("user_said", ["Message"]),
|
||||
# "&",
|
||||
# BinaryOp(f".substring({kwd_slug}, Message, Pos)", "&", "Pos >= 0"),
|
||||
# )
|
||||
#
|
||||
# asl.inference_rules.append(Rule(head=head, body=body))
|
||||
|
||||
elif isinstance(belief, InferredBelief):
|
||||
self._ensure_belief_inference(belief.left, asl)
|
||||
self._ensure_belief_inference(belief.right, asl)
|
||||
|
||||
slug = self._slugify(belief)
|
||||
head = BeliefLiteral(slug)
|
||||
|
||||
if any(str(r.head) == str(head) for r in asl.inference_rules):
|
||||
return
|
||||
|
||||
op_char = "&" if belief.operator == LogicalOperator.AND else "|"
|
||||
body = BinaryOp(
|
||||
self._belief_to_expr(belief.left), op_char, self._belief_to_expr(belief.right)
|
||||
)
|
||||
asl.inference_rules.append(PersistentRule(head=head, body=body))
|
||||
|
||||
def _belief_to_expr(self, belief: Belief) -> Expression:
|
||||
if isinstance(belief, KeywordBelief):
|
||||
return BeliefLiteral("keyword_said", [f'"{belief.keyword}"'])
|
||||
else:
|
||||
return BeliefLiteral(self._slugify(belief))
|
||||
|
||||
# --- Section: Goals ---
|
||||
|
||||
def _generate_goals(self, phase: Phase, asl: AgentSpeakFile):
|
||||
previous_goal: Goal | None = None
|
||||
for goal in phase.goals:
|
||||
self._generate_goal_plan_recursive(goal, str(phase.id), previous_goal, asl)
|
||||
previous_goal = goal
|
||||
|
||||
def _generate_goal_plan_recursive(
|
||||
self,
|
||||
goal: Goal,
|
||||
phase_id: str,
|
||||
previous_goal: Goal | None,
|
||||
asl: AgentSpeakFile,
|
||||
responded_needed: bool = True,
|
||||
can_fail: bool = True,
|
||||
):
|
||||
goal_slug = self._slugify(goal)
|
||||
|
||||
# phase(ID) & not responded_this_turn & not achieved_goal
|
||||
context = [
|
||||
BeliefLiteral("phase", [f'"{phase_id}"']),
|
||||
]
|
||||
|
||||
if responded_needed:
|
||||
context.append(BeliefLiteral("responded_this_turn", negated=True))
|
||||
if can_fail:
|
||||
context.append(BeliefLiteral(f"achieved_{goal_slug}", negated=True))
|
||||
|
||||
if previous_goal:
|
||||
prev_slug = self._slugify(previous_goal)
|
||||
context.append(BeliefLiteral(f"achieved_{prev_slug}"))
|
||||
|
||||
body_actions = []
|
||||
sub_goals_to_process = []
|
||||
|
||||
for step in goal.plan.steps:
|
||||
if isinstance(step, Goal):
|
||||
sub_slug = self._slugify(step)
|
||||
body_actions.append(ActionLiteral(f"!{sub_slug}"))
|
||||
sub_goals_to_process.append(step)
|
||||
elif isinstance(step, SpeechAction):
|
||||
body_actions.append(ActionLiteral(f'.say("{step.text}")'))
|
||||
elif isinstance(step, GestureAction):
|
||||
body_actions.append(ActionLiteral(f'.gesture("{step.gesture}")'))
|
||||
elif isinstance(step, LLMAction):
|
||||
body_actions.append(ActionLiteral(f'!generate_response_with_goal("{step.goal}")'))
|
||||
|
||||
# Mark achievement
|
||||
if not goal.can_fail:
|
||||
body_actions.append(ActionLiteral(f"+achieved_{goal_slug}"))
|
||||
|
||||
asl.plans.append(Plan(trigger=GoalLiteral(goal_slug), context=context, body=body_actions))
|
||||
asl.plans.append(
|
||||
Plan(trigger=GoalLiteral(goal_slug), context=[], body=[ActionLiteral("true")])
|
||||
)
|
||||
|
||||
prev_sub = None
|
||||
for sub_goal in sub_goals_to_process:
|
||||
self._generate_goal_plan_recursive(sub_goal, phase_id, prev_sub, asl)
|
||||
prev_sub = sub_goal
|
||||
|
||||
# --- Section: Triggers ---
|
||||
|
||||
def _generate_triggers(self, phase: Phase, asl: AgentSpeakFile):
|
||||
for keyword in self._get_keyword_conditionals(phase):
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=GoalLiteral(f"check_{self._slugify_str(keyword)}"),
|
||||
context=[
|
||||
ActionLiteral(
|
||||
f'user_said(Message) & .substring("{keyword}", Message, Pos) & Pos >= 0'
|
||||
)
|
||||
],
|
||||
body=[
|
||||
ActionLiteral(f'+keyword_said("{keyword}")'),
|
||||
ActionLiteral(f'-keyword_said("{keyword}")'),
|
||||
],
|
||||
)
|
||||
)
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=GoalLiteral(f"check_{self._slugify_str(keyword)}"),
|
||||
body=[ActionLiteral("true")],
|
||||
)
|
||||
)
|
||||
|
||||
for trigger in phase.triggers:
|
||||
self._ensure_belief_inference(trigger.condition, asl)
|
||||
|
||||
trigger_belief_slug = self._belief_to_expr(trigger.condition)
|
||||
|
||||
body_actions = []
|
||||
sub_goals = []
|
||||
|
||||
for step in trigger.plan.steps:
|
||||
if isinstance(step, Goal):
|
||||
sub_slug = self._slugify(step)
|
||||
body_actions.append(ActionLiteral(f"!{sub_slug}"))
|
||||
sub_goals.append(step)
|
||||
elif isinstance(step, SpeechAction):
|
||||
body_actions.append(ActionLiteral(f'.say("{step.text}")'))
|
||||
elif isinstance(step, GestureAction):
|
||||
body_actions.append(
|
||||
ActionLiteral(f'.gesture("{step.gesture.type}", "{step.gesture.name}")')
|
||||
)
|
||||
elif isinstance(step, LLMAction):
|
||||
body_actions.append(
|
||||
ActionLiteral(f'!generate_response_with_goal("{step.goal}")')
|
||||
)
|
||||
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=BeliefLiteral(trigger_belief_slug),
|
||||
context=[BeliefLiteral("phase", [f'"{phase.id}"'])],
|
||||
body=body_actions,
|
||||
)
|
||||
)
|
||||
|
||||
# Recurse for triggered goals
|
||||
prev_sub = None
|
||||
for sub_goal in sub_goals:
|
||||
self._generate_goal_plan_recursive(
|
||||
sub_goal, str(phase.id), prev_sub, asl, False, False
|
||||
)
|
||||
prev_sub = sub_goal
|
||||
|
||||
# --- Section: Fallbacks ---
|
||||
|
||||
def _generate_fallbacks(self, program: Program, asl: AgentSpeakFile):
|
||||
asl.plans.append(
|
||||
Plan(trigger=GoalLiteral("transition_phase"), context=[], body=[ActionLiteral("true")])
|
||||
)
|
||||
|
||||
# --- Helpers ---
|
||||
|
||||
@singledispatchmethod
|
||||
def _slugify(self, element: ProgramElement) -> str:
|
||||
if element.name:
|
||||
raise NotImplementedError("Cannot slugify this element.")
|
||||
return self._slugify_str(element.name)
|
||||
|
||||
@_slugify.register
|
||||
def _(self, goal: Goal) -> str:
|
||||
if goal.name:
|
||||
return self._slugify_str(goal.name)
|
||||
return f"goal_{goal.id.hex}"
|
||||
|
||||
@_slugify.register
|
||||
def _(self, kwb: KeywordBelief) -> str:
|
||||
return f"keyword_said({kwb.keyword})"
|
||||
|
||||
@_slugify.register
|
||||
def _(self, sb: SemanticBelief) -> str:
|
||||
return self._slugify_str(sb.description)
|
||||
|
||||
@_slugify.register
|
||||
def _(self, ib: InferredBelief) -> str:
|
||||
return self._slugify_str(ib.name)
|
||||
|
||||
def _slugify_str(self, text: str) -> str:
|
||||
return slugify(text, separator="_", stopwords=["a", "an", "the", "we", "you", "I"])
|
||||
|
||||
def _extract_basic_beliefs_from_program(self, program: Program) -> list[BasicBelief]:
|
||||
beliefs = []
|
||||
|
||||
for phase in program.phases:
|
||||
beliefs.extend(self._extract_basic_beliefs_from_phase(phase))
|
||||
|
||||
return beliefs
|
||||
|
||||
def _extract_basic_beliefs_from_phase(self, phase: Phase) -> list[BasicBelief]:
|
||||
beliefs = []
|
||||
|
||||
for norm in phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
beliefs += self._extract_basic_beliefs_from_belief(norm.condition)
|
||||
|
||||
for trigger in phase.triggers:
|
||||
beliefs += self._extract_basic_beliefs_from_belief(trigger.condition)
|
||||
|
||||
return beliefs
|
||||
|
||||
def _extract_basic_beliefs_from_belief(self, belief: Belief) -> list[BasicBelief]:
|
||||
if isinstance(belief, InferredBelief):
|
||||
return self._extract_basic_beliefs_from_belief(
|
||||
belief.left
|
||||
) + self._extract_basic_beliefs_from_belief(belief.right)
|
||||
return [belief]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(do_things())
|
||||
# do_other_things()y
|
||||
@@ -1,6 +1,13 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import copy
|
||||
import json
|
||||
import logging
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
|
||||
@@ -19,6 +26,9 @@ from control_backend.schemas.ri_message import GestureCommand, RIEndpoint, Speec
|
||||
DELIMITER = ";\n" # TODO: temporary until we support lists in AgentSpeak
|
||||
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class BDICoreAgent(BaseAgent):
|
||||
"""
|
||||
BDI Core Agent.
|
||||
@@ -107,7 +117,6 @@ class BDICoreAgent(BaseAgent):
|
||||
if not maybe_more_work:
|
||||
deadline = self.bdi_agent.shortest_deadline()
|
||||
if deadline:
|
||||
self.logger.debug("Sleeping until %s", deadline)
|
||||
await asyncio.sleep(deadline - time.time())
|
||||
maybe_more_work = True
|
||||
else:
|
||||
@@ -156,16 +165,19 @@ class BDICoreAgent(BaseAgent):
|
||||
)
|
||||
await self.send(out_msg)
|
||||
case settings.agent_settings.user_interrupt_name:
|
||||
content = msg.body
|
||||
self.logger.debug("Received user interruption: %s", content)
|
||||
self.logger.debug("Received user interruption: %s", msg)
|
||||
|
||||
match msg.thread:
|
||||
case "force_phase_transition":
|
||||
self._set_goal("transition_phase")
|
||||
case "force_trigger":
|
||||
self._force_trigger(msg.body)
|
||||
case "force_norm":
|
||||
self._force_norm(msg.body)
|
||||
case "force_next_phase":
|
||||
self._force_next_phase()
|
||||
case _:
|
||||
self.logger.warning("Received unknow user interruption: %s", msg)
|
||||
self.logger.warning("Received unknown user interruption: %s", msg)
|
||||
|
||||
def _apply_belief_changes(self, belief_changes: BeliefMessage):
|
||||
"""
|
||||
@@ -205,6 +217,9 @@ class BDICoreAgent(BaseAgent):
|
||||
else:
|
||||
term = agentspeak.Literal(name)
|
||||
|
||||
if name != "user_said":
|
||||
experiment_logger.observation(f"Formed new belief: {name}{f'={args}' if args else ''}")
|
||||
|
||||
self.bdi_agent.call(
|
||||
agentspeak.Trigger.addition,
|
||||
agentspeak.GoalType.belief,
|
||||
@@ -242,6 +257,9 @@ class BDICoreAgent(BaseAgent):
|
||||
new_args = (agentspeak.Literal(arg) for arg in args)
|
||||
term = agentspeak.Literal(name, new_args)
|
||||
|
||||
if name != "user_said":
|
||||
experiment_logger.observation(f"Removed belief: {name}{f'={args}' if args else ''}")
|
||||
|
||||
result = self.bdi_agent.call(
|
||||
agentspeak.Trigger.removal,
|
||||
agentspeak.GoalType.belief,
|
||||
@@ -302,15 +320,21 @@ class BDICoreAgent(BaseAgent):
|
||||
self.logger.debug(f"Set goal !{self.format_belief_string(name, args)}.")
|
||||
|
||||
def _force_trigger(self, name: str):
|
||||
self.bdi_agent.call(
|
||||
agentspeak.Trigger.addition,
|
||||
agentspeak.GoalType.achievement,
|
||||
agentspeak.Literal(name),
|
||||
agentspeak.runtime.Intention(),
|
||||
)
|
||||
self._set_goal(name)
|
||||
|
||||
self.logger.info("Manually forced trigger %s.", name)
|
||||
|
||||
# TODO: make this compatible for critical norms
|
||||
def _force_norm(self, name: str):
|
||||
self._add_belief(f"force_{name}")
|
||||
|
||||
self.logger.info("Manually forced norm %s.", name)
|
||||
|
||||
def _force_next_phase(self):
|
||||
self._set_goal("force_transition_phase")
|
||||
|
||||
self.logger.info("Manually forced phase transition.")
|
||||
|
||||
def _add_custom_actions(self) -> None:
|
||||
"""
|
||||
Add any custom actions here. Inside `@self.actions.add()`, the first argument is
|
||||
@@ -326,14 +350,11 @@ class BDICoreAgent(BaseAgent):
|
||||
message_text = agentspeak.grounded(term.args[0], intention.scope)
|
||||
norms = agentspeak.grounded(term.args[1], intention.scope)
|
||||
|
||||
self.logger.debug("Norms: %s", norms)
|
||||
self.logger.debug("User text: %s", message_text)
|
||||
|
||||
self.add_behavior(self._send_to_llm(str(message_text), str(norms), ""))
|
||||
yield
|
||||
|
||||
@self.actions.add(".reply_with_goal", 3)
|
||||
def _reply_with_goal(agent: "BDICoreAgent", term, intention):
|
||||
def _reply_with_goal(agent, term, intention):
|
||||
"""
|
||||
Let the LLM generate a response to a user's utterance with the current norms and a
|
||||
specific goal.
|
||||
@@ -341,16 +362,22 @@ class BDICoreAgent(BaseAgent):
|
||||
message_text = agentspeak.grounded(term.args[0], intention.scope)
|
||||
norms = agentspeak.grounded(term.args[1], intention.scope)
|
||||
goal = agentspeak.grounded(term.args[2], intention.scope)
|
||||
|
||||
self.logger.debug(
|
||||
'"reply_with_goal" action called with message=%s, norms=%s, goal=%s',
|
||||
message_text,
|
||||
norms,
|
||||
goal,
|
||||
)
|
||||
self.add_behavior(self._send_to_llm(str(message_text), str(norms), str(goal)))
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_norms", 1)
|
||||
def _notify_norms(agent, term, intention):
|
||||
norms = agentspeak.grounded(term.args[0], intention.scope)
|
||||
|
||||
norm_update_message = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
thread="active_norms_update",
|
||||
body=str(norms),
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(norm_update_message, should_log=False))
|
||||
yield
|
||||
|
||||
@self.actions.add(".say", 1)
|
||||
def _say(agent, term, intention):
|
||||
"""
|
||||
@@ -375,6 +402,8 @@ class BDICoreAgent(BaseAgent):
|
||||
body=str(message_text),
|
||||
)
|
||||
|
||||
experiment_logger.chat(str(message_text), extra={"role": "assistant"})
|
||||
|
||||
self.add_behavior(self.send(chat_history_message))
|
||||
|
||||
yield
|
||||
@@ -459,7 +488,6 @@ class BDICoreAgent(BaseAgent):
|
||||
body=str(trigger_name),
|
||||
)
|
||||
|
||||
# TODO: check with Pim
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
yield
|
||||
|
||||
@@ -1,10 +1,18 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
|
||||
import zmq
|
||||
from pydantic import ValidationError
|
||||
from zmq.asyncio import Context
|
||||
|
||||
import control_backend
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.config import settings
|
||||
@@ -19,17 +27,21 @@ from control_backend.schemas.program import (
|
||||
Program,
|
||||
)
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class BDIProgramManager(BaseAgent):
|
||||
"""
|
||||
BDI Program Manager Agent.
|
||||
|
||||
This agent is responsible for receiving high-level programs (sequences of instructions/goals)
|
||||
from the external HTTP API (via ZMQ) and translating them into core beliefs (norms and goals)
|
||||
for the BDI Core Agent. In the future, it will be responsible for determining when goals are
|
||||
met, and passing on new norms and goals accordingly.
|
||||
from the external HTTP API (via ZMQ), transforming it into an AgentSpeak program, sharing the
|
||||
program and its components to other agents, and keeping agents informed of the current state.
|
||||
|
||||
:ivar sub_socket: The ZMQ SUB socket used to receive program updates.
|
||||
:ivar _program: The current Program.
|
||||
:ivar _phase: The current Phase.
|
||||
:ivar _goal_mapping: A mapping of goal IDs to goals.
|
||||
"""
|
||||
|
||||
_program: Program
|
||||
@@ -38,10 +50,32 @@ class BDIProgramManager(BaseAgent):
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.sub_socket = None
|
||||
self._goal_mapping: dict[str, Goal] = {}
|
||||
|
||||
def _initialize_internal_state(self, program: Program):
|
||||
"""
|
||||
Initialize the state of the program manager given a new Program. Reset the tracking of the
|
||||
current phase to the first phase, make a mapping of goal IDs to goals, used during the life
|
||||
of the program.
|
||||
:param program: The new program.
|
||||
"""
|
||||
self._program = program
|
||||
self._phase = program.phases[0] # start in first phase
|
||||
self._goal_mapping = {}
|
||||
for phase in program.phases:
|
||||
for goal in phase.goals:
|
||||
self._populate_goal_mapping_with_goal(goal)
|
||||
|
||||
def _populate_goal_mapping_with_goal(self, goal: Goal):
|
||||
"""
|
||||
Recurse through the given goal and its subgoals and add all goals found to the
|
||||
``self._goal_mapping``.
|
||||
:param goal: The goal to add to the ``self._goal_mapping``, including subgoals.
|
||||
"""
|
||||
self._goal_mapping[str(goal.id)] = goal
|
||||
for step in goal.plan.steps:
|
||||
if isinstance(step, Goal):
|
||||
self._populate_goal_mapping_with_goal(step)
|
||||
|
||||
async def _create_agentspeak_and_send_to_bdi(self, program: Program):
|
||||
"""
|
||||
@@ -53,7 +87,7 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
asl_str = asg.generate(program)
|
||||
|
||||
file_name = "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
file_name = settings.behaviour_settings.agentspeak_file
|
||||
|
||||
with open(file_name, "w") as f:
|
||||
f.write(asl_str)
|
||||
@@ -73,12 +107,39 @@ class BDIProgramManager(BaseAgent):
|
||||
phases = json.loads(msg.body)
|
||||
|
||||
await self._transition_phase(phases["old"], phases["new"])
|
||||
case "achieve_goal":
|
||||
goal_id = msg.body
|
||||
await self._send_achieved_goal_to_semantic_belief_extractor(goal_id)
|
||||
|
||||
async def _transition_phase(self, old: str, new: str):
|
||||
assert old == str(self._phase.id)
|
||||
"""
|
||||
When receiving a signal from the BDI core that the phase has changed, apply this change to
|
||||
the current state and inform other agents about the change.
|
||||
|
||||
:param old: The ID of the old phase.
|
||||
:param new: The ID of the new phase.
|
||||
"""
|
||||
if self._phase is None:
|
||||
return
|
||||
|
||||
if old != str(self._phase.id):
|
||||
self.logger.warning(
|
||||
f"Phase transition desync detected! ASL requested move from '{old}', "
|
||||
f"but Python is currently in '{self._phase.id}'. Request ignored."
|
||||
)
|
||||
return
|
||||
|
||||
if new == "end":
|
||||
self._phase = None
|
||||
# Notify user interaction agent
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
thread="transition_phase",
|
||||
body="end",
|
||||
)
|
||||
self.logger.info("Transitioned to end phase, notifying UserInterruptAgent.")
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
return
|
||||
|
||||
for phase in self._program.phases:
|
||||
@@ -94,10 +155,18 @@ class BDIProgramManager(BaseAgent):
|
||||
thread="transition_phase",
|
||||
body=str(self._phase.id),
|
||||
)
|
||||
self.logger.info(f"Transitioned to phase {new}, notifying UserInterruptAgent.")
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
def _extract_current_beliefs(self) -> list[Belief]:
|
||||
"""Extract beliefs from the current phase."""
|
||||
assert self._phase is not None, (
|
||||
"Invalid state, no phase set. Call this method only when "
|
||||
"a program has been received and the end-phase has not "
|
||||
"been reached."
|
||||
)
|
||||
|
||||
beliefs: list[Belief] = []
|
||||
|
||||
for norm in self._phase.norms:
|
||||
@@ -111,6 +180,7 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
@staticmethod
|
||||
def _extract_beliefs_from_belief(belief: Belief) -> list[Belief]:
|
||||
"""Recursively extract beliefs from the given belief."""
|
||||
if isinstance(belief, InferredBelief):
|
||||
return BDIProgramManager._extract_beliefs_from_belief(
|
||||
belief.left
|
||||
@@ -118,9 +188,7 @@ class BDIProgramManager(BaseAgent):
|
||||
return [belief]
|
||||
|
||||
async def _send_beliefs_to_semantic_belief_extractor(self):
|
||||
"""
|
||||
Extract beliefs from the program and send them to the Semantic Belief Extractor Agent.
|
||||
"""
|
||||
"""Extract beliefs from the program and send them to the Semantic Belief Extractor Agent."""
|
||||
beliefs = BeliefList(beliefs=self._extract_current_beliefs())
|
||||
|
||||
message = InternalMessage(
|
||||
@@ -132,23 +200,35 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
await self.send(message)
|
||||
|
||||
@staticmethod
|
||||
def _extract_goals_from_goal(goal: Goal) -> list[Goal]:
|
||||
"""
|
||||
Extract all goals from a given goal, that is: the goal itself and any subgoals.
|
||||
|
||||
:return: All goals within and including the given goal.
|
||||
"""
|
||||
goals: list[Goal] = [goal]
|
||||
for step in goal.plan.steps:
|
||||
if isinstance(step, Goal):
|
||||
goals.extend(BDIProgramManager._extract_goals_from_goal(step))
|
||||
return goals
|
||||
|
||||
def _extract_current_goals(self) -> list[Goal]:
|
||||
"""
|
||||
Extract all goals from the program, including subgoals.
|
||||
|
||||
:return: A list of Goal objects.
|
||||
"""
|
||||
assert self._phase is not None, (
|
||||
"Invalid state, no phase set. Call this method only when "
|
||||
"a program has been received and the end-phase has not "
|
||||
"been reached."
|
||||
)
|
||||
|
||||
goals: list[Goal] = []
|
||||
|
||||
def extract_goals_from_goal(goal_: Goal) -> list[Goal]:
|
||||
goals_: list[Goal] = [goal]
|
||||
for plan in goal_.plan:
|
||||
if isinstance(plan, Goal):
|
||||
goals_.extend(extract_goals_from_goal(plan))
|
||||
return goals_
|
||||
|
||||
for goal in self._phase.goals:
|
||||
goals.extend(extract_goals_from_goal(goal))
|
||||
goals.extend(self._extract_goals_from_goal(goal))
|
||||
|
||||
return goals
|
||||
|
||||
@@ -167,6 +247,25 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
await self.send(message)
|
||||
|
||||
async def _send_achieved_goal_to_semantic_belief_extractor(self, achieved_goal_id: str):
|
||||
"""
|
||||
Inform the semantic belief extractor when a goal is marked achieved.
|
||||
|
||||
:param achieved_goal_id: The id of the achieved goal.
|
||||
"""
|
||||
goal = self._goal_mapping.get(achieved_goal_id)
|
||||
if goal is None:
|
||||
self.logger.debug(f"Goal with ID {achieved_goal_id} marked achieved but was not found.")
|
||||
return
|
||||
|
||||
goals = self._extract_goals_from_goal(goal)
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
body=GoalList(goals=goals).model_dump_json(),
|
||||
thread="achieved_goals",
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
async def _send_clear_llm_history(self):
|
||||
"""
|
||||
Clear the LLM Agent's conversation history.
|
||||
@@ -188,6 +287,18 @@ class BDIProgramManager(BaseAgent):
|
||||
await self.send(extractor_msg)
|
||||
self.logger.debug("Sent message to extractor agent to clear history.")
|
||||
|
||||
@staticmethod
|
||||
def _rollover_experiment_logs():
|
||||
"""
|
||||
A new experiment program started; make a new experiment log file.
|
||||
"""
|
||||
handlers = logging.getLogger(settings.logging_settings.experiment_logger_name).handlers
|
||||
for handler in handlers:
|
||||
if isinstance(handler, control_backend.logging.DatedFileHandler):
|
||||
experiment_logger.action("Doing rollover...")
|
||||
handler.do_rollover()
|
||||
experiment_logger.debug("Finished rollover.")
|
||||
|
||||
async def _receive_programs(self):
|
||||
"""
|
||||
Continuous loop that receives program updates from the HTTP endpoint.
|
||||
@@ -206,8 +317,9 @@ class BDIProgramManager(BaseAgent):
|
||||
continue
|
||||
|
||||
self._initialize_internal_state(program)
|
||||
|
||||
await self._send_program_to_user_interrupt(program)
|
||||
await self._send_clear_llm_history()
|
||||
self._rollover_experiment_logs()
|
||||
|
||||
await asyncio.gather(
|
||||
self._create_agentspeak_and_send_to_bdi(program),
|
||||
@@ -215,13 +327,30 @@ class BDIProgramManager(BaseAgent):
|
||||
self._send_goals_to_semantic_belief_extractor(),
|
||||
)
|
||||
|
||||
async def _send_program_to_user_interrupt(self, program: Program):
|
||||
"""
|
||||
Send the received program to the User Interrupt Agent.
|
||||
|
||||
:param program: The program object received from the API.
|
||||
"""
|
||||
msg = InternalMessage(
|
||||
sender=self.name,
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
body=program.model_dump_json(),
|
||||
thread="new_program",
|
||||
)
|
||||
|
||||
await self.send(msg)
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent.
|
||||
|
||||
Connects the internal ZMQ SUB socket and subscribes to the 'program' topic.
|
||||
Starts the background behavior to receive programs.
|
||||
Starts the background behavior to receive programs. Initializes a default program.
|
||||
"""
|
||||
await self._create_agentspeak_and_send_to_bdi(Program(phases=[]))
|
||||
|
||||
context = Context.instance()
|
||||
|
||||
self.sub_socket = context.socket(zmq.SUB)
|
||||
|
||||
@@ -1,152 +0,0 @@
|
||||
import json
|
||||
|
||||
from pydantic import ValidationError
|
||||
|
||||
from control_backend.agents.base import BaseAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
|
||||
|
||||
class BDIBeliefCollectorAgent(BaseAgent):
|
||||
"""
|
||||
BDI Belief Collector Agent.
|
||||
|
||||
This agent acts as a central aggregator for beliefs derived from various sources (e.g., text,
|
||||
emotion, vision). It receives raw extracted data from other agents,
|
||||
normalizes them into valid :class:`Belief` objects, and forwards them as a unified packet to the
|
||||
BDI Core Agent.
|
||||
|
||||
It serves as a funnel to ensure the BDI agent receives a consistent stream of beliefs.
|
||||
"""
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent.
|
||||
"""
|
||||
self.logger.info("Setting up %s", self.name)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming messages from other extractor agents.
|
||||
|
||||
Routes the message to specific handlers based on the 'type' field in the JSON body.
|
||||
Supported types:
|
||||
- ``belief_extraction_text``: Handled by :meth:`_handle_belief_text`
|
||||
- ``emotion_extraction_text``: Handled by :meth:`_handle_emo_text`
|
||||
|
||||
:param msg: The received internal message.
|
||||
"""
|
||||
sender_node = msg.sender
|
||||
|
||||
# Parse JSON payload
|
||||
try:
|
||||
payload = json.loads(msg.body)
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"BeliefCollector: failed to parse JSON from %s. Body=%r Error=%s",
|
||||
sender_node,
|
||||
msg.body,
|
||||
e,
|
||||
)
|
||||
return
|
||||
|
||||
msg_type = payload.get("type")
|
||||
|
||||
# Prefer explicit 'type' field
|
||||
if msg_type == "belief_extraction_text":
|
||||
self.logger.debug("Message routed to _handle_belief_text (sender=%s)", sender_node)
|
||||
await self._handle_belief_text(payload, sender_node)
|
||||
# This is not implemented yet, but we keep the structure for future use
|
||||
elif msg_type == "emotion_extraction_text":
|
||||
self.logger.debug("Message routed to _handle_emo_text (sender=%s)", sender_node)
|
||||
await self._handle_emo_text(payload, sender_node)
|
||||
else:
|
||||
self.logger.warning(
|
||||
"Unrecognized message (sender=%s, type=%r). Ignoring.", sender_node, msg_type
|
||||
)
|
||||
|
||||
async def _handle_belief_text(self, payload: dict, origin: str):
|
||||
"""
|
||||
Process text-based belief extraction payloads.
|
||||
|
||||
Expected payload format::
|
||||
|
||||
{
|
||||
"type": "belief_extraction_text",
|
||||
"beliefs": {
|
||||
"user_said": ["Can you help me?"],
|
||||
"intention": ["ask_help"]
|
||||
}
|
||||
}
|
||||
|
||||
Validates and converts the dictionary items into :class:`Belief` objects.
|
||||
|
||||
:param payload: The dictionary payload containing belief data.
|
||||
:param origin: The name of the sender agent.
|
||||
"""
|
||||
beliefs = payload.get("beliefs", {})
|
||||
|
||||
if not beliefs:
|
||||
self.logger.debug("Received empty beliefs set.")
|
||||
return
|
||||
|
||||
def try_create_belief(name, arguments) -> Belief | None:
|
||||
"""
|
||||
Create a belief object from name and arguments, or return None silently if the input is
|
||||
not correct.
|
||||
|
||||
:param name: The name of the belief.
|
||||
:param arguments: The arguments of the belief.
|
||||
:return: A Belief object if the input is valid or None.
|
||||
"""
|
||||
try:
|
||||
return Belief(name=name, arguments=arguments)
|
||||
except ValidationError:
|
||||
return None
|
||||
|
||||
beliefs = [
|
||||
belief
|
||||
for name, arguments in beliefs.items()
|
||||
if (belief := try_create_belief(name, arguments)) is not None
|
||||
]
|
||||
|
||||
self.logger.debug("Forwarding %d beliefs.", len(beliefs))
|
||||
for belief in beliefs:
|
||||
for argument in belief.arguments:
|
||||
self.logger.debug(" - %s %s", belief.name, argument)
|
||||
|
||||
await self._send_beliefs_to_bdi(beliefs, origin=origin)
|
||||
|
||||
async def _handle_emo_text(self, payload: dict, origin: str):
|
||||
"""
|
||||
Process emotion extraction payloads.
|
||||
|
||||
**TODO**: Implement this method once emotion recognition is integrated.
|
||||
|
||||
:param payload: The dictionary payload containing emotion data.
|
||||
:param origin: The name of the sender agent.
|
||||
"""
|
||||
pass
|
||||
|
||||
async def _send_beliefs_to_bdi(self, beliefs: list[Belief], origin: str | None = None):
|
||||
"""
|
||||
Send a list of aggregated beliefs to the BDI Core Agent.
|
||||
|
||||
Wraps the beliefs in a :class:`BeliefMessage` and sends it via the 'beliefs' thread.
|
||||
|
||||
:param beliefs: The list of Belief objects to send.
|
||||
:param origin: (Optional) The original source of the beliefs (unused currently).
|
||||
"""
|
||||
if not beliefs:
|
||||
return
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=BeliefMessage(create=beliefs).model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
|
||||
await self.send(msg)
|
||||
self.logger.info("Sent %d belief(s) to BDI core.", len(beliefs))
|
||||
@@ -1,6 +1,38 @@
|
||||
norms("").
|
||||
//This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
//University within the Software Project course.
|
||||
//© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
|
||||
+user_said(Message) : norms(Norms) <-
|
||||
.notify_user_said(Message);
|
||||
-user_said(Message);
|
||||
.reply(Message, Norms).
|
||||
phase("end").
|
||||
keyword_said(Keyword) :- (user_said(Message) & .substring(Keyword, Message, Pos)) & (Pos >= 0).
|
||||
|
||||
|
||||
+!reply_with_goal(Goal)
|
||||
: user_said(Message)
|
||||
<- +responded_this_turn;
|
||||
.findall(Norm, norm(Norm), Norms);
|
||||
.reply_with_goal(Message, Norms, Goal).
|
||||
|
||||
+!say(Text)
|
||||
<- +responded_this_turn;
|
||||
.say(Text).
|
||||
|
||||
+!reply
|
||||
: user_said(Message)
|
||||
<- +responded_this_turn;
|
||||
.findall(Norm, norm(Norm), Norms);
|
||||
.reply(Message, Norms).
|
||||
|
||||
+!notify_cycle
|
||||
<- .notify_ui;
|
||||
.wait(1).
|
||||
|
||||
+user_said(Message)
|
||||
: phase("end")
|
||||
<- .notify_user_said(Message);
|
||||
!reply.
|
||||
|
||||
+!check_triggers
|
||||
<- true.
|
||||
|
||||
+!transition_phase
|
||||
<- true.
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
|
||||
@@ -12,12 +18,18 @@ from control_backend.schemas.belief_list import BeliefList, GoalList
|
||||
from control_backend.schemas.belief_message import Belief as InternalBelief
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
|
||||
from control_backend.schemas.program import Goal, SemanticBelief
|
||||
from control_backend.schemas.program import BaseGoal, SemanticBelief
|
||||
|
||||
type JSONLike = None | bool | int | float | str | list["JSONLike"] | dict[str, "JSONLike"]
|
||||
|
||||
|
||||
class BeliefState(BaseModel):
|
||||
"""
|
||||
Represents the state of inferred semantic beliefs.
|
||||
|
||||
Maintains sets of beliefs that are currently considered true or false.
|
||||
"""
|
||||
|
||||
true: set[InternalBelief] = set()
|
||||
false: set[InternalBelief] = set()
|
||||
|
||||
@@ -62,6 +74,7 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
self.goal_inferrer = GoalAchievementInferrer(self._llm)
|
||||
self._current_beliefs = BeliefState()
|
||||
self._current_goal_completions: dict[str, bool] = {}
|
||||
self._force_completed_goals: set[BaseGoal] = set()
|
||||
self.conversation = ChatHistory(messages=[])
|
||||
|
||||
async def setup(self):
|
||||
@@ -118,13 +131,19 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
case "goals":
|
||||
self._handle_goals_message(msg)
|
||||
await self._infer_goal_completions()
|
||||
case "achieved_goals":
|
||||
self._handle_goal_achieved_message(msg)
|
||||
case "conversation_history":
|
||||
if msg.body == "reset":
|
||||
self._reset()
|
||||
self._reset_phase()
|
||||
case _:
|
||||
self.logger.warning("Received unexpected message from %s", msg.sender)
|
||||
|
||||
def _reset(self):
|
||||
def _reset_phase(self):
|
||||
"""
|
||||
Delete all state about the current phase, such as what beliefs exist and which ones are
|
||||
true.
|
||||
"""
|
||||
self.conversation = ChatHistory(messages=[])
|
||||
self.belief_inferrer.available_beliefs.clear()
|
||||
self._current_beliefs = BeliefState()
|
||||
@@ -132,6 +151,11 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
self._current_goal_completions = {}
|
||||
|
||||
def _handle_beliefs_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle the message from the Program Manager agent containing the beliefs that exist for this
|
||||
phase.
|
||||
:param msg: A list of beliefs.
|
||||
"""
|
||||
try:
|
||||
belief_list = BeliefList.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
@@ -149,6 +173,11 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
)
|
||||
|
||||
def _handle_goals_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle the message from the Program Manager agent containing the goals that exist for this
|
||||
phase.
|
||||
:param msg: A list of goals.
|
||||
"""
|
||||
try:
|
||||
goals_list = GoalList.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
@@ -158,7 +187,8 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
return
|
||||
|
||||
# Use only goals that can fail, as the others are always assumed to be completed
|
||||
available_goals = [g for g in goals_list.goals if g.can_fail]
|
||||
available_goals = {g for g in goals_list.goals if g.can_fail}
|
||||
available_goals -= self._force_completed_goals
|
||||
self.goal_inferrer.goals = available_goals
|
||||
self.logger.debug(
|
||||
"Received %d failable goals from the program manager: %s",
|
||||
@@ -166,6 +196,28 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
", ".join(g.name for g in available_goals),
|
||||
)
|
||||
|
||||
def _handle_goal_achieved_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle message that gets sent when goals are marked achieved from a user interrupt. This
|
||||
goal should then not be changed by this agent anymore.
|
||||
:param msg: List of goals that are marked achieved.
|
||||
"""
|
||||
# NOTE: When goals can be marked unachieved, remember to re-add them to the goal_inferrer
|
||||
try:
|
||||
goals_list = GoalList.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
self.logger.warning(
|
||||
"Received goal achieved message from the program manager, "
|
||||
"but it is not a valid list of goals."
|
||||
)
|
||||
return
|
||||
|
||||
for goal in goals_list.goals:
|
||||
self._force_completed_goals.add(goal)
|
||||
self._current_goal_completions[f"achieved_{AgentSpeakGenerator.slugify(goal)}"] = True
|
||||
|
||||
self.goal_inferrer.goals -= self._force_completed_goals
|
||||
|
||||
async def _user_said(self, text: str):
|
||||
"""
|
||||
Create a belief for the user's full speech.
|
||||
@@ -183,6 +235,10 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
await self.send(belief_msg)
|
||||
|
||||
async def _infer_new_beliefs(self):
|
||||
"""
|
||||
Determine which beliefs hold and do not hold for the current conversation state. When
|
||||
beliefs change, a message is sent to the BDI core.
|
||||
"""
|
||||
conversation_beliefs = await self.belief_inferrer.infer_from_conversation(self.conversation)
|
||||
|
||||
new_beliefs = conversation_beliefs - self._current_beliefs
|
||||
@@ -206,6 +262,10 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
await self.send(message)
|
||||
|
||||
async def _infer_goal_completions(self):
|
||||
"""
|
||||
Determine which goals have been achieved given the current conversation state. When
|
||||
a goal's achieved state changes, a message is sent to the BDI core.
|
||||
"""
|
||||
goal_completions = await self.goal_inferrer.infer_from_conversation(self.conversation)
|
||||
|
||||
new_achieved = [
|
||||
@@ -291,6 +351,9 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
settings.llm_settings.local_llm_url,
|
||||
headers={"Authorization": f"Bearer {settings.llm_settings.api_key}"}
|
||||
if settings.llm_settings.api_key
|
||||
else {},
|
||||
json={
|
||||
"model": settings.llm_settings.local_llm_model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
@@ -317,7 +380,7 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
|
||||
class SemanticBeliefInferrer:
|
||||
"""
|
||||
Class that handles only prompting an LLM for semantic beliefs.
|
||||
Infers semantic beliefs from conversation history using an LLM.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
@@ -347,19 +410,22 @@ class SemanticBeliefInferrer:
|
||||
for beliefs in self._split_into_chunks(self.available_beliefs, n_parallel)
|
||||
]
|
||||
)
|
||||
retval = BeliefState()
|
||||
new_beliefs = BeliefState()
|
||||
# Collect beliefs from all parallel calls
|
||||
for beliefs in all_beliefs:
|
||||
if beliefs is None:
|
||||
continue
|
||||
# For each, convert them to InternalBeliefs
|
||||
for belief_name, belief_holds in beliefs.items():
|
||||
# Skip beliefs that were marked not possible to determine
|
||||
if belief_holds is None:
|
||||
continue
|
||||
belief = InternalBelief(name=belief_name, arguments=None)
|
||||
if belief_holds:
|
||||
retval.true.add(belief)
|
||||
new_beliefs.true.add(belief)
|
||||
else:
|
||||
retval.false.add(belief)
|
||||
return retval
|
||||
new_beliefs.false.add(belief)
|
||||
return new_beliefs
|
||||
|
||||
@staticmethod
|
||||
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
|
||||
@@ -443,9 +509,13 @@ Respond with a JSON similar to the following, but with the property names as giv
|
||||
|
||||
|
||||
class GoalAchievementInferrer(SemanticBeliefInferrer):
|
||||
"""
|
||||
Infers whether specific conversational goals have been achieved using an LLM.
|
||||
"""
|
||||
|
||||
def __init__(self, llm: TextBeliefExtractorAgent.LLM):
|
||||
super().__init__(llm)
|
||||
self.goals = []
|
||||
self.goals: set[BaseGoal] = set()
|
||||
|
||||
async def infer_from_conversation(self, conversation: ChatHistory) -> dict[str, bool]:
|
||||
"""
|
||||
@@ -465,7 +535,7 @@ class GoalAchievementInferrer(SemanticBeliefInferrer):
|
||||
for goal, achieved in zip(self.goals, goals_achieved, strict=True)
|
||||
}
|
||||
|
||||
async def _infer_goal(self, conversation: ChatHistory, goal: Goal) -> bool:
|
||||
async def _infer_goal(self, conversation: ChatHistory, goal: BaseGoal) -> bool:
|
||||
prompt = f"""{self._format_conversation(conversation)}
|
||||
|
||||
Given the above conversation, what has the following goal been achieved?
|
||||
|
||||
@@ -1 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
--------------------------------------------------------------------------------
|
||||
Agents responsible for external communication and service discovery.
|
||||
"""
|
||||
|
||||
from .ri_communication_agent import RICommunicationAgent as RICommunicationAgent
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
|
||||
@@ -7,10 +13,13 @@ from zmq.asyncio import Context
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.actuation.robot_gesture_agent import RobotGestureAgent
|
||||
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent import ( # noqa
|
||||
VisualEmotionRecognitionAgent,
|
||||
)
|
||||
from control_backend.core.config import settings
|
||||
|
||||
from ..actuation.robot_speech_agent import RobotSpeechAgent
|
||||
from ..perception import VADAgent
|
||||
from ..perception import FacePerceptionAgent, VADAgent
|
||||
|
||||
|
||||
class RICommunicationAgent(BaseAgent):
|
||||
@@ -47,6 +56,9 @@ class RICommunicationAgent(BaseAgent):
|
||||
self._req_socket: azmq.Socket | None = None
|
||||
self.pub_socket: azmq.Socket | None = None
|
||||
self.connected = False
|
||||
self.gesture_agent: RobotGestureAgent | None = None
|
||||
self.speech_agent: RobotSpeechAgent | None = None
|
||||
self.visual_emotion_recognition_agent: VisualEmotionRecognitionAgent | None = None
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
@@ -140,6 +152,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
|
||||
# At this point, we have a valid response
|
||||
try:
|
||||
self.logger.debug("Negotiation successful.")
|
||||
await self._handle_negotiation_response(received_message)
|
||||
# Let UI know that we're connected
|
||||
topic = b"ping"
|
||||
@@ -168,7 +181,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
bind = port_data["bind"]
|
||||
|
||||
if not bind:
|
||||
addr = f"tcp://{settings.ri_host}:{port}"
|
||||
addr = f"tcp://localhost:{port}"
|
||||
else:
|
||||
addr = f"tcp://*:{port}"
|
||||
|
||||
@@ -188,6 +201,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
address=addr,
|
||||
bind=bind,
|
||||
)
|
||||
self.speech_agent = robot_speech_agent
|
||||
robot_gesture_agent = RobotGestureAgent(
|
||||
settings.agent_settings.robot_gesture_name,
|
||||
address=addr,
|
||||
@@ -195,12 +209,28 @@ class RICommunicationAgent(BaseAgent):
|
||||
gesture_data=gesture_data,
|
||||
single_gesture_data=single_gesture_data,
|
||||
)
|
||||
self.gesture_agent = robot_gesture_agent
|
||||
await robot_speech_agent.start()
|
||||
await asyncio.sleep(0.1) # Small delay
|
||||
await robot_gesture_agent.start()
|
||||
case "audio":
|
||||
vad_agent = VADAgent(audio_in_address=addr, audio_in_bind=bind)
|
||||
await vad_agent.start()
|
||||
case "video":
|
||||
visual_emotion_agent = VisualEmotionRecognitionAgent(
|
||||
settings.agent_settings.visual_emotion_recognition_name,
|
||||
socket_address=addr,
|
||||
bind=bind,
|
||||
)
|
||||
self.visual_emotion_recognition_agent = visual_emotion_agent
|
||||
await visual_emotion_agent.start()
|
||||
case "face":
|
||||
face_agent = FacePerceptionAgent(
|
||||
settings.agent_settings.face_agent_name,
|
||||
zmq_address=addr,
|
||||
zmq_bind=bind,
|
||||
)
|
||||
await face_agent.start()
|
||||
case _:
|
||||
self.logger.warning("Unhandled negotiation id: %s", id)
|
||||
|
||||
@@ -225,6 +255,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
while self._running:
|
||||
if not self.connected:
|
||||
await asyncio.sleep(settings.behaviour_settings.sleep_s)
|
||||
self.logger.debug("Not connected, skipping ping loop iteration.")
|
||||
continue
|
||||
|
||||
# We need to listen and send pings.
|
||||
@@ -289,13 +320,28 @@ class RICommunicationAgent(BaseAgent):
|
||||
# Tell UI we're disconnected.
|
||||
topic = b"ping"
|
||||
data = json.dumps(False).encode()
|
||||
self.logger.debug("1")
|
||||
if self.pub_socket:
|
||||
try:
|
||||
self.logger.debug("2")
|
||||
await asyncio.wait_for(self.pub_socket.send_multipart([topic, data]), 5)
|
||||
except TimeoutError:
|
||||
self.logger.debug("3")
|
||||
self.logger.warning("Connection ping for router timed out.")
|
||||
|
||||
# Try to reboot/renegotiate
|
||||
if self.gesture_agent is not None:
|
||||
await self.gesture_agent.stop()
|
||||
|
||||
if self.speech_agent is not None:
|
||||
await self.speech_agent.stop()
|
||||
|
||||
if self.visual_emotion_recognition_agent is not None:
|
||||
await self.visual_emotion_recognition_agent.stop()
|
||||
|
||||
if self.pub_socket is not None:
|
||||
self.pub_socket.close()
|
||||
|
||||
self.logger.debug("Restarting communication negotiation.")
|
||||
if await self._negotiate_connection(max_retries=1):
|
||||
if await self._negotiate_connection(max_retries=2):
|
||||
self.connected = True
|
||||
|
||||
@@ -1 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
--------------------------------------------------------------------------------
|
||||
Agents that interface with Large Language Models for natural language processing and generation.
|
||||
"""
|
||||
|
||||
from .llm_agent import LLMAgent as LLMAgent
|
||||
|
||||
@@ -1,4 +1,12 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
import re
|
||||
import uuid
|
||||
from collections.abc import AsyncGenerator
|
||||
@@ -13,6 +21,8 @@ from control_backend.core.config import settings
|
||||
from ...schemas.llm_prompt_message import LLMPromptMessage
|
||||
from .llm_instructions import LLMInstructions
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class LLMAgent(BaseAgent):
|
||||
"""
|
||||
@@ -32,6 +42,10 @@ class LLMAgent(BaseAgent):
|
||||
def __init__(self, name: str):
|
||||
super().__init__(name)
|
||||
self.history = []
|
||||
self._querying = False
|
||||
self._interrupted = False
|
||||
self._interrupted_message = ""
|
||||
self._go_ahead = asyncio.Event()
|
||||
|
||||
async def setup(self):
|
||||
self.logger.info("Setting up %s.", self.name)
|
||||
@@ -50,13 +64,13 @@ class LLMAgent(BaseAgent):
|
||||
case "prompt_message":
|
||||
try:
|
||||
prompt_message = LLMPromptMessage.model_validate_json(msg.body)
|
||||
await self._process_bdi_message(prompt_message)
|
||||
self.add_behavior(self._process_bdi_message(prompt_message)) # no block
|
||||
except ValidationError:
|
||||
self.logger.debug("Prompt message from BDI core is invalid.")
|
||||
case "assistant_message":
|
||||
self.history.append({"role": "assistant", "content": msg.body})
|
||||
self._apply_conversation_message({"role": "assistant", "content": msg.body})
|
||||
case "user_message":
|
||||
self.history.append({"role": "user", "content": msg.body})
|
||||
self._apply_conversation_message({"role": "user", "content": msg.body})
|
||||
elif msg.sender == settings.agent_settings.bdi_program_manager_name:
|
||||
if msg.body == "clear_history":
|
||||
self.logger.debug("Clearing conversation history.")
|
||||
@@ -73,12 +87,45 @@ class LLMAgent(BaseAgent):
|
||||
|
||||
:param message: The parsed prompt message containing text, norms, and goals.
|
||||
"""
|
||||
if self._querying:
|
||||
self.logger.debug("Received another BDI prompt while processing previous message.")
|
||||
self._interrupted = True # interrupt the previous processing
|
||||
await self._go_ahead.wait() # wait until we get the go-ahead
|
||||
|
||||
message.text = f"{self._interrupted_message} {message.text}"
|
||||
|
||||
self._go_ahead.clear()
|
||||
self._querying = True
|
||||
full_message = ""
|
||||
async for chunk in self._query_llm(message.text, message.norms, message.goals):
|
||||
if self._interrupted:
|
||||
self._interrupted_message = message.text
|
||||
self.logger.debug("Interrupted processing of previous message.")
|
||||
break
|
||||
await self._send_reply(chunk)
|
||||
full_message += chunk
|
||||
self.logger.debug("Finished processing BDI message. Response sent in chunks to BDI core.")
|
||||
await self._send_full_reply(full_message)
|
||||
else:
|
||||
self._querying = False
|
||||
|
||||
self._apply_conversation_message(
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": full_message,
|
||||
}
|
||||
)
|
||||
self.logger.debug(
|
||||
"Finished processing BDI message. Response sent in chunks to BDI core."
|
||||
)
|
||||
await self._send_full_reply(full_message)
|
||||
|
||||
self._go_ahead.set()
|
||||
self._interrupted = False
|
||||
|
||||
def _apply_conversation_message(self, message: dict[str, str]):
|
||||
if len(self.history) > 0 and message["role"] == self.history[-1]["role"]:
|
||||
self.history[-1]["content"] += " " + message["content"]
|
||||
return
|
||||
self.history.append(message)
|
||||
|
||||
async def _send_reply(self, msg: str):
|
||||
"""
|
||||
@@ -132,7 +179,7 @@ class LLMAgent(BaseAgent):
|
||||
*self.history,
|
||||
]
|
||||
|
||||
message_id = str(uuid.uuid4()) # noqa
|
||||
message_id = str(uuid.uuid4())
|
||||
|
||||
try:
|
||||
full_message = ""
|
||||
@@ -141,10 +188,9 @@ class LLMAgent(BaseAgent):
|
||||
full_message += token
|
||||
current_chunk += token
|
||||
|
||||
self.logger.llm(
|
||||
"Received token: %s",
|
||||
experiment_logger.chat(
|
||||
full_message,
|
||||
extra={"reference": message_id}, # Used in the UI to update old logs
|
||||
extra={"role": "assistant", "reference": message_id, "partial": True},
|
||||
)
|
||||
|
||||
# Stream the message in chunks separated by punctuation.
|
||||
@@ -160,11 +206,9 @@ class LLMAgent(BaseAgent):
|
||||
if current_chunk:
|
||||
yield current_chunk
|
||||
|
||||
self.history.append(
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": full_message,
|
||||
}
|
||||
experiment_logger.chat(
|
||||
full_message,
|
||||
extra={"role": "assistant", "reference": message_id, "partial": False},
|
||||
)
|
||||
except httpx.HTTPError as err:
|
||||
self.logger.error("HTTP error.", exc_info=err)
|
||||
@@ -185,6 +229,9 @@ class LLMAgent(BaseAgent):
|
||||
async with client.stream(
|
||||
"POST",
|
||||
settings.llm_settings.local_llm_url,
|
||||
headers={"Authorization": f"Bearer {settings.llm_settings.api_key}"}
|
||||
if settings.llm_settings.api_key
|
||||
else {},
|
||||
json={
|
||||
"model": settings.llm_settings.local_llm_model,
|
||||
"messages": messages,
|
||||
|
||||
@@ -1,3 +1,10 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
|
||||
class LLMInstructions:
|
||||
"""
|
||||
Helper class to construct the system instructions for the LLM.
|
||||
|
||||
@@ -1,3 +1,13 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
--------------------------------------------------------------------------------
|
||||
Agents responsible for processing sensory input, such as audio transcription and voice activity
|
||||
detection.
|
||||
"""
|
||||
|
||||
from .face_rec_agent import FacePerceptionAgent as FacePerceptionAgent
|
||||
from .transcription_agent.transcription_agent import (
|
||||
TranscriptionAgent as TranscriptionAgent,
|
||||
)
|
||||
|
||||
144
src/control_backend/agents/perception/face_rec_agent.py
Normal file
144
src/control_backend/agents/perception/face_rec_agent.py
Normal file
@@ -0,0 +1,144 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
|
||||
|
||||
class FacePerceptionAgent(BaseAgent):
|
||||
"""
|
||||
Receives face presence updates from the RICommunicationAgent
|
||||
via the internal PUB/SUB bus.
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, zmq_address: str, zmq_bind: bool):
|
||||
"""
|
||||
:param name: The name of the agent.
|
||||
:param zmq_address: The ZMQ address to subscribe to, an endpoint which sends face presence
|
||||
updates.
|
||||
:param zmq_bind: Whether to connect to the ZMQ endpoint, or to bind.
|
||||
"""
|
||||
super().__init__(name)
|
||||
self._zmq_address = zmq_address
|
||||
self._zmq_bind = zmq_bind
|
||||
self._socket: azmq.Socket | None = None
|
||||
|
||||
self._last_face_state: bool | None = None
|
||||
|
||||
# Pause functionality
|
||||
# NOTE: flag is set when running, cleared when paused
|
||||
self._paused = asyncio.Event()
|
||||
self._paused.set()
|
||||
|
||||
async def setup(self):
|
||||
self.logger.info("Starting FacePerceptionAgent")
|
||||
|
||||
if self._socket is None:
|
||||
self._connect_socket()
|
||||
|
||||
self.add_behavior(self._poll_loop())
|
||||
self.logger.info("Finished setting up %s", self.name)
|
||||
|
||||
def _connect_socket(self):
|
||||
if self._socket is not None:
|
||||
self.logger.warning("ZMQ socket already initialized. Did you call setup() twice?")
|
||||
return
|
||||
|
||||
self._socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
self._socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
if self._zmq_bind:
|
||||
self._socket.bind(self._zmq_address)
|
||||
else:
|
||||
self._socket.connect(self._zmq_address)
|
||||
|
||||
async def _poll_loop(self):
|
||||
if self._socket is None:
|
||||
self.logger.warning("Connection not initialized before poll loop. Call setup() first.")
|
||||
return
|
||||
|
||||
while self._running:
|
||||
try:
|
||||
await self._paused.wait()
|
||||
response = await asyncio.wait_for(
|
||||
self._socket.recv_json(), timeout=settings.behaviour_settings.sleep_s
|
||||
)
|
||||
|
||||
face_present = response.get("face_detected", False)
|
||||
|
||||
if self._last_face_state is None:
|
||||
self._last_face_state = face_present
|
||||
continue
|
||||
|
||||
if face_present != self._last_face_state:
|
||||
self._last_face_state = face_present
|
||||
self.logger.debug("Face detected" if face_present else "Face lost")
|
||||
await self._update_face_belief(face_present)
|
||||
except TimeoutError:
|
||||
pass
|
||||
except Exception as e:
|
||||
self.logger.error("Face polling failed", exc_info=e)
|
||||
|
||||
async def _post_face_belief(self, present: bool):
|
||||
"""
|
||||
Send a face_present belief update to the BDI Core Agent.
|
||||
"""
|
||||
if present:
|
||||
belief_msg = BeliefMessage(create=[{"name": "face_present", "arguments": []}])
|
||||
else:
|
||||
belief_msg = BeliefMessage(delete=[{"name": "face_present", "arguments": []}])
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
thread="beliefs",
|
||||
body=belief_msg.model_dump_json(),
|
||||
)
|
||||
|
||||
await self.send(msg)
|
||||
|
||||
async def _update_face_belief(self, present: bool):
|
||||
"""
|
||||
Add or remove the `face_present` belief in the BDI Core Agent.
|
||||
"""
|
||||
if present:
|
||||
payload = BeliefMessage(create=[Belief(name="face_present").model_dump()])
|
||||
else:
|
||||
payload = BeliefMessage(delete=[Belief(name="face_present").model_dump()])
|
||||
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
thread="beliefs",
|
||||
body=payload.model_dump_json(),
|
||||
)
|
||||
|
||||
await self.send(message)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming pause/resume commands from User Interrupt Agent.
|
||||
"""
|
||||
sender = msg.sender
|
||||
|
||||
if sender == settings.agent_settings.user_interrupt_name:
|
||||
if msg.body == "PAUSE":
|
||||
self.logger.info("Pausing Face Perception processing.")
|
||||
self._paused.clear()
|
||||
self._last_face_state = None
|
||||
elif msg.body == "RESUME":
|
||||
self.logger.info("Resuming Face Perception processing.")
|
||||
self._paused.set()
|
||||
else:
|
||||
self.logger.warning("Unknown command from User Interrupt Agent: %s", msg.body)
|
||||
else:
|
||||
self.logger.debug("Ignoring message from unknown sender: %s", sender)
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import abc
|
||||
import sys
|
||||
|
||||
@@ -145,4 +151,6 @@ class OpenAIWhisperSpeechRecognizer(SpeechRecognizer):
|
||||
|
||||
def recognize_speech(self, audio: np.ndarray) -> str:
|
||||
self.load_model()
|
||||
return whisper.transcribe(self.model, audio, **self._get_decode_options(audio))["text"]
|
||||
return whisper.transcribe(self.model, audio, **self._get_decode_options(audio))[
|
||||
"text"
|
||||
].strip()
|
||||
|
||||
@@ -1,4 +1,11 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
|
||||
import numpy as np
|
||||
import zmq
|
||||
@@ -10,6 +17,8 @@ from control_backend.core.config import settings
|
||||
|
||||
from .speech_recognizer import SpeechRecognizer
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class TranscriptionAgent(BaseAgent):
|
||||
"""
|
||||
@@ -25,6 +34,8 @@ class TranscriptionAgent(BaseAgent):
|
||||
:ivar audio_in_socket: The ZMQ SUB socket instance.
|
||||
:ivar speech_recognizer: The speech recognition engine instance.
|
||||
:ivar _concurrency: Semaphore to limit concurrent transcriptions.
|
||||
:ivar _current_speech_reference: The reference of the current user utterance, for synchronising
|
||||
experiment logs.
|
||||
"""
|
||||
|
||||
def __init__(self, audio_in_address: str):
|
||||
@@ -39,6 +50,7 @@ class TranscriptionAgent(BaseAgent):
|
||||
self.audio_in_socket: azmq.Socket | None = None
|
||||
self.speech_recognizer = None
|
||||
self._concurrency = None
|
||||
self._current_speech_reference: str | None = None
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
@@ -63,6 +75,10 @@ class TranscriptionAgent(BaseAgent):
|
||||
|
||||
self.logger.info("Finished setting up %s", self.name)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
if msg.thread == "voice_activity":
|
||||
self._current_speech_reference = msg.body
|
||||
|
||||
async def stop(self):
|
||||
"""
|
||||
Stop the agent and close sockets.
|
||||
@@ -74,7 +90,7 @@ class TranscriptionAgent(BaseAgent):
|
||||
|
||||
def _connect_audio_in_socket(self):
|
||||
"""
|
||||
Helper to connect the ZMQ SUB socket for audio input.
|
||||
Connects the ZMQ SUB socket for receiving audio data.
|
||||
"""
|
||||
self.audio_in_socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
self.audio_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
@@ -96,24 +112,25 @@ class TranscriptionAgent(BaseAgent):
|
||||
|
||||
async def _share_transcription(self, transcription: str):
|
||||
"""
|
||||
Share a transcription to the other agents that depend on it.
|
||||
Share a transcription to the other agents that depend on it, and to experiment logs.
|
||||
|
||||
Currently sends to:
|
||||
- :attr:`settings.agent_settings.text_belief_extractor_name`
|
||||
- The UI via the experiment logger
|
||||
|
||||
:param transcription: The transcribed text.
|
||||
"""
|
||||
receiver_names = [
|
||||
settings.agent_settings.text_belief_extractor_name,
|
||||
]
|
||||
experiment_logger.chat(
|
||||
transcription,
|
||||
extra={"role": "user", "reference": self._current_speech_reference, "partial": False},
|
||||
)
|
||||
|
||||
for receiver_name in receiver_names:
|
||||
message = InternalMessage(
|
||||
to=receiver_name,
|
||||
sender=self.name,
|
||||
body=transcription,
|
||||
)
|
||||
await self.send(message)
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=self.name,
|
||||
body=transcription,
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
async def _transcribing_loop(self) -> None:
|
||||
"""
|
||||
@@ -129,10 +146,9 @@ class TranscriptionAgent(BaseAgent):
|
||||
audio = np.frombuffer(audio_data, dtype=np.float32)
|
||||
speech = await self._transcribe(audio)
|
||||
if not speech:
|
||||
self.logger.info("Nothing transcribed.")
|
||||
self.logger.debug("Nothing transcribed.")
|
||||
continue
|
||||
|
||||
self.logger.info("Transcribed speech: %s", speech)
|
||||
await self._share_transcription(speech)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in transcription loop: {e}")
|
||||
|
||||
@@ -1,4 +1,12 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
import uuid
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
@@ -7,10 +15,13 @@ import zmq.asyncio as azmq
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.internal_message import InternalMessage
|
||||
|
||||
from ...schemas.program_status import PROGRAM_STATUS, ProgramStatus
|
||||
from .transcription_agent.transcription_agent import TranscriptionAgent
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class SocketPoller[T]:
|
||||
"""
|
||||
@@ -86,6 +97,12 @@ class VADAgent(BaseAgent):
|
||||
self.audio_buffer = np.array([], dtype=np.float32)
|
||||
self.i_since_speech = settings.behaviour_settings.vad_initial_since_speech
|
||||
self._ready = asyncio.Event()
|
||||
|
||||
# Pause control
|
||||
self._reset_needed = False
|
||||
self._paused = asyncio.Event()
|
||||
self._paused.set() # Not paused at start
|
||||
|
||||
self.model = None
|
||||
|
||||
async def setup(self):
|
||||
@@ -213,6 +230,16 @@ class VADAgent(BaseAgent):
|
||||
"""
|
||||
await self._ready.wait()
|
||||
while self._running:
|
||||
await self._paused.wait()
|
||||
|
||||
# After being unpaused, reset stream and buffers
|
||||
if self._reset_needed:
|
||||
self.logger.debug("Resuming: resetting stream and buffers.")
|
||||
await self._reset_stream()
|
||||
self.audio_buffer = np.array([], dtype=np.float32)
|
||||
self.i_since_speech = settings.behaviour_settings.vad_initial_since_speech
|
||||
self._reset_needed = False
|
||||
|
||||
assert self.audio_in_poller is not None
|
||||
data = await self.audio_in_poller.poll()
|
||||
if data is None:
|
||||
@@ -235,6 +262,18 @@ class VADAgent(BaseAgent):
|
||||
if prob > prob_threshold:
|
||||
if self.i_since_speech > non_speech_patience + begin_silence_length:
|
||||
self.logger.debug("Speech started.")
|
||||
reference = str(uuid.uuid4())
|
||||
experiment_logger.chat(
|
||||
"...",
|
||||
extra={"role": "user", "reference": reference, "partial": True},
|
||||
)
|
||||
await self.send(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.transcription_name,
|
||||
body=reference,
|
||||
thread="voice_activity",
|
||||
)
|
||||
)
|
||||
self.audio_buffer = np.append(self.audio_buffer, chunk)
|
||||
self.i_since_speech = 0
|
||||
continue
|
||||
@@ -256,3 +295,27 @@ class VADAgent(BaseAgent):
|
||||
# Prepend the last few chunks that had no speech, for a more fluent boundary.
|
||||
self.audio_buffer = np.append(self.audio_buffer, chunk)
|
||||
self.audio_buffer = self.audio_buffer[-begin_silence_length * len(chunk) :]
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming messages.
|
||||
|
||||
Expects messages to pause or resume the VAD processing from User Interrupt Agent.
|
||||
|
||||
:param msg: The received internal message.
|
||||
"""
|
||||
sender = msg.sender
|
||||
|
||||
if sender == settings.agent_settings.user_interrupt_name:
|
||||
if msg.body == "PAUSE":
|
||||
self.logger.info("Pausing VAD processing.")
|
||||
self._paused.clear()
|
||||
# If the robot needs to pick up speaking where it left off, do not set _reset_needed
|
||||
self._reset_needed = True
|
||||
elif msg.body == "RESUME":
|
||||
self.logger.info("Resuming VAD processing.")
|
||||
self._paused.set()
|
||||
else:
|
||||
self.logger.warning(f"Unknown command from User Interrupt Agent: {msg.body}")
|
||||
else:
|
||||
self.logger.debug(f"Ignoring message from unknown sender: {sender}")
|
||||
|
||||
@@ -0,0 +1,207 @@
|
||||
import asyncio
|
||||
import json
|
||||
import time
|
||||
from collections import Counter, defaultdict
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
from pydantic_core import ValidationError
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognizer import ( # noqa
|
||||
DeepFaceEmotionRecognizer,
|
||||
)
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief
|
||||
|
||||
|
||||
class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
socket_address: str,
|
||||
bind: bool = False,
|
||||
timeout_ms: int = 1000,
|
||||
window_duration: int = settings.behaviour_settings.visual_emotion_recognition_window_duration_s, # noqa
|
||||
min_frames_required: int = settings.behaviour_settings.visual_emotion_recognition_min_frames_per_face, # noqa
|
||||
):
|
||||
"""
|
||||
Initialize the Visual Emotion Recognition Agent.
|
||||
|
||||
:param name: Name of the agent
|
||||
:param socket_address: Address of the socket to connect or bind to
|
||||
:param bind: Whether to bind to the socket address (True) or connect (False)
|
||||
:param timeout_ms: Timeout for socket receive operations in milliseconds
|
||||
:param window_duration: Duration in seconds over which to aggregate emotions
|
||||
:param min_frames_required: Minimum number of frames per face required to consider a face
|
||||
valid
|
||||
"""
|
||||
super().__init__(name)
|
||||
self.socket_address = socket_address
|
||||
self.socket_bind = bind
|
||||
self.timeout_ms = timeout_ms
|
||||
self.window_duration = window_duration
|
||||
self.min_frames_required = min_frames_required
|
||||
|
||||
# Pause functionality
|
||||
# NOTE: flag is set when running, cleared when paused
|
||||
self._paused = asyncio.Event()
|
||||
self._paused.set()
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent resources.
|
||||
1. Initializes the :class:`VisualEmotionRecognizer`.
|
||||
2. Connects to the video input ZMQ socket.
|
||||
3. Starts the background emotion recognition loop.
|
||||
"""
|
||||
self.logger.info("Setting up %s.", self.name)
|
||||
|
||||
self.emotion_recognizer = DeepFaceEmotionRecognizer()
|
||||
|
||||
self.video_in_socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
|
||||
if self.socket_bind:
|
||||
self.video_in_socket.bind(self.socket_address)
|
||||
else:
|
||||
self.video_in_socket.connect(self.socket_address)
|
||||
|
||||
self.video_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
self.video_in_socket.setsockopt(zmq.RCVTIMEO, self.timeout_ms)
|
||||
self.video_in_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
|
||||
self.add_behavior(self.emotion_update_loop())
|
||||
|
||||
self.logger.info("Finished setting up %s", self.name)
|
||||
|
||||
async def emotion_update_loop(self):
|
||||
"""
|
||||
Background loop to receive video frames, recognize emotions, and update beliefs.
|
||||
1. Receives video frames from the ZMQ socket.
|
||||
2. Uses the :class:`VisualEmotionRecognizer` to detect emotions.
|
||||
3. Aggregates emotions over a time window.
|
||||
4. Sends updates to the BDI Core Agent about detected emotions.
|
||||
"""
|
||||
# Next time to process the window and update emotions
|
||||
next_window_time = time.time() + self.window_duration
|
||||
|
||||
# Tracks counts of detected emotions per face index
|
||||
face_stats = defaultdict(Counter)
|
||||
|
||||
prev_dominant_emotions = set()
|
||||
|
||||
while self._running:
|
||||
try:
|
||||
await self._paused.wait()
|
||||
|
||||
frame_bytes = await self.video_in_socket.recv()
|
||||
|
||||
# Convert bytes to a numpy buffer
|
||||
nparr = np.frombuffer(frame_bytes, np.uint8)
|
||||
|
||||
# Decode image into the generic Numpy Array DeepFace expects
|
||||
frame_image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
|
||||
if frame_image is None:
|
||||
# Could not decode image, skip this frame
|
||||
self.logger.warning("Received invalid video frame, skipping.")
|
||||
continue
|
||||
|
||||
# Get the dominant emotion from each face
|
||||
current_emotions = self.emotion_recognizer.sorted_dominant_emotions(frame_image)
|
||||
# Update emotion counts for each detected face
|
||||
for i, emotion in enumerate(current_emotions):
|
||||
face_stats[i][emotion] += 1
|
||||
|
||||
# If window duration has passed, process the collected stats
|
||||
if time.time() >= next_window_time:
|
||||
window_dominant_emotions = set()
|
||||
# Determine dominant emotion for each face in the window
|
||||
for _, counter in face_stats.items():
|
||||
total_detections = sum(counter.values())
|
||||
|
||||
if total_detections >= self.min_frames_required:
|
||||
dominant_emotion = counter.most_common(1)[0][0]
|
||||
window_dominant_emotions.add(dominant_emotion)
|
||||
|
||||
await self.update_emotions(prev_dominant_emotions, window_dominant_emotions)
|
||||
prev_dominant_emotions = window_dominant_emotions
|
||||
face_stats.clear()
|
||||
next_window_time = time.time() + self.window_duration
|
||||
|
||||
except zmq.Again:
|
||||
self.logger.warning("No video frame received within timeout.")
|
||||
|
||||
async def update_emotions(self, prev_emotions: set[str], emotions: set[str]):
|
||||
"""
|
||||
Compare emotions from previous window and current emotions,
|
||||
send updates to BDI Core Agent.
|
||||
"""
|
||||
emotions_to_remove = prev_emotions - emotions
|
||||
emotions_to_add = emotions - prev_emotions
|
||||
|
||||
if not emotions_to_add and not emotions_to_remove:
|
||||
return
|
||||
|
||||
emotion_beliefs_remove = []
|
||||
for emotion in emotions_to_remove:
|
||||
self.logger.info(f"Emotion '{emotion}' has disappeared.")
|
||||
try:
|
||||
emotion_beliefs_remove.append(
|
||||
Belief(name="emotion_detected", arguments=[emotion], remove=True)
|
||||
)
|
||||
except ValidationError:
|
||||
self.logger.warning("Invalid belief for emotion removal: %s", emotion)
|
||||
|
||||
emotion_beliefs_add = []
|
||||
for emotion in emotions_to_add:
|
||||
self.logger.info(f"New emotion detected: '{emotion}'")
|
||||
try:
|
||||
emotion_beliefs_add.append(Belief(name="emotion_detected", arguments=[emotion]))
|
||||
except ValidationError:
|
||||
self.logger.warning("Invalid belief for new emotion: %s", emotion)
|
||||
|
||||
beliefs_list_add = [b.model_dump() for b in emotion_beliefs_add]
|
||||
beliefs_list_remove = [b.model_dump() for b in emotion_beliefs_remove]
|
||||
payload = {"create": beliefs_list_add, "delete": beliefs_list_remove}
|
||||
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=json.dumps(payload),
|
||||
thread="beliefs",
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming messages.
|
||||
|
||||
Expects messages to pause or resume the Visual Emotion Recognition
|
||||
processing from User Interrupt Agent.
|
||||
|
||||
:param msg: The received internal message.
|
||||
"""
|
||||
sender = msg.sender
|
||||
|
||||
if sender == settings.agent_settings.user_interrupt_name:
|
||||
if msg.body == "PAUSE":
|
||||
self.logger.info("Pausing Visual Emotion Recognition processing.")
|
||||
self._paused.clear()
|
||||
elif msg.body == "RESUME":
|
||||
self.logger.info("Resuming Visual Emotion Recognition processing.")
|
||||
self._paused.set()
|
||||
else:
|
||||
self.logger.warning(f"Unknown command from User Interrupt Agent: {msg.body}")
|
||||
else:
|
||||
self.logger.debug(f"Ignoring message from unknown sender: {sender}")
|
||||
|
||||
async def stop(self):
|
||||
"""
|
||||
Clean up resources used by the agent.
|
||||
"""
|
||||
self.video_in_socket.close()
|
||||
await super().stop()
|
||||
@@ -0,0 +1,54 @@
|
||||
import abc
|
||||
|
||||
import numpy as np
|
||||
from deepface import DeepFace
|
||||
|
||||
|
||||
class VisualEmotionRecognizer(abc.ABC):
|
||||
@abc.abstractmethod
|
||||
def load_model(self):
|
||||
"""Load the visual emotion recognition model into memory."""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def sorted_dominant_emotions(self, image) -> list[str]:
|
||||
"""
|
||||
Recognize dominant emotions from faces in the given image.
|
||||
Emotions can be one of ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'].
|
||||
To minimize false positives, consider filtering faces with low confidence.
|
||||
|
||||
:param image: The input image for emotion recognition.
|
||||
:return: List of dominant emotion detected for each face in the image,
|
||||
sorted per face.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class DeepFaceEmotionRecognizer(VisualEmotionRecognizer):
|
||||
"""
|
||||
DeepFace-based implementation of VisualEmotionRecognizer.
|
||||
DeepFape has proven to be quite a pessimistic model, so expect sad, fear and neutral
|
||||
emotions to be over-represented.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.load_model()
|
||||
|
||||
def load_model(self):
|
||||
print("Loading Deepface Emotion Model...")
|
||||
dummy_img = np.zeros((224, 224, 3), dtype=np.uint8)
|
||||
# analyze does not take a model as an argument, calling it once on a dummy image to load
|
||||
# the model
|
||||
DeepFace.analyze(dummy_img, actions=["emotion"], enforce_detection=False)
|
||||
print("Deepface Emotion Model loaded.")
|
||||
|
||||
def sorted_dominant_emotions(self, image) -> list[str]:
|
||||
analysis = DeepFace.analyze(image, actions=["emotion"], enforce_detection=False)
|
||||
|
||||
# Sort faces by x coordinate to maintain left-to-right order
|
||||
analysis.sort(key=lambda face: face["region"]["x"])
|
||||
|
||||
analysis = [face for face in analysis if face["face_confidence"] >= 0.90]
|
||||
|
||||
dominant_emotions = [face["dominant_emotion"] for face in analysis]
|
||||
return dominant_emotions
|
||||
@@ -0,0 +1,5 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
@@ -1,12 +1,28 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
|
||||
import zmq
|
||||
from zmq.asyncio import Context
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.ri_message import GestureCommand, RIEndpoint, SpeechCommand
|
||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
from control_backend.schemas.program import ConditionalNorm, Goal, Program
|
||||
from control_backend.schemas.ri_message import (
|
||||
GestureCommand,
|
||||
RIEndpoint,
|
||||
SpeechCommand,
|
||||
)
|
||||
|
||||
experiment_logger = logging.getLogger(settings.logging_settings.experiment_logger_name)
|
||||
|
||||
|
||||
class UserInterruptAgent(BaseAgent):
|
||||
@@ -18,29 +34,55 @@ class UserInterruptAgent(BaseAgent):
|
||||
|
||||
- Send a prioritized message to the `RobotSpeechAgent`
|
||||
- Send a prioritized gesture to the `RobotGestureAgent`
|
||||
- Send a belief override to the `BDIProgramManager`in order to activate a
|
||||
- Send a belief override to the `BDI Core` in order to activate a
|
||||
trigger/conditional norm or complete a goal.
|
||||
|
||||
Prioritized actions clear the current RI queue before inserting the new item,
|
||||
ensuring they are executed immediately after Pepper's current action has been fulfilled.
|
||||
|
||||
:ivar sub_socket: The ZMQ SUB socket used to receive user intterupts.
|
||||
:ivar sub_socket: The ZMQ SUB socket used to receive user interrupts.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.sub_socket = None
|
||||
self.pub_socket = None
|
||||
self._trigger_map = {}
|
||||
self._trigger_reverse_map = {}
|
||||
|
||||
self._goal_map = {} # id -> sluggified goal
|
||||
self._goal_reverse_map = {} # sluggified goal -> id
|
||||
|
||||
self._cond_norm_map = {} # id -> sluggified cond norm
|
||||
self._cond_norm_reverse_map = {} # sluggified cond norm -> id
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent by setting up ZMQ sockets for receiving button events and
|
||||
publishing updates.
|
||||
"""
|
||||
context = Context.instance()
|
||||
|
||||
self.sub_socket = context.socket(zmq.SUB)
|
||||
self.sub_socket.connect(settings.zmq_settings.internal_sub_address)
|
||||
self.sub_socket.subscribe("button_pressed")
|
||||
|
||||
self.pub_socket = context.socket(zmq.PUB)
|
||||
self.pub_socket.connect(settings.zmq_settings.internal_pub_address)
|
||||
|
||||
self.add_behavior(self._receive_button_event())
|
||||
|
||||
async def _receive_button_event(self):
|
||||
"""
|
||||
The behaviour of the UserInterruptAgent.
|
||||
Continuous loop that receives button_pressed events from the button_pressed HTTP endpoint.
|
||||
These events contain a type and a context.
|
||||
Main loop to receive and process button press events from the UI.
|
||||
|
||||
These are the different types and contexts:
|
||||
- type: "speech", context: string that the robot has to say.
|
||||
- type: "gesture", context: single gesture name that the robot has to perform.
|
||||
- type: "override", context: belief_id that overrides the goal/trigger/conditional norm.
|
||||
Handles different event types:
|
||||
- `speech`: Triggers immediate robot speech.
|
||||
- `gesture`: Triggers an immediate robot gesture.
|
||||
- `override`: Forces a belief, trigger, or goal completion in the BDI core.
|
||||
- `override_unachieve`: Removes a belief from the BDI core.
|
||||
- `pause`: Toggles the system's pause state.
|
||||
- `next_phase` / `reset_phase`: Controls experiment flow.
|
||||
"""
|
||||
while True:
|
||||
topic, body = await self.sub_socket.recv_multipart()
|
||||
@@ -53,30 +95,217 @@ class UserInterruptAgent(BaseAgent):
|
||||
self.logger.error("Received invalid JSON payload on topic %s", topic)
|
||||
continue
|
||||
|
||||
if event_type == "speech":
|
||||
await self._send_to_speech_agent(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (speech) with context '%s' to RobotSpeechAgent.",
|
||||
event_context,
|
||||
)
|
||||
elif event_type == "gesture":
|
||||
await self._send_to_gesture_agent(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (gesture) with context '%s' to RobotGestureAgent.",
|
||||
event_context,
|
||||
)
|
||||
elif event_type == "override":
|
||||
await self._send_to_program_manager(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDIProgramManager.",
|
||||
event_context,
|
||||
)
|
||||
else:
|
||||
self.logger.warning(
|
||||
"Received button press with unknown type '%s' (context: '%s').",
|
||||
event_type,
|
||||
event_context,
|
||||
)
|
||||
self.logger.debug("Received event type %s", event_type)
|
||||
|
||||
match event_type:
|
||||
case "speech":
|
||||
await self._send_to_speech_agent(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (speech) with context '%s' to RobotSpeechAgent.",
|
||||
event_context,
|
||||
)
|
||||
case "gesture":
|
||||
await self._send_to_gesture_agent(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (gesture) with context '%s' to RobotGestureAgent.",
|
||||
event_context,
|
||||
)
|
||||
case "override":
|
||||
ui_id = str(event_context)
|
||||
if asl_trigger := self._trigger_map.get(ui_id):
|
||||
await self._send_to_bdi("force_trigger", asl_trigger)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDI Core.",
|
||||
event_context,
|
||||
)
|
||||
elif asl_cond_norm := self._cond_norm_map.get(ui_id):
|
||||
await self._send_to_bdi_belief(asl_cond_norm, "cond_norm")
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDI Core.",
|
||||
event_context,
|
||||
)
|
||||
elif asl_goal := self._goal_map.get(ui_id):
|
||||
await self._send_to_bdi_belief(asl_goal, "goal")
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDI Core.",
|
||||
event_context,
|
||||
)
|
||||
# Send achieve_goal to program manager to update semantic belief extractor
|
||||
goal_achieve_msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_program_manager_name,
|
||||
thread="achieve_goal",
|
||||
body=ui_id,
|
||||
)
|
||||
|
||||
await self.send(goal_achieve_msg)
|
||||
else:
|
||||
self.logger.warning("Could not determine which element to override.")
|
||||
case "override_unachieve":
|
||||
ui_id = str(event_context)
|
||||
if asl_cond_norm := self._cond_norm_map.get(ui_id):
|
||||
await self._send_to_bdi_belief(asl_cond_norm, "cond_norm", True)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override_unachieve)"
|
||||
"with context '%s' to BDI Core.",
|
||||
event_context,
|
||||
)
|
||||
else:
|
||||
self.logger.warning(
|
||||
"Could not determine which conditional norm to unachieve."
|
||||
)
|
||||
|
||||
case "pause":
|
||||
self.logger.debug(
|
||||
"Received pause/resume button press with context '%s'.", event_context
|
||||
)
|
||||
await self._send_pause_command(event_context)
|
||||
if event_context:
|
||||
self.logger.info("Sent pause command.")
|
||||
else:
|
||||
self.logger.info("Sent resume command.")
|
||||
|
||||
case "next_phase" | "reset_phase":
|
||||
await self._send_experiment_control_to_bdi_core(event_type)
|
||||
case _:
|
||||
self.logger.warning(
|
||||
"Received button press with unknown type '%s' (context: '%s').",
|
||||
event_type,
|
||||
event_context,
|
||||
)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handles internal messages from other agents, such as program updates or trigger
|
||||
notifications.
|
||||
|
||||
:param msg: The incoming :class:`~control_backend.core.agent_system.InternalMessage`.
|
||||
"""
|
||||
match msg.thread:
|
||||
case "new_program":
|
||||
self._create_mapping(msg.body)
|
||||
case "trigger_start":
|
||||
# msg.body is the sluggified trigger
|
||||
asl_slug = msg.body
|
||||
ui_id = self._trigger_reverse_map.get(asl_slug)
|
||||
|
||||
if ui_id:
|
||||
payload = {"type": "trigger_update", "id": ui_id, "achieved": True}
|
||||
await self._send_experiment_update(payload)
|
||||
self.logger.info(f"UI Update: Trigger {asl_slug} started (ID: {ui_id})")
|
||||
case "trigger_end":
|
||||
asl_slug = msg.body
|
||||
ui_id = self._trigger_reverse_map.get(asl_slug)
|
||||
if ui_id:
|
||||
payload = {"type": "trigger_update", "id": ui_id, "achieved": False}
|
||||
await self._send_experiment_update(payload)
|
||||
self.logger.info(f"UI Update: Trigger {asl_slug} ended (ID: {ui_id})")
|
||||
case "transition_phase":
|
||||
new_phase_id = msg.body
|
||||
self.logger.info(f"Phase transition detected: {new_phase_id}")
|
||||
|
||||
payload = {"type": "phase_update", "id": new_phase_id}
|
||||
|
||||
await self._send_experiment_update(payload)
|
||||
case "goal_start":
|
||||
goal_name = msg.body
|
||||
ui_id = self._goal_reverse_map.get(goal_name)
|
||||
if ui_id:
|
||||
payload = {"type": "goal_update", "id": ui_id, "active": True}
|
||||
await self._send_experiment_update(payload)
|
||||
self.logger.info(f"UI Update: Goal {goal_name} started (ID: {ui_id})")
|
||||
case "active_norms_update":
|
||||
active_norms_asl = [
|
||||
s.strip("() '\",") for s in msg.body.split(",") if s.strip("() '\",")
|
||||
]
|
||||
await self._broadcast_cond_norms(active_norms_asl)
|
||||
case _:
|
||||
self.logger.debug(f"Received internal message on unhandled thread: {msg.thread}")
|
||||
|
||||
async def _broadcast_cond_norms(self, active_slugs: list[str]):
|
||||
"""
|
||||
Broadcasts the current activation state of all conditional norms to the UI.
|
||||
|
||||
:param active_slugs: A list of sluggified norm names currently active in the BDI core.
|
||||
"""
|
||||
updates = []
|
||||
for asl_slug, ui_id in self._cond_norm_reverse_map.items():
|
||||
is_active = asl_slug in active_slugs
|
||||
updates.append({"id": ui_id, "active": is_active})
|
||||
|
||||
payload = {"type": "cond_norms_state_update", "norms": updates}
|
||||
|
||||
if self.pub_socket:
|
||||
topic = b"status"
|
||||
body = json.dumps(payload).encode("utf-8")
|
||||
await self.pub_socket.send_multipart([topic, body])
|
||||
# self.logger.info(f"UI Update: Active norms {updates}")
|
||||
|
||||
def _create_mapping(self, program_json: str):
|
||||
"""
|
||||
Creates a bidirectional mapping between UI identifiers and AgentSpeak slugs.
|
||||
|
||||
:param program_json: The JSON representation of the behavioral program.
|
||||
"""
|
||||
try:
|
||||
program = Program.model_validate_json(program_json)
|
||||
self._trigger_map = {}
|
||||
self._trigger_reverse_map = {}
|
||||
self._goal_map = {}
|
||||
self._cond_norm_map = {}
|
||||
self._cond_norm_reverse_map = {}
|
||||
|
||||
def _register_goal(goal: Goal):
|
||||
"""Recursively register goals and their subgoals."""
|
||||
slug = AgentSpeakGenerator.slugify(goal)
|
||||
self._goal_map[str(goal.id)] = slug
|
||||
self._goal_reverse_map[slug] = str(goal.id)
|
||||
|
||||
for step in goal.plan.steps:
|
||||
if isinstance(step, Goal):
|
||||
_register_goal(step)
|
||||
|
||||
for phase in program.phases:
|
||||
for trigger in phase.triggers:
|
||||
slug = AgentSpeakGenerator.slugify(trigger)
|
||||
self._trigger_map[str(trigger.id)] = slug
|
||||
self._trigger_reverse_map[slug] = str(trigger.id)
|
||||
|
||||
for goal in phase.goals:
|
||||
_register_goal(goal)
|
||||
|
||||
for goal, id in self._goal_reverse_map.items():
|
||||
self.logger.debug(f"Goal mapping: UI ID {goal} -> {id}")
|
||||
|
||||
for norm in phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
asl_slug = AgentSpeakGenerator.slugify(norm)
|
||||
|
||||
norm_id = str(norm.id)
|
||||
|
||||
self._cond_norm_map[norm_id] = asl_slug
|
||||
self._cond_norm_reverse_map[norm.norm] = norm_id
|
||||
self.logger.debug("Added conditional norm %s", asl_slug)
|
||||
|
||||
self.logger.info(
|
||||
f"Mapped {len(self._trigger_map)} triggers and {len(self._goal_map)} goals "
|
||||
f"and {len(self._cond_norm_map)} conditional norms for UserInterruptAgent."
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Mapping failed: {e}")
|
||||
|
||||
async def _send_experiment_update(self, data, should_log: bool = True):
|
||||
"""
|
||||
Publishes an experiment state update to the internal ZMQ bus for the UI.
|
||||
|
||||
:param data: The update payload.
|
||||
:param should_log: Whether to log the update.
|
||||
"""
|
||||
if self.pub_socket:
|
||||
topic = b"experiment"
|
||||
body = json.dumps(data).encode("utf-8")
|
||||
await self.pub_socket.send_multipart([topic, body])
|
||||
if should_log:
|
||||
self.logger.debug(f"Sent experiment update: {data}")
|
||||
|
||||
async def _send_to_speech_agent(self, text_to_say: str):
|
||||
"""
|
||||
@@ -84,6 +313,7 @@ class UserInterruptAgent(BaseAgent):
|
||||
|
||||
:param text_to_say: The string that the robot has to say.
|
||||
"""
|
||||
experiment_logger.chat(text_to_say, extra={"role": "assistant"})
|
||||
cmd = SpeechCommand(data=text_to_say, is_priority=True)
|
||||
out_msg = InternalMessage(
|
||||
to=settings.agent_settings.robot_speech_name,
|
||||
@@ -109,38 +339,93 @@ class UserInterruptAgent(BaseAgent):
|
||||
)
|
||||
await self.send(out_msg)
|
||||
|
||||
async def _send_to_program_manager(self, belief_id: str):
|
||||
"""
|
||||
Send a button_override belief to the BDIProgramManager.
|
||||
async def _send_to_bdi(self, thread: str, body: str):
|
||||
"""Send slug of trigger to BDI"""
|
||||
msg = InternalMessage(to=settings.agent_settings.bdi_core_name, thread=thread, body=body)
|
||||
await self.send(msg)
|
||||
self.logger.info(f"Directly forced {thread} in BDI: {body}")
|
||||
|
||||
:param belief_id: The belief_id that overrides the goal/trigger/conditional norm.
|
||||
this id can belong to a basic belief or an inferred belief.
|
||||
See also: https://utrechtuniversity.youtrack.cloud/articles/N25B-A-27/UI-components
|
||||
async def _send_to_bdi_belief(self, asl: str, asl_type: str, unachieve: bool = False):
|
||||
"""Send belief to BDI Core"""
|
||||
if asl_type == "goal":
|
||||
belief_name = f"achieved_{asl}"
|
||||
elif asl_type == "cond_norm":
|
||||
belief_name = f"force_{asl}"
|
||||
else:
|
||||
self.logger.warning("Tried to send belief with unknown type")
|
||||
return
|
||||
belief = Belief(name=belief_name, arguments=None)
|
||||
self.logger.debug(f"Sending belief to BDI Core: {belief_name}")
|
||||
# Conditional norms are unachieved by removing the belief
|
||||
belief_message = (
|
||||
BeliefMessage(delete=[belief]) if unachieve else BeliefMessage(create=[belief])
|
||||
)
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
thread="beliefs",
|
||||
body=belief_message.model_dump_json(),
|
||||
)
|
||||
await self.send(msg)
|
||||
|
||||
async def _send_experiment_control_to_bdi_core(self, type):
|
||||
"""
|
||||
data = {"belief": belief_id}
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_program_manager_name,
|
||||
method to send experiment control buttons to bdi core.
|
||||
|
||||
:param type: the type of control button we should send to the bdi core.
|
||||
"""
|
||||
# Switch which thread we should send to bdi core
|
||||
thread = ""
|
||||
match type:
|
||||
case "next_phase":
|
||||
thread = "force_next_phase"
|
||||
case "reset_phase":
|
||||
thread = "reset_current_phase"
|
||||
case "reset_experiment":
|
||||
thread = "reset_experiment"
|
||||
case _:
|
||||
self.logger.warning(
|
||||
"Received unknown experiment control type '%s' to send to BDI Core.",
|
||||
type,
|
||||
)
|
||||
|
||||
out_msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=json.dumps(data),
|
||||
thread="belief_override_id",
|
||||
)
|
||||
await self.send(message)
|
||||
self.logger.info(
|
||||
"Sent button_override belief with id '%s' to Program manager.",
|
||||
belief_id,
|
||||
thread=thread,
|
||||
body="",
|
||||
)
|
||||
self.logger.debug("Sending experiment control '%s' to BDI Core.", thread)
|
||||
await self.send(out_msg)
|
||||
|
||||
async def setup(self):
|
||||
async def _send_pause_command(self, pause: str):
|
||||
"""
|
||||
Initialize the agent.
|
||||
|
||||
Connects the internal ZMQ SUB socket and subscribes to the 'button_pressed' topic.
|
||||
Starts the background behavior to receive the user interrupts.
|
||||
Send a pause command to the other internal agents; for now just VAD and VED agent.
|
||||
"""
|
||||
context = Context.instance()
|
||||
|
||||
self.sub_socket = context.socket(zmq.SUB)
|
||||
self.sub_socket.connect(settings.zmq_settings.internal_sub_address)
|
||||
self.sub_socket.subscribe("button_pressed")
|
||||
|
||||
self.add_behavior(self._receive_button_event())
|
||||
if pause == "true":
|
||||
# Send pause to VAD and VED agent
|
||||
vad_message = InternalMessage(
|
||||
to=[
|
||||
settings.agent_settings.vad_name,
|
||||
settings.agent_settings.visual_emotion_recognition_name,
|
||||
settings.agent_settings.face_agent_name,
|
||||
],
|
||||
sender=self.name,
|
||||
body="PAUSE",
|
||||
)
|
||||
await self.send(vad_message)
|
||||
# Voice Activity Detection and Visual Emotion Recognition agents
|
||||
self.logger.info("Sent pause command to perception agents.")
|
||||
else:
|
||||
# Send resume to VAD and VED agents
|
||||
vad_message = InternalMessage(
|
||||
to=[
|
||||
settings.agent_settings.vad_name,
|
||||
settings.agent_settings.visual_emotion_recognition_name,
|
||||
settings.agent_settings.face_agent_name,
|
||||
],
|
||||
sender=self.name,
|
||||
body="RESUME",
|
||||
)
|
||||
await self.send(vad_message)
|
||||
# Voice Activity Detection and Visual Emotion Recognition agents
|
||||
self.logger.info("Sent resume command to perception agents.")
|
||||
|
||||
@@ -0,0 +1,5 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
@@ -0,0 +1,5 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
@@ -0,0 +1,5 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
@@ -1,31 +0,0 @@
|
||||
import logging
|
||||
|
||||
from fastapi import APIRouter, Request
|
||||
|
||||
from control_backend.schemas.events import ButtonPressedEvent
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.post("/button_pressed", status_code=202)
|
||||
async def receive_button_event(event: ButtonPressedEvent, request: Request):
|
||||
"""
|
||||
Endpoint to handle external button press events.
|
||||
|
||||
Validates the event payload and publishes it to the internal 'button_pressed' topic.
|
||||
Subscribers (in this case user_interrupt_agent) will pick this up to trigger
|
||||
specific behaviors or state changes.
|
||||
|
||||
:param event: The parsed ButtonPressedEvent object.
|
||||
:param request: The FastAPI request object.
|
||||
"""
|
||||
logger.debug("Received button event: %s | %s", event.type, event.context)
|
||||
|
||||
topic = b"button_pressed"
|
||||
body = event.model_dump_json().encode()
|
||||
|
||||
pub_socket = request.app.state.endpoints_pub_socket
|
||||
await pub_socket.send_multipart([topic, body])
|
||||
|
||||
return {"status": "Event received"}
|
||||
@@ -1,8 +1,15 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import zmq
|
||||
from fastapi import APIRouter
|
||||
from fastapi.responses import StreamingResponse
|
||||
from fastapi import APIRouter, HTTPException
|
||||
from fastapi.responses import FileResponse, StreamingResponse
|
||||
from zmq.asyncio import Context
|
||||
|
||||
from control_backend.core.config import settings
|
||||
@@ -38,3 +45,29 @@ async def log_stream():
|
||||
yield f"data: {message}\n\n"
|
||||
|
||||
return StreamingResponse(gen(), media_type="text/event-stream")
|
||||
|
||||
|
||||
LOGGING_DIR = Path(settings.logging_settings.experiment_log_directory).resolve()
|
||||
|
||||
|
||||
@router.get("/logs/files")
|
||||
@router.get("/api/logs/files")
|
||||
async def log_directory():
|
||||
"""
|
||||
Get a list of all log files stored in the experiment log file directory.
|
||||
"""
|
||||
return [f.name for f in LOGGING_DIR.glob("*.log")]
|
||||
|
||||
|
||||
@router.get("/logs/files/{filename}")
|
||||
@router.get("/api/logs/files/{filename}")
|
||||
async def log_file(filename: str):
|
||||
# Prevent path-traversal
|
||||
file_path = (LOGGING_DIR / filename).resolve() # This .resolve() is important
|
||||
if not file_path.is_relative_to(LOGGING_DIR):
|
||||
raise HTTPException(status_code=400, detail="Invalid filename.")
|
||||
|
||||
if not file_path.is_file():
|
||||
raise HTTPException(status_code=404, detail="File not found.")
|
||||
|
||||
return FileResponse(file_path, filename=file_path.name)
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
from fastapi import APIRouter, Request
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
from fastapi import APIRouter, Request
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
@@ -137,7 +143,6 @@ async def ping_stream(request: Request):
|
||||
logger.info("Client disconnected from SSE")
|
||||
break
|
||||
|
||||
logger.debug(f"Yielded new connection event in robot ping router: {str(connected)}")
|
||||
connectedJson = json.dumps(connected)
|
||||
yield (f"data: {connectedJson}\n\n")
|
||||
|
||||
|
||||
@@ -1,12 +0,0 @@
|
||||
from fastapi import APIRouter, Request
|
||||
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
# TODO: implement
|
||||
@router.get("/sse")
|
||||
async def sse(request: Request):
|
||||
"""
|
||||
Placeholder for future Server-Sent Events endpoint.
|
||||
"""
|
||||
pass
|
||||
100
src/control_backend/api/v1/endpoints/user_interact.py
Normal file
100
src/control_backend/api/v1/endpoints/user_interact.py
Normal file
@@ -0,0 +1,100 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
|
||||
import zmq
|
||||
import zmq.asyncio
|
||||
from fastapi import APIRouter, Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
from zmq.asyncio import Context
|
||||
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.events import ButtonPressedEvent
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.post("/button_pressed", status_code=202)
|
||||
async def receive_button_event(event: ButtonPressedEvent, request: Request):
|
||||
"""
|
||||
Endpoint to handle external button press events.
|
||||
|
||||
Validates the event payload and publishes it to the internal 'button_pressed' topic.
|
||||
Subscribers (in this case user_interrupt_agent) will pick this up to trigger
|
||||
specific behaviors or state changes.
|
||||
|
||||
:param event: The parsed ButtonPressedEvent object.
|
||||
:param request: The FastAPI request object.
|
||||
"""
|
||||
logger.debug("Received button event: %s | %s", event.type, event.context)
|
||||
|
||||
topic = b"button_pressed"
|
||||
body = event.model_dump_json().encode()
|
||||
|
||||
pub_socket = request.app.state.endpoints_pub_socket
|
||||
await pub_socket.send_multipart([topic, body])
|
||||
|
||||
return {"status": "Event received"}
|
||||
|
||||
|
||||
@router.get("/experiment_stream")
|
||||
async def experiment_stream(request: Request):
|
||||
# Use the asyncio-compatible context
|
||||
context = Context.instance()
|
||||
socket = context.socket(zmq.SUB)
|
||||
|
||||
# Connect and subscribe
|
||||
socket.connect(settings.zmq_settings.internal_sub_address)
|
||||
socket.subscribe(b"experiment")
|
||||
|
||||
async def gen():
|
||||
try:
|
||||
while True:
|
||||
# Check if client closed the tab
|
||||
if await request.is_disconnected():
|
||||
logger.error("Client disconnected from experiment stream.")
|
||||
break
|
||||
|
||||
try:
|
||||
parts = await asyncio.wait_for(socket.recv_multipart(), timeout=10.0)
|
||||
_, message = parts
|
||||
yield f"data: {message.decode().strip()}\n\n"
|
||||
except TimeoutError:
|
||||
continue
|
||||
finally:
|
||||
socket.close()
|
||||
|
||||
return StreamingResponse(gen(), media_type="text/event-stream")
|
||||
|
||||
|
||||
@router.get("/status_stream")
|
||||
async def status_stream(request: Request):
|
||||
context = Context.instance()
|
||||
socket = context.socket(zmq.SUB)
|
||||
socket.connect(settings.zmq_settings.internal_sub_address)
|
||||
|
||||
socket.subscribe(b"status")
|
||||
|
||||
async def gen():
|
||||
try:
|
||||
while True:
|
||||
if await request.is_disconnected():
|
||||
break
|
||||
try:
|
||||
# Shorter timeout since this is frequent
|
||||
parts = await asyncio.wait_for(socket.recv_multipart(), timeout=0.5)
|
||||
_, message = parts
|
||||
yield f"data: {message.decode().strip()}\n\n"
|
||||
except TimeoutError:
|
||||
yield ": ping\n\n" # Keep the connection alive
|
||||
continue
|
||||
finally:
|
||||
socket.close()
|
||||
|
||||
return StreamingResponse(gen(), media_type="text/event-stream")
|
||||
@@ -1,17 +1,21 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from fastapi.routing import APIRouter
|
||||
|
||||
from control_backend.api.v1.endpoints import button_pressed, logs, message, program, robot, sse
|
||||
from control_backend.api.v1.endpoints import logs, message, program, robot, user_interact
|
||||
|
||||
api_router = APIRouter()
|
||||
|
||||
api_router.include_router(message.router, tags=["Messages"])
|
||||
|
||||
api_router.include_router(sse.router, tags=["SSE"])
|
||||
|
||||
api_router.include_router(robot.router, prefix="/robot", tags=["Pings", "Commands"])
|
||||
api_router.include_router(robot.router, prefix="/robot", tags=["Pings", "Commands", "Face"])
|
||||
|
||||
api_router.include_router(logs.router, tags=["Logs"])
|
||||
|
||||
api_router.include_router(program.router, tags=["Program"])
|
||||
|
||||
api_router.include_router(button_pressed.router, tags=["Button Pressed Events"])
|
||||
api_router.include_router(user_interact.router, tags=["Button Pressed Events"])
|
||||
|
||||
@@ -0,0 +1,5 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
from abc import ABC, abstractmethod
|
||||
@@ -22,10 +28,22 @@ class AgentDirectory:
|
||||
|
||||
@staticmethod
|
||||
def register(name: str, agent: "BaseAgent"):
|
||||
"""
|
||||
Registers an agent instance with a unique name.
|
||||
|
||||
:param name: The name of the agent.
|
||||
:param agent: The :class:`BaseAgent` instance.
|
||||
"""
|
||||
_agent_directory[name] = agent
|
||||
|
||||
@staticmethod
|
||||
def get(name: str) -> "BaseAgent | None":
|
||||
"""
|
||||
Retrieves a registered agent instance by name.
|
||||
|
||||
:param name: The name of the agent to retrieve.
|
||||
:return: The :class:`BaseAgent` instance, or None if not found.
|
||||
"""
|
||||
return _agent_directory.get(name)
|
||||
|
||||
|
||||
@@ -60,6 +78,9 @@ class BaseAgent(ABC):
|
||||
self._tasks: set[asyncio.Task] = set()
|
||||
self._running = False
|
||||
|
||||
self._internal_pub_socket: None | azmq.Socket = None
|
||||
self._internal_sub_socket: None | azmq.Socket = None
|
||||
|
||||
# Register immediately
|
||||
AgentDirectory.register(name, self)
|
||||
|
||||
@@ -117,7 +138,7 @@ class BaseAgent(ABC):
|
||||
task.cancel()
|
||||
self.logger.info(f"Agent {self.name} stopped")
|
||||
|
||||
async def send(self, message: InternalMessage):
|
||||
async def send(self, message: InternalMessage, should_log: bool = True):
|
||||
"""
|
||||
Send a message to another agent.
|
||||
|
||||
@@ -130,17 +151,26 @@ class BaseAgent(ABC):
|
||||
|
||||
:param message: The message to send.
|
||||
"""
|
||||
target = AgentDirectory.get(message.to)
|
||||
message.sender = self.name
|
||||
if target:
|
||||
await target.inbox.put(message)
|
||||
self.logger.debug(f"Sent message {message.body} to {message.to} via regular inbox.")
|
||||
else:
|
||||
# Apparently target agent is on a different process, send via ZMQ
|
||||
topic = f"internal/{message.to}".encode()
|
||||
body = message.model_dump_json().encode()
|
||||
await self._internal_pub_socket.send_multipart([topic, body])
|
||||
self.logger.debug(f"Sent message {message.body} to {message.to} via ZMQ.")
|
||||
to = message.to
|
||||
receivers = [to] if isinstance(to, str) else to
|
||||
|
||||
for receiver in receivers:
|
||||
target = AgentDirectory.get(receiver)
|
||||
|
||||
if target:
|
||||
await target.inbox.put(message)
|
||||
if should_log:
|
||||
self.logger.debug(
|
||||
f"Sent message {message.body} to {message.to} via regular inbox."
|
||||
)
|
||||
else:
|
||||
# Apparently target agent is on a different process, send via ZMQ
|
||||
topic = f"internal/{receiver}".encode()
|
||||
body = message.model_dump_json().encode()
|
||||
await self._internal_pub_socket.send_multipart([topic, body])
|
||||
if should_log:
|
||||
self.logger.debug(f"Sent message {message.body} to {message.to} via ZMQ.")
|
||||
|
||||
async def _process_inbox(self):
|
||||
"""
|
||||
@@ -150,7 +180,6 @@ class BaseAgent(ABC):
|
||||
"""
|
||||
while self._running:
|
||||
msg = await self.inbox.get()
|
||||
self.logger.debug(f"Received message from {msg.sender}.")
|
||||
await self.handle_message(msg)
|
||||
|
||||
async def _receive_internal_zmq_loop(self):
|
||||
|
||||
@@ -1,4 +1,8 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
--------------------------------------------------------------------------------
|
||||
An exhaustive overview of configurable options. All of these can be set using environment variables
|
||||
by nesting with double underscores (__). Start from the ``Settings`` class.
|
||||
|
||||
@@ -35,7 +39,6 @@ class AgentSettings(BaseModel):
|
||||
Names of the various agents in the system. These names are used for routing messages.
|
||||
|
||||
:ivar bdi_core_name: Name of the BDI Core Agent.
|
||||
:ivar bdi_belief_collector_name: Name of the Belief Collector Agent.
|
||||
:ivar bdi_program_manager_name: Name of the BDI Program Manager Agent.
|
||||
:ivar text_belief_extractor_name: Name of the Text Belief Extractor Agent.
|
||||
:ivar vad_name: Name of the Voice Activity Detection (VAD) Agent.
|
||||
@@ -50,8 +53,8 @@ class AgentSettings(BaseModel):
|
||||
|
||||
# agent names
|
||||
bdi_core_name: str = "bdi_core_agent"
|
||||
bdi_belief_collector_name: str = "belief_collector_agent"
|
||||
bdi_program_manager_name: str = "bdi_program_manager_agent"
|
||||
visual_emotion_recognition_name: str = "visual_emotion_recognition_agent"
|
||||
text_belief_extractor_name: str = "text_belief_extractor_agent"
|
||||
vad_name: str = "vad_agent"
|
||||
llm_name: str = "llm_agent"
|
||||
@@ -61,6 +64,7 @@ class AgentSettings(BaseModel):
|
||||
robot_speech_name: str = "robot_speech_agent"
|
||||
robot_gesture_name: str = "robot_gesture_agent"
|
||||
user_interrupt_name: str = "user_interrupt_agent"
|
||||
face_agent_name: str = "face_detection_agent"
|
||||
|
||||
|
||||
class BehaviourSettings(BaseModel):
|
||||
@@ -79,6 +83,12 @@ class BehaviourSettings(BaseModel):
|
||||
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
|
||||
:ivar transcription_token_buffer: Buffer for transcription tokens.
|
||||
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
|
||||
:ivar trigger_time_to_wait: Amount of milliseconds to wait before informing the UI about trigger
|
||||
completion.
|
||||
:ivar visual_emotion_recognition_window_duration_s: Duration in seconds over which to aggregate
|
||||
emotions and update emotion beliefs.
|
||||
:ivar visual_emotion_recognition_min_frames_per_face: Minimum number of frames per face required
|
||||
to consider a face valid.
|
||||
"""
|
||||
|
||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||
@@ -102,6 +112,14 @@ class BehaviourSettings(BaseModel):
|
||||
# Text belief extractor settings
|
||||
conversation_history_length_limit: int = 10
|
||||
|
||||
# AgentSpeak related settings
|
||||
trigger_time_to_wait: int = 2000
|
||||
agentspeak_file: str = "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
|
||||
# Visual Emotion Recognition settings
|
||||
visual_emotion_recognition_window_duration_s: int = 5
|
||||
visual_emotion_recognition_min_frames_per_face: int = 3
|
||||
|
||||
|
||||
class LLMSettings(BaseModel):
|
||||
"""
|
||||
@@ -119,6 +137,7 @@ class LLMSettings(BaseModel):
|
||||
|
||||
local_llm_url: str = "http://localhost:1234/v1/chat/completions"
|
||||
local_llm_model: str = "gpt-oss"
|
||||
api_key: str = ""
|
||||
chat_temperature: float = 1.0
|
||||
code_temperature: float = 0.3
|
||||
n_parallel: int = 4
|
||||
@@ -155,6 +174,20 @@ class SpeechModelSettings(BaseModel):
|
||||
openai_model_name: str = "small.en"
|
||||
|
||||
|
||||
class LoggingSettings(BaseModel):
|
||||
"""
|
||||
Configuration for logging.
|
||||
|
||||
:ivar logging_config_file: Path to the logging configuration file.
|
||||
:ivar experiment_log_directory: Location of the experiment logs. Must match the logging config.
|
||||
:ivar experiment_logger_name: Name of the experiment logger. Must match the logging config.
|
||||
"""
|
||||
|
||||
logging_config_file: str = ".logging_config.yaml"
|
||||
experiment_log_directory: str = "experiment_logs"
|
||||
experiment_logger_name: str = "experiment"
|
||||
|
||||
|
||||
class Settings(BaseSettings):
|
||||
"""
|
||||
Global application settings.
|
||||
@@ -176,6 +209,8 @@ class Settings(BaseSettings):
|
||||
|
||||
ri_host: str = "localhost"
|
||||
|
||||
logging_settings: LoggingSettings = LoggingSettings()
|
||||
|
||||
zmq_settings: ZMQSettings = ZMQSettings()
|
||||
|
||||
agent_settings: AgentSettings = AgentSettings()
|
||||
|
||||
@@ -1 +1,10 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from .dated_file_handler import DatedFileHandler as DatedFileHandler
|
||||
from .optional_field_formatter import OptionalFieldFormatter as OptionalFieldFormatter
|
||||
from .partial_filter import PartialFilter as PartialFilter
|
||||
from .setup_logging import setup_logging as setup_logging
|
||||
|
||||
44
src/control_backend/logging/dated_file_handler.py
Normal file
44
src/control_backend/logging/dated_file_handler.py
Normal file
@@ -0,0 +1,44 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from datetime import datetime
|
||||
from logging import FileHandler
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
class DatedFileHandler(FileHandler):
|
||||
def __init__(self, file_prefix: str, **kwargs):
|
||||
if not file_prefix:
|
||||
raise ValueError("`file_prefix` argument cannot be empty.")
|
||||
self._file_prefix = file_prefix
|
||||
kwargs["filename"] = self._make_filename()
|
||||
super().__init__(**kwargs)
|
||||
|
||||
def _make_filename(self) -> str:
|
||||
"""
|
||||
Create the filename for the current logfile, using the configured file prefix and the
|
||||
current date and time. If the directory does not exist, it gets created.
|
||||
|
||||
:return: A filepath.
|
||||
"""
|
||||
filepath = Path(f"{self._file_prefix}-{datetime.now():%Y%m%d-%H%M%S}.log")
|
||||
if not filepath.parent.is_dir():
|
||||
filepath.parent.mkdir(parents=True, exist_ok=True)
|
||||
return str(filepath)
|
||||
|
||||
def do_rollover(self):
|
||||
"""
|
||||
Close the current logfile and create a new one with the current date and time.
|
||||
"""
|
||||
self.acquire()
|
||||
try:
|
||||
if self.stream:
|
||||
self.stream.close()
|
||||
|
||||
self.baseFilename = self._make_filename()
|
||||
self.stream = self._open()
|
||||
finally:
|
||||
self.release()
|
||||
73
src/control_backend/logging/optional_field_formatter.py
Normal file
73
src/control_backend/logging/optional_field_formatter.py
Normal file
@@ -0,0 +1,73 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
import re
|
||||
|
||||
|
||||
class OptionalFieldFormatter(logging.Formatter):
|
||||
"""
|
||||
Logging formatter that supports optional fields marked by `?`.
|
||||
|
||||
Optional fields are denoted by placing a `?` after the field name inside
|
||||
the parentheses, e.g., `%(role?)s`. If the field is not provided in the
|
||||
log call's `extra` dict, it will use the default value from `defaults`
|
||||
or `None` if no default is specified.
|
||||
|
||||
:param fmt: Format string with optional `%(name?)s` style fields.
|
||||
:type fmt: str or None
|
||||
:param datefmt: Date format string, passed to parent :class:`logging.Formatter`.
|
||||
:type datefmt: str or None
|
||||
:param style: Formatting style, must be '%'. Passed to parent.
|
||||
:type style: str
|
||||
:param defaults: Default values for optional fields when not provided.
|
||||
:type defaults: dict or None
|
||||
|
||||
:example:
|
||||
|
||||
>>> formatter = OptionalFieldFormatter(
|
||||
... fmt="%(asctime)s %(levelname)s %(role?)s %(message)s",
|
||||
... defaults={"role": ""-""}
|
||||
... )
|
||||
>>> handler = logging.StreamHandler()
|
||||
>>> handler.setFormatter(formatter)
|
||||
>>> logger = logging.getLogger(__name__)
|
||||
>>> logger.addHandler(handler)
|
||||
>>>
|
||||
>>> logger.chat("Hello there!", extra={"role": "USER"})
|
||||
2025-01-15 10:30:00 CHAT USER Hello there!
|
||||
>>>
|
||||
>>> logger.info("A logging message")
|
||||
2025-01-15 10:30:01 INFO - A logging message
|
||||
|
||||
.. note::
|
||||
Only `%`-style formatting is supported. The `{` and `$` styles are not
|
||||
compatible with this formatter.
|
||||
|
||||
.. seealso::
|
||||
:class:`logging.Formatter` for base formatter documentation.
|
||||
"""
|
||||
|
||||
# Match %(name?)s or %(name?)d etc.
|
||||
OPTIONAL_PATTERN = re.compile(r"%\((\w+)\?\)([sdifFeEgGxXocrba%])")
|
||||
|
||||
def __init__(self, fmt=None, datefmt=None, style="%", defaults=None):
|
||||
self.defaults = defaults or {}
|
||||
|
||||
self.optional_fields = set(self.OPTIONAL_PATTERN.findall(fmt or ""))
|
||||
|
||||
# Convert %(name?)s to %(name)s for standard formatting
|
||||
normalized_fmt = self.OPTIONAL_PATTERN.sub(r"%(\1)\2", fmt or "")
|
||||
|
||||
super().__init__(normalized_fmt, datefmt, style)
|
||||
|
||||
def format(self, record):
|
||||
for field, _ in self.optional_fields:
|
||||
if not hasattr(record, field):
|
||||
default = self.defaults.get(field, None)
|
||||
setattr(record, field, default)
|
||||
|
||||
return super().format(record)
|
||||
16
src/control_backend/logging/partial_filter.py
Normal file
16
src/control_backend/logging/partial_filter.py
Normal file
@@ -0,0 +1,16 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
|
||||
class PartialFilter(logging.Filter):
|
||||
"""
|
||||
Class to filter any log records that have the "partial" attribute set to ``True``.
|
||||
"""
|
||||
|
||||
def filter(self, record):
|
||||
return getattr(record, "partial", False) is not True
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
import logging.config
|
||||
import os
|
||||
@@ -37,7 +43,7 @@ def add_logging_level(level_name: str, level_num: int, method_name: str | None =
|
||||
setattr(logging, method_name, log_to_root)
|
||||
|
||||
|
||||
def setup_logging(path: str = ".logging_config.yaml") -> None:
|
||||
def setup_logging(path: str = settings.logging_settings.logging_config_file) -> None:
|
||||
"""
|
||||
Setup logging configuration of the CB. Tries to load the logging configuration from a file,
|
||||
in which we specify custom loggers, formatters, handlers, etc.
|
||||
@@ -65,7 +71,7 @@ def setup_logging(path: str = ".logging_config.yaml") -> None:
|
||||
|
||||
# Patch ZMQ PUBHandler to know about custom levels
|
||||
if custom_levels:
|
||||
for logger_name in ("control_backend",):
|
||||
for logger_name in config.get("loggers", {}):
|
||||
logger = logging.getLogger(logger_name)
|
||||
for handler in logger.handlers:
|
||||
if isinstance(handler, PUBHandler):
|
||||
|
||||
@@ -1,4 +1,8 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
--------------------------------------------------------------------------------
|
||||
Control Backend Main Application.
|
||||
|
||||
This module defines the FastAPI application that serves as the entry point for the
|
||||
@@ -26,7 +30,6 @@ from zmq.asyncio import Context
|
||||
|
||||
# BDI agents
|
||||
from control_backend.agents.bdi import (
|
||||
BDIBeliefCollectorAgent,
|
||||
BDICoreAgent,
|
||||
TextBeliefExtractorAgent,
|
||||
)
|
||||
@@ -122,12 +125,6 @@ async def lifespan(app: FastAPI):
|
||||
"name": settings.agent_settings.bdi_core_name,
|
||||
},
|
||||
),
|
||||
"BeliefCollectorAgent": (
|
||||
BDIBeliefCollectorAgent,
|
||||
{
|
||||
"name": settings.agent_settings.bdi_belief_collector_name,
|
||||
},
|
||||
),
|
||||
"TextBeliefExtractorAgent": (
|
||||
TextBeliefExtractorAgent,
|
||||
{
|
||||
@@ -172,6 +169,8 @@ async def lifespan(app: FastAPI):
|
||||
|
||||
await endpoints_pub_socket.send_multipart([PROGRAM_STATUS, ProgramStatus.STOPPING.value])
|
||||
# Additional shutdown logic goes here
|
||||
for agent in agents:
|
||||
await agent.stop()
|
||||
|
||||
logger.info("Application shutdown complete.")
|
||||
|
||||
|
||||
@@ -0,0 +1,5 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
@@ -1,7 +1,13 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
from control_backend.schemas.program import BaseGoal
|
||||
from control_backend.schemas.program import Belief as ProgramBelief
|
||||
from control_backend.schemas.program import Goal
|
||||
|
||||
|
||||
class BeliefList(BaseModel):
|
||||
@@ -16,4 +22,10 @@ class BeliefList(BaseModel):
|
||||
|
||||
|
||||
class GoalList(BaseModel):
|
||||
goals: list[Goal]
|
||||
"""
|
||||
Represents a list of goals, used for communicating multiple goals between agents.
|
||||
|
||||
:ivar goals: The list of goals.
|
||||
"""
|
||||
|
||||
goals: list[BaseGoal]
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@@ -11,7 +17,7 @@ class Belief(BaseModel):
|
||||
"""
|
||||
|
||||
name: str
|
||||
arguments: list[str] | None
|
||||
arguments: list[str] | None = None
|
||||
|
||||
# To make it hashable
|
||||
model_config = {"frozen": True}
|
||||
|
||||
@@ -1,10 +1,29 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ChatMessage(BaseModel):
|
||||
"""
|
||||
Represents a single message in a conversation.
|
||||
|
||||
:ivar role: The role of the speaker (e.g., 'user', 'assistant').
|
||||
:ivar content: The text content of the message.
|
||||
"""
|
||||
|
||||
role: str
|
||||
content: str
|
||||
|
||||
|
||||
class ChatHistory(BaseModel):
|
||||
"""
|
||||
Represents a sequence of chat messages, forming a conversation history.
|
||||
|
||||
:ivar messages: An ordered list of :class:`ChatMessage` objects.
|
||||
"""
|
||||
|
||||
messages: list[ChatMessage]
|
||||
|
||||
@@ -1,6 +1,20 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class ButtonPressedEvent(BaseModel):
|
||||
"""
|
||||
Represents a button press event from the UI.
|
||||
|
||||
:ivar type: The type of event (e.g., 'speech', 'gesture', 'override').
|
||||
:ivar context: Additional data associated with the event (e.g., speech text, gesture name,
|
||||
or ID).
|
||||
"""
|
||||
|
||||
type: str
|
||||
context: str
|
||||
|
||||
@@ -1,3 +1,11 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from collections.abc import Iterable
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@@ -5,13 +13,13 @@ class InternalMessage(BaseModel):
|
||||
"""
|
||||
Standard message envelope for communication between agents within the Control Backend.
|
||||
|
||||
:ivar to: The name of the destination agent.
|
||||
:ivar to: The name(s) of the destination agent(s).
|
||||
:ivar sender: The name of the sending agent.
|
||||
:ivar body: The string payload (often a JSON-serialized model).
|
||||
:ivar thread: An optional thread identifier/topic to categorize the message (e.g., 'beliefs').
|
||||
"""
|
||||
|
||||
to: str
|
||||
to: str | Iterable[str]
|
||||
sender: str | None = None
|
||||
body: str
|
||||
thread: str | None = None
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from enum import Enum
|
||||
from typing import Literal
|
||||
|
||||
@@ -15,21 +21,43 @@ class ProgramElement(BaseModel):
|
||||
name: str
|
||||
id: UUID4
|
||||
|
||||
# To make program elements hashable
|
||||
model_config = {"frozen": True}
|
||||
|
||||
|
||||
class LogicalOperator(Enum):
|
||||
"""
|
||||
Logical operators for combining beliefs.
|
||||
|
||||
These operators define how beliefs can be combined to form more complex
|
||||
logical conditions. They are used in inferred beliefs to create compound
|
||||
beliefs from simpler ones.
|
||||
|
||||
AND: Both operands must be true for the result to be true.
|
||||
OR: At least one operand must be true for the result to be true.
|
||||
"""
|
||||
|
||||
AND = "AND"
|
||||
OR = "OR"
|
||||
|
||||
|
||||
type Belief = KeywordBelief | SemanticBelief | InferredBelief
|
||||
type BasicBelief = KeywordBelief | SemanticBelief
|
||||
type Belief = KeywordBelief | SemanticBelief | InferredBelief | EmotionBelief | FaceBelief
|
||||
type BasicBelief = KeywordBelief | SemanticBelief | EmotionBelief | FaceBelief
|
||||
|
||||
|
||||
class KeywordBelief(ProgramElement):
|
||||
"""
|
||||
Represents a belief that is set when the user spoken text contains a certain keyword.
|
||||
Represents a belief that is activated when a specific keyword is detected in the user's speech.
|
||||
|
||||
:ivar keyword: The keyword on which this belief gets set.
|
||||
Keyword beliefs provide a simple but effective way to detect specific topics
|
||||
or intentions in user speech. They are triggered when the exact keyword
|
||||
string appears in the transcribed user input.
|
||||
|
||||
:ivar keyword: The string to look for in the transcription.
|
||||
|
||||
Example:
|
||||
A keyword belief with keyword="robot" would be activated when the user
|
||||
says "I like the robot" or "Tell me about robots".
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
@@ -38,9 +66,21 @@ class KeywordBelief(ProgramElement):
|
||||
|
||||
class SemanticBelief(ProgramElement):
|
||||
"""
|
||||
Represents a belief that is set by semantic LLM validation.
|
||||
Represents a belief whose truth value is determined by an LLM analyzing the conversation
|
||||
context.
|
||||
|
||||
:ivar description: Description of how to form the belief, used by the LLM.
|
||||
Semantic beliefs provide more sophisticated belief detection by using
|
||||
an LLM to analyze the conversation context and determine
|
||||
if the belief should be considered true. This allows for more nuanced
|
||||
and context-aware belief evaluation.
|
||||
|
||||
:ivar description: A natural language description of what this belief represents,
|
||||
used as a prompt for the LLM.
|
||||
|
||||
Example:
|
||||
A semantic belief with description="The user is expressing frustration"
|
||||
would be activated when the LLM determines that the user's statements
|
||||
indicate frustration, even if no specific keywords are used.
|
||||
"""
|
||||
|
||||
description: str
|
||||
@@ -48,13 +88,16 @@ class SemanticBelief(ProgramElement):
|
||||
|
||||
class InferredBelief(ProgramElement):
|
||||
"""
|
||||
Represents a belief that gets formed by combining two beliefs with a logical AND or OR.
|
||||
Represents a belief derived from other beliefs using logical operators.
|
||||
|
||||
These beliefs can also be :class:`InferredBelief`, leading to arbitrarily deep nesting.
|
||||
Inferred beliefs allow for the creation of complex belief structures by
|
||||
combining simpler beliefs using logical operators. This enables the
|
||||
representation of sophisticated conditions and relationships between
|
||||
different aspects of the conversation or context.
|
||||
|
||||
:ivar operator: The logical operator to apply.
|
||||
:ivar left: The left part of the logical expression.
|
||||
:ivar right: The right part of the logical expression.
|
||||
:ivar operator: The :class:`LogicalOperator` (AND/OR) to apply.
|
||||
:ivar left: The left operand (another belief).
|
||||
:ivar right: The right operand (another belief).
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
@@ -63,7 +106,43 @@ class InferredBelief(ProgramElement):
|
||||
right: Belief
|
||||
|
||||
|
||||
class EmotionBelief(ProgramElement):
|
||||
"""
|
||||
Represents a belief that is set when a certain emotion is detected.
|
||||
|
||||
:ivar emotion: The emotion on which this belief gets set.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
emotion: str
|
||||
|
||||
|
||||
class FaceBelief(ProgramElement):
|
||||
"""
|
||||
Represents the belief that at least one face is currently detected.
|
||||
This belief is maintained by a perception agent (not inferred).
|
||||
"""
|
||||
|
||||
face_present: bool
|
||||
name: str = ""
|
||||
|
||||
|
||||
class Norm(ProgramElement):
|
||||
"""
|
||||
Base class for behavioral norms that guide the robot's interactions.
|
||||
|
||||
Norms represent guidelines, principles, or rules that should govern the
|
||||
robot's behavior during interactions. They can be either basic (always
|
||||
active in their phase) or conditional (active only when specific beliefs
|
||||
are true).
|
||||
|
||||
:ivar norm: The textual description of the norm.
|
||||
:ivar critical: Whether this norm is considered critical and should be strictly enforced.
|
||||
|
||||
Critical norms are currently not supported yet, but are intended for norms that should
|
||||
ABSOLUTELY NOT be violated, possible cheched by additional validator agents.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
norm: str
|
||||
critical: bool = False
|
||||
@@ -71,10 +150,14 @@ class Norm(ProgramElement):
|
||||
|
||||
class BasicNorm(Norm):
|
||||
"""
|
||||
Represents a behavioral norm.
|
||||
A simple behavioral norm that is always considered for activation when its phase is active.
|
||||
|
||||
:ivar norm: The actual norm text describing the behavior.
|
||||
:ivar critical: When true, this norm should absolutely not be violated (checked separately).
|
||||
Basic norms are the most straightforward type of norms. They are active
|
||||
throughout their assigned phase and provide consistent behavioral guidance
|
||||
without any additional conditions.
|
||||
|
||||
These norms are suitable for general principles that should always apply
|
||||
during a particular interaction phase.
|
||||
"""
|
||||
|
||||
pass
|
||||
@@ -82,9 +165,22 @@ class BasicNorm(Norm):
|
||||
|
||||
class ConditionalNorm(Norm):
|
||||
"""
|
||||
Represents a norm that is only active when a condition is met (i.e., a certain belief holds).
|
||||
A behavioral norm that is only active when a specific condition (belief) is met.
|
||||
|
||||
:ivar condition: When to activate this norm.
|
||||
Conditional norms provide context-sensitive behavioral guidance. They are
|
||||
only active and considered for activation when their associated condition
|
||||
(belief) is true. This allows for more nuanced and adaptive behavior that
|
||||
responds to the specific context of the interaction.
|
||||
|
||||
An important note, is that the current implementation of these norms for keyword-based beliefs
|
||||
is that they only hold for 1 turn, as keyword-based conditions often express temporary
|
||||
conditions.
|
||||
|
||||
:ivar condition: The :class:`Belief` that must hold for this norm to be active.
|
||||
|
||||
Example:
|
||||
A conditional norm with the condition "user is frustrated" might specify
|
||||
that the robot should use more empathetic language and avoid complex topics.
|
||||
"""
|
||||
|
||||
condition: Belief
|
||||
@@ -96,7 +192,12 @@ type PlanElement = Goal | Action
|
||||
class Plan(ProgramElement):
|
||||
"""
|
||||
Represents a list of steps to execute. Each of these steps can be a goal (with its own plan)
|
||||
or a simple action.
|
||||
or a simple action.
|
||||
|
||||
Plans define sequences of actions and subgoals that the robot should execute
|
||||
to achieve a particular objective. They form the procedural knowledge of
|
||||
the behavior program, specifying what the robot should do in different
|
||||
situations.
|
||||
|
||||
:ivar steps: The actions or subgoals to execute, in order.
|
||||
"""
|
||||
@@ -105,31 +206,49 @@ class Plan(ProgramElement):
|
||||
steps: list[PlanElement]
|
||||
|
||||
|
||||
class Goal(ProgramElement):
|
||||
class BaseGoal(ProgramElement):
|
||||
"""
|
||||
Represents an objective to be achieved. To reach the goal, we should execute
|
||||
the corresponding plan. If we can fail to achieve a goal after executing the plan,
|
||||
for example when the achieving of the goal is dependent on the user's reply, this means
|
||||
that the achieved status will be set from somewhere else in the program.
|
||||
Represents an objective to be achieved. This base version does not include a plan to achieve
|
||||
this goal, and is used in semantic belief extraction.
|
||||
|
||||
:ivar description: A description of the goal, used to determine if it has been achieved.
|
||||
:ivar plan: The plan to execute.
|
||||
:ivar can_fail: Whether we can fail to achieve the goal after executing the plan.
|
||||
|
||||
The can_fail attribute determines whether goal achievement is binary
|
||||
(success/failure) or whether it can be determined through conversation
|
||||
analysis.
|
||||
"""
|
||||
|
||||
description: str = ""
|
||||
plan: Plan
|
||||
can_fail: bool = True
|
||||
|
||||
|
||||
class Goal(BaseGoal):
|
||||
"""
|
||||
Represents an objective to be achieved. To reach the goal, we should execute the corresponding
|
||||
plan. It inherits from the BaseGoal a variable `can_fail`, which, if true, will cause the
|
||||
completion to be determined based on the conversation.
|
||||
|
||||
Goals extend base goals by including a specific plan to achieve the objective.
|
||||
They form the core of the robot's proactive behavior, defining both what
|
||||
should be accomplished and how to accomplish it.
|
||||
|
||||
Instances of this goal are not hashable because a plan is not hashable.
|
||||
|
||||
:ivar plan: The plan to execute.
|
||||
"""
|
||||
|
||||
plan: Plan
|
||||
|
||||
|
||||
type Action = SpeechAction | GestureAction | LLMAction
|
||||
|
||||
|
||||
class SpeechAction(ProgramElement):
|
||||
"""
|
||||
Represents the action of the robot speaking a literal text.
|
||||
An action where the robot speaks a predefined literal text.
|
||||
|
||||
:ivar text: The text to speak.
|
||||
:ivar text: The text content to be spoken.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
@@ -138,11 +257,14 @@ class SpeechAction(ProgramElement):
|
||||
|
||||
class Gesture(BaseModel):
|
||||
"""
|
||||
Represents a gesture to be performed. Can be either a single gesture,
|
||||
or a random gesture from a category (tag).
|
||||
Defines a physical gesture for the robot to perform.
|
||||
|
||||
:ivar type: The type of the gesture, "tag" or "single".
|
||||
:ivar name: The name of the single gesture or tag.
|
||||
:ivar type: Whether to use a specific "single" gesture or a random one from a "tag" category.
|
||||
:ivar name: The identifier for the gesture or tag.
|
||||
|
||||
The type field determines how the gesture is selected:
|
||||
- "single": Use the specific gesture identified by name
|
||||
- "tag": Select a random gesture from the category identified by name
|
||||
"""
|
||||
|
||||
type: Literal["tag", "single"]
|
||||
@@ -151,9 +273,9 @@ class Gesture(BaseModel):
|
||||
|
||||
class GestureAction(ProgramElement):
|
||||
"""
|
||||
Represents the action of the robot performing a gesture.
|
||||
An action where the robot performs a physical gesture.
|
||||
|
||||
:ivar gesture: The gesture to perform.
|
||||
:ivar gesture: The :class:`Gesture` definition.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
@@ -162,10 +284,13 @@ class GestureAction(ProgramElement):
|
||||
|
||||
class LLMAction(ProgramElement):
|
||||
"""
|
||||
Represents the action of letting an LLM generate a reply based on its chat history
|
||||
and an additional goal added in the prompt.
|
||||
An action that triggers an LLM-generated conversational response.
|
||||
|
||||
:ivar goal: The extra (temporary) goal to add to the LLM.
|
||||
:ivar goal: A temporary conversational goal to guide the LLM's response generation.
|
||||
|
||||
The goal parameter provides high-level guidance to the LLM about what
|
||||
the response should aim to achieve, while allowing the LLM flexibility
|
||||
in how to express it.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
@@ -174,10 +299,10 @@ class LLMAction(ProgramElement):
|
||||
|
||||
class Trigger(ProgramElement):
|
||||
"""
|
||||
Represents a belief-based trigger. When a belief is set, the corresponding plan is executed.
|
||||
Defines a reactive behavior: when the condition (belief) is met, the plan is executed.
|
||||
|
||||
:ivar condition: When to activate the trigger.
|
||||
:ivar plan: The plan to execute.
|
||||
:ivar condition: The :class:`Belief` that triggers this behavior.
|
||||
:ivar plan: The :class:`Plan` to execute upon activation.
|
||||
"""
|
||||
|
||||
condition: Belief
|
||||
@@ -186,11 +311,11 @@ class Trigger(ProgramElement):
|
||||
|
||||
class Phase(ProgramElement):
|
||||
"""
|
||||
A distinct phase within a program, containing norms, goals, and triggers.
|
||||
A logical stage in the interaction program, grouping norms, goals, and triggers.
|
||||
|
||||
:ivar norms: List of norms active in this phase.
|
||||
:ivar goals: List of goals to pursue in this phase.
|
||||
:ivar triggers: List of triggers that define transitions out of this phase.
|
||||
:ivar norms: List of norms active during this phase.
|
||||
:ivar goals: List of goals the robot pursues in this phase.
|
||||
:ivar triggers: List of reactive behaviors defined for this phase.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
@@ -201,9 +326,19 @@ class Phase(ProgramElement):
|
||||
|
||||
class Program(BaseModel):
|
||||
"""
|
||||
Represents a complete interaction program, consisting of a sequence or set of phases.
|
||||
The top-level container for a complete robot behavior definition.
|
||||
|
||||
:ivar phases: The list of phases that make up the program.
|
||||
The Program class represents the complete specification of a robot's
|
||||
behavioral logic. It contains all the phases, norms, goals, triggers,
|
||||
and actions that define how the robot should behave during interactions.
|
||||
|
||||
:ivar phases: An ordered list of :class:`Phase` objects defining the interaction flow.
|
||||
"""
|
||||
|
||||
phases: list[Phase]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
input = input("Enter program JSON: ")
|
||||
program = Program.model_validate_json(input)
|
||||
print(program)
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from enum import Enum
|
||||
|
||||
PROGRAM_STATUS = b"internal/program_status"
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from enum import Enum
|
||||
from typing import Any, Literal
|
||||
|
||||
@@ -14,6 +20,7 @@ class RIEndpoint(str, Enum):
|
||||
GESTURE_TAG = "actuate/gesture/tag"
|
||||
PING = "ping"
|
||||
NEGOTIATE_PORTS = "negotiate/ports"
|
||||
PAUSE = ""
|
||||
|
||||
|
||||
class RIMessage(BaseModel):
|
||||
@@ -64,3 +71,15 @@ class GestureCommand(RIMessage):
|
||||
if self.endpoint not in allowed:
|
||||
raise ValueError("endpoint must be GESTURE_SINGLE or GESTURE_TAG")
|
||||
return self
|
||||
|
||||
|
||||
class PauseCommand(RIMessage):
|
||||
"""
|
||||
A specific command to pause or unpause the robot's actions.
|
||||
|
||||
:ivar endpoint: Fixed to ``RIEndpoint.PAUSE``.
|
||||
:ivar data: A boolean indicating whether to pause (True) or unpause (False).
|
||||
"""
|
||||
|
||||
endpoint: RIEndpoint = RIEndpoint(RIEndpoint.PAUSE)
|
||||
data: bool
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import random
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
@@ -40,7 +46,7 @@ async def test_normal_setup(per_transcription_agent):
|
||||
per_vad_agent = VADAgent("tcp://localhost:12345", False)
|
||||
per_vad_agent._streaming_loop = AsyncMock()
|
||||
|
||||
async def swallow_background_task(coro):
|
||||
def swallow_background_task(coro):
|
||||
coro.close()
|
||||
|
||||
per_vad_agent.add_behavior = swallow_background_task
|
||||
@@ -106,7 +112,7 @@ async def test_out_socket_creation_failure(zmq_context):
|
||||
per_vad_agent._streaming_loop = AsyncMock()
|
||||
per_vad_agent._connect_audio_out_socket = MagicMock(return_value=None)
|
||||
|
||||
async def swallow_background_task(coro):
|
||||
def swallow_background_task(coro):
|
||||
coro.close()
|
||||
|
||||
per_vad_agent.add_behavior = swallow_background_task
|
||||
@@ -126,7 +132,7 @@ async def test_stop(zmq_context, per_transcription_agent):
|
||||
per_vad_agent._reset_stream = AsyncMock()
|
||||
per_vad_agent._streaming_loop = AsyncMock()
|
||||
|
||||
async def swallow_background_task(coro):
|
||||
def swallow_background_task(coro):
|
||||
coro.close()
|
||||
|
||||
per_vad_agent.add_behavior = swallow_background_task
|
||||
@@ -150,6 +156,7 @@ async def test_application_startup_complete(zmq_context):
|
||||
vad_agent._running = True
|
||||
vad_agent._reset_stream = AsyncMock()
|
||||
vad_agent.program_sub_socket = AsyncMock()
|
||||
vad_agent.program_sub_socket.close = MagicMock()
|
||||
vad_agent.program_sub_socket.recv_multipart.side_effect = [
|
||||
(PROGRAM_STATUS, ProgramStatus.RUNNING.value),
|
||||
]
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import os
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
|
||||
@@ -1,5 +1,11 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import json
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
import zmq
|
||||
@@ -19,6 +25,12 @@ def zmq_context(mocker):
|
||||
return mock_context
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch("control_backend.agents.actuation.robot_gesture_agent.experiment_logger") as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup_bind(zmq_context, mocker):
|
||||
"""Setup binds and subscribes to internal commands."""
|
||||
@@ -28,7 +40,11 @@ async def test_setup_bind(zmq_context, mocker):
|
||||
settings = mocker.patch("control_backend.agents.actuation.robot_gesture_agent.settings")
|
||||
settings.zmq_settings.internal_sub_address = "tcp://internal:1234"
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -55,7 +71,11 @@ async def test_setup_connect(zmq_context, mocker):
|
||||
settings = mocker.patch("control_backend.agents.actuation.robot_gesture_agent.settings")
|
||||
settings.zmq_settings.internal_sub_address = "tcp://internal:1234"
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -119,6 +139,65 @@ async def test_handle_message_rejects_invalid_gesture_tag():
|
||||
pubsocket.send_json.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_sends_valid_single_gesture_command():
|
||||
"""Internal message with valid single gesture is forwarded."""
|
||||
pubsocket = AsyncMock()
|
||||
agent = RobotGestureAgent("robot_gesture", single_gesture_data=["wave", "point"], address="")
|
||||
agent.pubsocket = pubsocket
|
||||
|
||||
payload = {
|
||||
"endpoint": RIEndpoint.GESTURE_SINGLE,
|
||||
"data": "wave",
|
||||
}
|
||||
msg = InternalMessage(to="robot", sender="tester", body=json.dumps(payload))
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
pubsocket.send_json.assert_awaited_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_rejects_invalid_single_gesture():
|
||||
"""Internal message with invalid single gesture is not forwarded."""
|
||||
pubsocket = AsyncMock()
|
||||
agent = RobotGestureAgent("robot_gesture", single_gesture_data=["wave", "point"], address="")
|
||||
agent.pubsocket = pubsocket
|
||||
|
||||
payload = {
|
||||
"endpoint": RIEndpoint.GESTURE_SINGLE,
|
||||
"data": "dance",
|
||||
}
|
||||
msg = InternalMessage(to="robot", sender="tester", body=json.dumps(payload))
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
pubsocket.send_json.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_zmq_command_loop_valid_single_gesture_payload():
|
||||
"""UI command with valid single gesture is read from SUB and published."""
|
||||
command = {"endpoint": RIEndpoint.GESTURE_SINGLE, "data": "wave"}
|
||||
fake_socket = AsyncMock()
|
||||
|
||||
async def recv_once():
|
||||
agent._running = False
|
||||
return b"command", json.dumps(command).encode("utf-8")
|
||||
|
||||
fake_socket.recv_multipart = recv_once
|
||||
fake_socket.send_json = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", single_gesture_data=["wave", "point"], address="")
|
||||
agent.subsocket = fake_socket
|
||||
agent.pubsocket = fake_socket
|
||||
agent._running = True
|
||||
|
||||
await agent._zmq_command_loop()
|
||||
|
||||
fake_socket.send_json.assert_awaited_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_invalid_payload():
|
||||
"""Invalid payload is caught and does not send."""
|
||||
@@ -411,8 +490,7 @@ async def test_stop_closes_sockets():
|
||||
|
||||
pubsocket.close.assert_called_once()
|
||||
subsocket.close.assert_called_once()
|
||||
# Note: repsocket is not closed in stop() method, but you might want to add it
|
||||
# repsocket.close.assert_called_once()
|
||||
repsocket.close.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import json
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
@@ -30,7 +36,11 @@ async def test_setup_bind(zmq_context, mocker):
|
||||
settings = mocker.patch("control_backend.agents.actuation.robot_speech_agent.settings")
|
||||
settings.zmq_settings.internal_sub_address = "tcp://internal:1234"
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -48,7 +58,11 @@ async def test_setup_connect(zmq_context, mocker):
|
||||
settings = mocker.patch("control_backend.agents.actuation.robot_speech_agent.settings")
|
||||
settings.zmq_settings.internal_sub_address = "tcp://internal:1234"
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
|
||||
192
test/unit/agents/bdi/test_agentspeak_ast.py
Normal file
192
test/unit/agents/bdi/test_agentspeak_ast.py
Normal file
@@ -0,0 +1,192 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.bdi.agentspeak_ast import (
|
||||
AstAtom,
|
||||
AstBinaryOp,
|
||||
AstLiteral,
|
||||
AstLogicalExpression,
|
||||
AstNumber,
|
||||
AstPlan,
|
||||
AstProgram,
|
||||
AstRule,
|
||||
AstStatement,
|
||||
AstString,
|
||||
AstVar,
|
||||
BinaryOperatorType,
|
||||
StatementType,
|
||||
TriggerType,
|
||||
_coalesce_expr,
|
||||
)
|
||||
|
||||
|
||||
def test_ast_atom():
|
||||
atom = AstAtom("test")
|
||||
assert str(atom) == "test"
|
||||
assert atom._to_agentspeak() == "test"
|
||||
|
||||
|
||||
def test_ast_var():
|
||||
var = AstVar("Variable")
|
||||
assert str(var) == "Variable"
|
||||
assert var._to_agentspeak() == "Variable"
|
||||
|
||||
|
||||
def test_ast_number():
|
||||
num = AstNumber(42)
|
||||
assert str(num) == "42"
|
||||
num_float = AstNumber(3.14)
|
||||
assert str(num_float) == "3.14"
|
||||
|
||||
|
||||
def test_ast_string():
|
||||
s = AstString("hello")
|
||||
assert str(s) == '"hello"'
|
||||
|
||||
|
||||
def test_ast_literal():
|
||||
lit = AstLiteral("functor", [AstAtom("atom"), AstNumber(1)])
|
||||
assert str(lit) == "functor(atom, 1)"
|
||||
lit_empty = AstLiteral("functor")
|
||||
assert str(lit_empty) == "functor"
|
||||
|
||||
|
||||
def test_ast_binary_op():
|
||||
left = AstNumber(1)
|
||||
right = AstNumber(2)
|
||||
op = AstBinaryOp(left, BinaryOperatorType.GREATER_THAN, right)
|
||||
assert str(op) == "1 > 2"
|
||||
|
||||
# Test logical wrapper
|
||||
assert isinstance(op.left, AstLogicalExpression)
|
||||
assert isinstance(op.right, AstLogicalExpression)
|
||||
|
||||
|
||||
def test_ast_binary_op_parens():
|
||||
# 1 > 2
|
||||
inner = AstBinaryOp(AstNumber(1), BinaryOperatorType.GREATER_THAN, AstNumber(2))
|
||||
# (1 > 2) & 3
|
||||
outer = AstBinaryOp(inner, BinaryOperatorType.AND, AstNumber(3))
|
||||
assert str(outer) == "(1 > 2) & 3"
|
||||
|
||||
# 3 & (1 > 2)
|
||||
outer_right = AstBinaryOp(AstNumber(3), BinaryOperatorType.AND, inner)
|
||||
assert str(outer_right) == "3 & (1 > 2)"
|
||||
|
||||
|
||||
def test_ast_binary_op_parens_negated():
|
||||
inner = AstLogicalExpression(AstAtom("foo"), negated=True)
|
||||
outer = AstBinaryOp(inner, BinaryOperatorType.AND, AstAtom("bar"))
|
||||
# The current implementation checks `if self.left.negated: l_str = f"({l_str})"`
|
||||
# str(inner) is "not foo"
|
||||
# so we expect "(not foo) & bar"
|
||||
assert str(outer) == "(not foo) & bar"
|
||||
|
||||
outer_right = AstBinaryOp(AstAtom("bar"), BinaryOperatorType.AND, inner)
|
||||
assert str(outer_right) == "bar & (not foo)"
|
||||
|
||||
|
||||
def test_ast_logical_expression_negation():
|
||||
expr = AstLogicalExpression(AstAtom("true"), negated=True)
|
||||
assert str(expr) == "not true"
|
||||
|
||||
expr_neg_neg = ~expr
|
||||
assert str(expr_neg_neg) == "true"
|
||||
assert not expr_neg_neg.negated
|
||||
|
||||
# Invert a non-logical expression (wraps it)
|
||||
term = AstAtom("true")
|
||||
inverted = ~term
|
||||
assert isinstance(inverted, AstLogicalExpression)
|
||||
assert inverted.negated
|
||||
assert str(inverted) == "not true"
|
||||
|
||||
|
||||
def test_ast_logical_expression_no_negation():
|
||||
# _as_logical on already logical expression
|
||||
expr = AstLogicalExpression(AstAtom("x"))
|
||||
# Doing binary op will call _as_logical
|
||||
op = AstBinaryOp(expr, BinaryOperatorType.AND, AstAtom("y"))
|
||||
assert isinstance(op.left, AstLogicalExpression)
|
||||
assert op.left is expr # Should reuse instance
|
||||
|
||||
|
||||
def test_ast_operators():
|
||||
t1 = AstAtom("a")
|
||||
t2 = AstAtom("b")
|
||||
|
||||
assert str(t1 & t2) == "a & b"
|
||||
assert str(t1 | t2) == "a | b"
|
||||
assert str(t1 >= t2) == "a >= b"
|
||||
assert str(t1 > t2) == "a > b"
|
||||
assert str(t1 <= t2) == "a <= b"
|
||||
assert str(t1 < t2) == "a < b"
|
||||
assert str(t1 == t2) == "a == b"
|
||||
assert str(t1 != t2) == r"a \== b"
|
||||
|
||||
|
||||
def test_coalesce_expr():
|
||||
t = AstAtom("a")
|
||||
assert str(t & "b") == 'a & "b"'
|
||||
assert str(t & 1) == "a & 1"
|
||||
assert str(t & 1.5) == "a & 1.5"
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
_coalesce_expr(None)
|
||||
|
||||
|
||||
def test_ast_statement():
|
||||
stmt = AstStatement(StatementType.DO_ACTION, AstLiteral("action"))
|
||||
assert str(stmt) == ".action"
|
||||
|
||||
|
||||
def test_ast_rule():
|
||||
# Rule with condition
|
||||
rule = AstRule(AstLiteral("head"), AstLiteral("body"))
|
||||
assert str(rule) == "head :- body."
|
||||
|
||||
# Rule without condition
|
||||
rule_simple = AstRule(AstLiteral("fact"))
|
||||
assert str(rule_simple) == "fact."
|
||||
|
||||
|
||||
def test_ast_plan():
|
||||
plan = AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("goal"),
|
||||
[AstLiteral("context")],
|
||||
[AstStatement(StatementType.DO_ACTION, AstLiteral("action"))],
|
||||
)
|
||||
output = str(plan)
|
||||
# verify parts exist
|
||||
assert "+!goal" in output
|
||||
assert ": context" in output
|
||||
assert "<- .action." in output
|
||||
|
||||
|
||||
def test_ast_plan_no_context():
|
||||
plan = AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("goal"),
|
||||
[],
|
||||
[AstStatement(StatementType.DO_ACTION, AstLiteral("action"))],
|
||||
)
|
||||
output = str(plan)
|
||||
assert "+!goal" in output
|
||||
assert ": " not in output
|
||||
assert "<- .action." in output
|
||||
|
||||
|
||||
def test_ast_program():
|
||||
prog = AstProgram(
|
||||
rules=[AstRule(AstLiteral("fact"))],
|
||||
plans=[AstPlan(TriggerType.ADDED_BELIEF, AstLiteral("b"), [], [])],
|
||||
)
|
||||
output = str(prog)
|
||||
assert "fact." in output
|
||||
assert "+b" in output
|
||||
193
test/unit/agents/bdi/test_agentspeak_generator.py
Normal file
193
test/unit/agents/bdi/test_agentspeak_generator.py
Normal file
@@ -0,0 +1,193 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import uuid
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.bdi.agentspeak_ast import AstProgram
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.schemas.program import (
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
Gesture,
|
||||
GestureAction,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
KeywordBelief,
|
||||
LLMAction,
|
||||
LogicalOperator,
|
||||
Phase,
|
||||
Plan,
|
||||
Program,
|
||||
SemanticBelief,
|
||||
SpeechAction,
|
||||
Trigger,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def generator():
|
||||
return AgentSpeakGenerator()
|
||||
|
||||
|
||||
def test_generate_empty_program(generator):
|
||||
prog = Program(phases=[])
|
||||
code = generator.generate(prog)
|
||||
assert 'phase("end").' in code
|
||||
assert "!notify_cycle" in code
|
||||
|
||||
|
||||
def test_generate_basic_norm(generator):
|
||||
norm = BasicNorm(id=uuid.uuid4(), name="n1", norm="be nice")
|
||||
phase = Phase(id=uuid.uuid4(), norms=[norm], goals=[], triggers=[])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
assert f'norm("be nice") :- phase("{phase.id}").' in code
|
||||
|
||||
|
||||
def test_generate_critical_norm(generator):
|
||||
norm = BasicNorm(id=uuid.uuid4(), name="n1", norm="safety", critical=True)
|
||||
phase = Phase(id=uuid.uuid4(), norms=[norm], goals=[], triggers=[])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
assert f'critical_norm("safety") :- phase("{phase.id}").' in code
|
||||
|
||||
|
||||
def test_generate_conditional_norm(generator):
|
||||
cond = KeywordBelief(id=uuid.uuid4(), name="k1", keyword="please")
|
||||
norm = ConditionalNorm(id=uuid.uuid4(), name="n1", norm="help", condition=cond)
|
||||
phase = Phase(id=uuid.uuid4(), norms=[norm], goals=[], triggers=[])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
assert 'norm("help")' in code
|
||||
assert 'keyword_said("please")' in code
|
||||
assert f"force_norm_{generator._slugify_str(norm.norm)}" in code
|
||||
|
||||
|
||||
def test_generate_goal_and_plan(generator):
|
||||
action = SpeechAction(id=uuid.uuid4(), name="s1", text="hello")
|
||||
plan = Plan(id=uuid.uuid4(), name="p1", steps=[action])
|
||||
# IMPORTANT: can_fail must be False for +achieved_ belief to be added
|
||||
goal = Goal(id=uuid.uuid4(), name="g1", description="desc", plan=plan, can_fail=False)
|
||||
phase = Phase(id=uuid.uuid4(), norms=[], goals=[goal], triggers=[])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
# Check trigger for goal
|
||||
goal_slug = generator._slugify_str(goal.name)
|
||||
assert f"+!{goal_slug}" in code
|
||||
assert f'phase("{phase.id}")' in code
|
||||
assert '!say("hello")' in code
|
||||
|
||||
# Check success belief addition
|
||||
assert f"+achieved_{goal_slug}" in code
|
||||
|
||||
|
||||
def test_generate_subgoal(generator):
|
||||
subplan = Plan(id=uuid.uuid4(), name="p2", steps=[])
|
||||
subgoal = Goal(id=uuid.uuid4(), name="sub1", description="sub", plan=subplan)
|
||||
|
||||
plan = Plan(id=uuid.uuid4(), name="p1", steps=[subgoal])
|
||||
goal = Goal(id=uuid.uuid4(), name="g1", description="main", plan=plan)
|
||||
phase = Phase(id=uuid.uuid4(), norms=[], goals=[goal], triggers=[])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
subgoal_slug = generator._slugify_str(subgoal.name)
|
||||
# Main goal calls subgoal
|
||||
assert f"!{subgoal_slug}" in code
|
||||
# Subgoal plan exists
|
||||
assert f"+!{subgoal_slug}" in code
|
||||
|
||||
|
||||
def test_generate_trigger(generator):
|
||||
cond = SemanticBelief(id=uuid.uuid4(), name="s1", description="desc")
|
||||
plan = Plan(id=uuid.uuid4(), name="p1", steps=[])
|
||||
trigger = Trigger(id=uuid.uuid4(), name="t1", condition=cond, plan=plan)
|
||||
phase = Phase(id=uuid.uuid4(), norms=[], goals=[], triggers=[trigger])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
# Trigger logic is added to check_triggers
|
||||
assert f"{generator.slugify(cond)}" in code
|
||||
assert f'notify_trigger_start("{generator.slugify(trigger)}")' in code
|
||||
assert f'notify_trigger_end("{generator.slugify(trigger)}")' in code
|
||||
|
||||
|
||||
def test_phase_transition(generator):
|
||||
phase1 = Phase(id=uuid.uuid4(), name="p1", norms=[], goals=[], triggers=[])
|
||||
phase2 = Phase(id=uuid.uuid4(), name="p2", norms=[], goals=[], triggers=[])
|
||||
prog = Program(phases=[phase1, phase2])
|
||||
|
||||
code = generator.generate(prog)
|
||||
assert "transition_phase" in code
|
||||
assert f'phase("{phase1.id}")' in code
|
||||
assert f'phase("{phase2.id}")' in code
|
||||
assert "force_transition_phase" in code
|
||||
|
||||
|
||||
def test_astify_gesture(generator):
|
||||
gesture = Gesture(type="single", name="wave")
|
||||
action = GestureAction(id=uuid.uuid4(), name="g1", gesture=gesture)
|
||||
ast = generator._astify(action)
|
||||
assert str(ast) == 'gesture("single", "wave")'
|
||||
|
||||
|
||||
def test_astify_llm_action(generator):
|
||||
action = LLMAction(id=uuid.uuid4(), name="l1", goal="be funny")
|
||||
ast = generator._astify(action)
|
||||
assert str(ast) == 'reply_with_goal("be funny")'
|
||||
|
||||
|
||||
def test_astify_inferred_belief_and(generator):
|
||||
left = KeywordBelief(id=uuid.uuid4(), name="k1", keyword="a")
|
||||
right = KeywordBelief(id=uuid.uuid4(), name="k2", keyword="b")
|
||||
inf = InferredBelief(
|
||||
id=uuid.uuid4(), name="i1", operator=LogicalOperator.AND, left=left, right=right
|
||||
)
|
||||
|
||||
ast = generator._astify(inf)
|
||||
assert 'keyword_said("a") & keyword_said("b")' == str(ast)
|
||||
|
||||
|
||||
def test_astify_inferred_belief_or(generator):
|
||||
left = KeywordBelief(id=uuid.uuid4(), name="k1", keyword="a")
|
||||
right = KeywordBelief(id=uuid.uuid4(), name="k2", keyword="b")
|
||||
inf = InferredBelief(
|
||||
id=uuid.uuid4(), name="i1", operator=LogicalOperator.OR, left=left, right=right
|
||||
)
|
||||
|
||||
ast = generator._astify(inf)
|
||||
assert 'keyword_said("a") | keyword_said("b")' == str(ast)
|
||||
|
||||
|
||||
def test_astify_semantic_belief(generator):
|
||||
sb = SemanticBelief(id=uuid.uuid4(), name="s1", description="desc")
|
||||
ast = generator._astify(sb)
|
||||
assert str(ast) == f"semantic_{generator._slugify_str(sb.name)}"
|
||||
|
||||
|
||||
def test_slugify_not_implemented(generator):
|
||||
with pytest.raises(NotImplementedError):
|
||||
generator.slugify("not a program element")
|
||||
|
||||
|
||||
def test_astify_not_implemented(generator):
|
||||
with pytest.raises(NotImplementedError):
|
||||
generator._astify("not a program element")
|
||||
|
||||
|
||||
def test_process_phase_transition_from_none(generator):
|
||||
# Initialize AstProgram manually as we are bypassing generate()
|
||||
generator._asp = AstProgram()
|
||||
# Should safely return doing nothing
|
||||
generator._add_phase_transition(None, None)
|
||||
|
||||
assert len(generator._asp.plans) == 0
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import time
|
||||
@@ -26,6 +32,12 @@ def agent():
|
||||
return agent
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch("control_backend.agents.bdi.bdi_core_agent.experiment_logger") as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup_loads_asl(mock_agentspeak_env, agent):
|
||||
# Mock file opening
|
||||
@@ -45,23 +57,34 @@ async def test_setup_no_asl(mock_agentspeak_env, agent):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_belief_collector_message(agent, mock_settings):
|
||||
async def test_handle_belief_message(agent, mock_settings):
|
||||
"""Test that incoming beliefs are added to the BDI agent"""
|
||||
beliefs = [Belief(name="user_said", arguments=["Hello"])]
|
||||
msg = InternalMessage(
|
||||
to="bdi_agent",
|
||||
sender=mock_settings.agent_settings.bdi_belief_collector_name,
|
||||
sender=mock_settings.agent_settings.text_belief_extractor_name,
|
||||
body=BeliefMessage(create=beliefs).model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# Expect bdi_agent.call to be triggered to add belief
|
||||
args = agent.bdi_agent.call.call_args.args
|
||||
assert args[0] == agentspeak.Trigger.addition
|
||||
assert args[1] == agentspeak.GoalType.belief
|
||||
assert args[2] == agentspeak.Literal("user_said", (agentspeak.Literal("Hello"),))
|
||||
# Check for the specific call we expect among all calls
|
||||
# bdi_agent.call is called multiple times (for transition_phase, check_triggers)
|
||||
# We want to confirm the belief addition call exists
|
||||
found_call = False
|
||||
for call in agent.bdi_agent.call.call_args_list:
|
||||
args = call.args
|
||||
if (
|
||||
args[0] == agentspeak.Trigger.addition
|
||||
and args[1] == agentspeak.GoalType.belief
|
||||
and args[2].functor == "user_said"
|
||||
and args[2].args[0].functor == "Hello"
|
||||
):
|
||||
found_call = True
|
||||
break
|
||||
|
||||
assert found_call, "Expected belief addition call not found in bdi_agent.call history"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -71,25 +94,33 @@ async def test_handle_delete_belief_message(agent, mock_settings):
|
||||
|
||||
msg = InternalMessage(
|
||||
to="bdi_agent",
|
||||
sender=mock_settings.agent_settings.bdi_belief_collector_name,
|
||||
sender=mock_settings.agent_settings.text_belief_extractor_name,
|
||||
body=BeliefMessage(delete=beliefs).model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# Expect bdi_agent.call to be triggered to remove belief
|
||||
args = agent.bdi_agent.call.call_args.args
|
||||
assert args[0] == agentspeak.Trigger.removal
|
||||
assert args[1] == agentspeak.GoalType.belief
|
||||
assert args[2] == agentspeak.Literal("user_said", (agentspeak.Literal("Hello"),))
|
||||
found_call = False
|
||||
for call in agent.bdi_agent.call.call_args_list:
|
||||
args = call.args
|
||||
if (
|
||||
args[0] == agentspeak.Trigger.removal
|
||||
and args[1] == agentspeak.GoalType.belief
|
||||
and args[2].functor == "user_said"
|
||||
and args[2].args[0].functor == "Hello"
|
||||
):
|
||||
found_call = True
|
||||
break
|
||||
|
||||
assert found_call
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_incorrect_belief_collector_message(agent, mock_settings):
|
||||
async def test_incorrect_belief_message(agent, mock_settings):
|
||||
"""Test that incorrect message format triggers an exception."""
|
||||
msg = InternalMessage(
|
||||
to="bdi_agent",
|
||||
sender=mock_settings.agent_settings.bdi_belief_collector_name,
|
||||
sender=mock_settings.agent_settings.text_belief_extractor_name,
|
||||
body=json.dumps({"bad_format": "bad_format"}),
|
||||
thread="beliefs",
|
||||
)
|
||||
@@ -171,7 +202,11 @@ def test_remove_belief_success_wakes_loop(agent):
|
||||
agent._remove_belief("remove_me", ["x"])
|
||||
|
||||
assert agent.bdi_agent.call.called
|
||||
trigger, goaltype, literal, *_ = agent.bdi_agent.call.call_args.args
|
||||
|
||||
call_args = agent.bdi_agent.call.call_args.args
|
||||
trigger = call_args[0]
|
||||
goaltype = call_args[1]
|
||||
literal = call_args[2]
|
||||
|
||||
assert trigger == agentspeak.Trigger.removal
|
||||
assert goaltype == agentspeak.GoalType.belief
|
||||
@@ -288,3 +323,216 @@ async def test_deadline_sleep_branch(agent):
|
||||
|
||||
duration = time.time() - start_time
|
||||
assert duration >= 0.004 # loop slept until deadline
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_new_program(agent):
|
||||
agent._load_asl = AsyncMock()
|
||||
agent.add_behavior = MagicMock()
|
||||
# Mock existing loop task so it can be cancelled
|
||||
mock_task = MagicMock()
|
||||
mock_task.cancel = MagicMock()
|
||||
agent._bdi_loop_task = mock_task
|
||||
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
msg = InternalMessage(to="bdi_agent", thread="new_program", body="path/to/asl.asl")
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
mock_task.cancel.assert_called_once()
|
||||
agent._load_asl.assert_awaited_once_with("path/to/asl.asl")
|
||||
agent.add_behavior.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_user_interrupts(agent, mock_settings):
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
# force_phase_transition
|
||||
agent._set_goal = MagicMock()
|
||||
msg = InternalMessage(
|
||||
to="bdi_agent",
|
||||
sender=mock_settings.agent_settings.user_interrupt_name,
|
||||
thread="force_phase_transition",
|
||||
body="",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
agent._set_goal.assert_called_with("transition_phase")
|
||||
|
||||
# force_trigger
|
||||
agent._force_trigger = MagicMock()
|
||||
msg.thread = "force_trigger"
|
||||
msg.body = "trigger_x"
|
||||
await agent.handle_message(msg)
|
||||
agent._force_trigger.assert_called_with("trigger_x")
|
||||
|
||||
# force_norm
|
||||
agent._force_norm = MagicMock()
|
||||
msg.thread = "force_norm"
|
||||
msg.body = "norm_y"
|
||||
await agent.handle_message(msg)
|
||||
agent._force_norm.assert_called_with("norm_y")
|
||||
|
||||
# force_next_phase
|
||||
agent._force_next_phase = MagicMock()
|
||||
msg.thread = "force_next_phase"
|
||||
msg.body = ""
|
||||
await agent.handle_message(msg)
|
||||
agent._force_next_phase.assert_called_once()
|
||||
|
||||
# unknown interrupt
|
||||
agent.logger = MagicMock()
|
||||
msg.thread = "unknown_thing"
|
||||
await agent.handle_message(msg)
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_reply_with_goal(agent):
|
||||
agent._send_to_llm = MagicMock(side_effect=agent.send)
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".reply_with_goal", 3)]
|
||||
|
||||
mock_term = MagicMock(args=["msg", "norms", "goal"])
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
agent._send_to_llm.assert_called_with("msg", "norms", "goal")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_notify_norms(agent):
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".notify_norms", 1)]
|
||||
|
||||
mock_term = MagicMock(args=["norms_list"])
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
|
||||
agent.send.assert_called()
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == "active_norms_update"
|
||||
assert msg.body == "norms_list"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_say(agent):
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".say", 1)]
|
||||
|
||||
mock_term = MagicMock(args=["hello"])
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
|
||||
assert agent.send.call_count == 2
|
||||
msgs = [c[0][0] for c in agent.send.call_args_list]
|
||||
assert any(m.to == settings.agent_settings.robot_speech_name for m in msgs)
|
||||
assert any(
|
||||
m.to == settings.agent_settings.llm_name and m.thread == "assistant_message" for m in msgs
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_gesture(agent):
|
||||
agent._add_custom_actions()
|
||||
# Test single
|
||||
action_fn = agent.actions.actions[(".gesture", 2)]
|
||||
mock_term = MagicMock(args=["single", "wave"])
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert "actuate/gesture/single" in msg.body
|
||||
|
||||
# Test tag
|
||||
mock_term.args = ["tag", "happy"]
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert "actuate/gesture/tag" in msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_notify_user_said(agent):
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".notify_user_said", 1)]
|
||||
mock_term = MagicMock(args=["hello"])
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.to == settings.agent_settings.llm_name
|
||||
assert msg.thread == "user_message"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_notify_trigger_start_end(agent):
|
||||
agent._add_custom_actions()
|
||||
# Start
|
||||
action_fn = agent.actions.actions[(".notify_trigger_start", 1)]
|
||||
gen = action_fn(agent, MagicMock(args=["t1"]), MagicMock())
|
||||
next(gen)
|
||||
assert agent.send.call_args[0][0].thread == "trigger_start"
|
||||
|
||||
# End
|
||||
action_fn = agent.actions.actions[(".notify_trigger_end", 1)]
|
||||
gen = action_fn(agent, MagicMock(args=["t1"]), MagicMock())
|
||||
next(gen)
|
||||
assert agent.send.call_args[0][0].thread == "trigger_end"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_notify_goal_start(agent):
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".notify_goal_start", 1)]
|
||||
gen = action_fn(agent, MagicMock(args=["g1"]), MagicMock())
|
||||
next(gen)
|
||||
assert agent.send.call_args[0][0].thread == "goal_start"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_notify_transition_phase(agent):
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".notify_transition_phase", 2)]
|
||||
gen = action_fn(agent, MagicMock(args=["old", "new"]), MagicMock())
|
||||
next(gen)
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == "transition_phase"
|
||||
assert "old" in msg.body and "new" in msg.body
|
||||
|
||||
|
||||
def test_remove_belief_no_args(agent):
|
||||
agent._wake_bdi_loop = MagicMock()
|
||||
agent.bdi_agent.call.return_value = True
|
||||
agent._remove_belief("fact", None)
|
||||
assert agent.bdi_agent.call.called
|
||||
|
||||
|
||||
def test_set_goal_with_args(agent):
|
||||
agent._wake_bdi_loop = MagicMock()
|
||||
agent._set_goal("goal", ["arg1", "arg2"])
|
||||
assert agent.bdi_agent.call.called
|
||||
|
||||
|
||||
def test_format_belief_string():
|
||||
assert BDICoreAgent.format_belief_string("b") == "b"
|
||||
assert BDICoreAgent.format_belief_string("b", ["a1", "a2"]) == "b(a1,a2)"
|
||||
|
||||
|
||||
def test_force_norm(agent):
|
||||
agent._add_belief = MagicMock()
|
||||
agent._force_norm("be_polite")
|
||||
agent._add_belief.assert_called_with("force_be_polite")
|
||||
|
||||
|
||||
def test_force_trigger(agent):
|
||||
agent._set_goal = MagicMock()
|
||||
agent._force_trigger("trig")
|
||||
agent._set_goal.assert_called_with("trig")
|
||||
|
||||
|
||||
def test_force_next_phase(agent):
|
||||
agent._set_goal = MagicMock()
|
||||
agent._force_next_phase()
|
||||
agent._set_goal.assert_called_with("force_transition_phase")
|
||||
|
||||
@@ -1,14 +1,30 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import sys
|
||||
import uuid
|
||||
from unittest.mock import AsyncMock
|
||||
from unittest.mock import AsyncMock, MagicMock, mock_open, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.bdi.bdi_program_manager import BDIProgramManager
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.program import BasicNorm, Goal, Phase, Plan, Program
|
||||
from control_backend.schemas.program import (
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
KeywordBelief,
|
||||
Phase,
|
||||
Plan,
|
||||
Program,
|
||||
Trigger,
|
||||
)
|
||||
|
||||
# Fix Windows Proactor loop for zmq
|
||||
if sys.platform.startswith("win"):
|
||||
@@ -48,24 +64,26 @@ def make_valid_program_json(norm="N1", goal="G1") -> str:
|
||||
).model_dump_json()
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Functionality being rebuilt.")
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_bdi():
|
||||
async def test_create_agentspeak_and_send_to_bdi(mock_settings):
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
program = Program.model_validate_json(make_valid_program_json())
|
||||
await manager._create_agentspeak_and_send_to_bdi(program)
|
||||
|
||||
with patch("builtins.open", mock_open()) as mock_file:
|
||||
await manager._create_agentspeak_and_send_to_bdi(program)
|
||||
|
||||
# Check file writing
|
||||
mock_file.assert_called_with(mock_settings.behaviour_settings.agentspeak_file, "w")
|
||||
handle = mock_file()
|
||||
handle.write.assert_called()
|
||||
|
||||
assert manager.send.await_count == 1
|
||||
msg: InternalMessage = manager.send.await_args[0][0]
|
||||
assert msg.thread == "beliefs"
|
||||
|
||||
beliefs = BeliefMessage.model_validate_json(msg.body)
|
||||
names = {b.name: b.arguments for b in beliefs.beliefs}
|
||||
|
||||
assert "norms" in names and names["norms"] == ["N1"]
|
||||
assert "goals" in names and names["goals"] == ["G1"]
|
||||
assert msg.thread == "new_program"
|
||||
assert msg.to == mock_settings.agent_settings.bdi_core_name
|
||||
assert msg.body == mock_settings.behaviour_settings.agentspeak_file
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -81,6 +99,9 @@ async def test_receive_programs_valid_and_invalid():
|
||||
manager.sub_socket = sub
|
||||
manager._create_agentspeak_and_send_to_bdi = AsyncMock()
|
||||
manager._send_clear_llm_history = AsyncMock()
|
||||
manager._send_program_to_user_interrupt = AsyncMock()
|
||||
manager._send_beliefs_to_semantic_belief_extractor = AsyncMock()
|
||||
manager._send_goals_to_semantic_belief_extractor = AsyncMock()
|
||||
|
||||
try:
|
||||
# Will give StopAsyncIteration when the predefined `sub.recv_multipart` side-effects run out
|
||||
@@ -94,7 +115,8 @@ async def test_receive_programs_valid_and_invalid():
|
||||
assert forwarded.phases[0].norms[0].name == "N1"
|
||||
assert forwarded.phases[0].goals[0].name == "G1"
|
||||
|
||||
# Verify history clear was triggered
|
||||
# Verify history clear was triggered exactly once (for the valid program)
|
||||
# The invalid program loop `continue`s before calling _send_clear_llm_history
|
||||
assert manager._send_clear_llm_history.await_count == 1
|
||||
|
||||
|
||||
@@ -113,4 +135,274 @@ async def test_send_clear_llm_history(mock_settings):
|
||||
|
||||
# Verify the content and recipient
|
||||
assert msg.body == "clear_history"
|
||||
assert msg.to == "llm_agent"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_transition_phase(mock_settings):
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
# Setup state
|
||||
prog = Program.model_validate_json(make_valid_program_json(norm="N1", goal="G1"))
|
||||
manager._initialize_internal_state(prog)
|
||||
|
||||
# Test valid transition (to same phase for simplicity, or we need 2 phases)
|
||||
# Let's create a program with 2 phases
|
||||
phase2_id = uuid.uuid4()
|
||||
phase2 = Phase(id=phase2_id, name="Phase 2", norms=[], goals=[], triggers=[])
|
||||
prog.phases.append(phase2)
|
||||
manager._initialize_internal_state(prog)
|
||||
|
||||
current_phase_id = str(prog.phases[0].id)
|
||||
next_phase_id = str(phase2_id)
|
||||
|
||||
payload = json.dumps({"old": current_phase_id, "new": next_phase_id})
|
||||
msg = InternalMessage(to="me", sender="bdi", body=payload, thread="transition_phase")
|
||||
|
||||
await manager.handle_message(msg)
|
||||
|
||||
assert str(manager._phase.id) == next_phase_id
|
||||
|
||||
# Allow background tasks to run (add_behavior)
|
||||
await asyncio.sleep(0)
|
||||
|
||||
# Check notifications sent
|
||||
# 1. beliefs to extractor
|
||||
# 2. goals to extractor
|
||||
# 3. notification to user interrupt
|
||||
|
||||
assert manager.send.await_count >= 3
|
||||
|
||||
# Verify user interrupt notification
|
||||
calls = manager.send.await_args_list
|
||||
ui_msgs = [
|
||||
c[0][0] for c in calls if c[0][0].to == mock_settings.agent_settings.user_interrupt_name
|
||||
]
|
||||
assert len(ui_msgs) > 0
|
||||
assert ui_msgs[-1].body == next_phase_id
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_transition_phase_desync():
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.logger = MagicMock()
|
||||
|
||||
prog = Program.model_validate_json(make_valid_program_json())
|
||||
manager._initialize_internal_state(prog)
|
||||
|
||||
current_phase_id = str(prog.phases[0].id)
|
||||
|
||||
# Request transition from WRONG old phase
|
||||
payload = json.dumps({"old": "wrong_id", "new": "some_new_id"})
|
||||
msg = InternalMessage(to="me", sender="bdi", body=payload, thread="transition_phase")
|
||||
|
||||
await manager.handle_message(msg)
|
||||
|
||||
# Should warn and do nothing
|
||||
manager.logger.warning.assert_called_once()
|
||||
assert "Phase transition desync detected" in manager.logger.warning.call_args[0][0]
|
||||
assert str(manager._phase.id) == current_phase_id
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_transition_phase_end(mock_settings):
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
prog = Program.model_validate_json(make_valid_program_json())
|
||||
manager._initialize_internal_state(prog)
|
||||
current_phase_id = str(prog.phases[0].id)
|
||||
|
||||
payload = json.dumps({"old": current_phase_id, "new": "end"})
|
||||
msg = InternalMessage(to="me", sender="bdi", body=payload, thread="transition_phase")
|
||||
|
||||
await manager.handle_message(msg)
|
||||
|
||||
assert manager._phase is None
|
||||
|
||||
# Allow background tasks to run (add_behavior)
|
||||
await asyncio.sleep(0)
|
||||
|
||||
# Verify notification to user interrupt
|
||||
assert manager.send.await_count == 1
|
||||
msg_sent = manager.send.await_args[0][0]
|
||||
assert msg_sent.to == mock_settings.agent_settings.user_interrupt_name
|
||||
assert msg_sent.body == "end"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_achieve_goal(mock_settings):
|
||||
mock_settings.agent_settings.text_belief_extractor_name = "text_belief_extractor_agent"
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
prog = Program.model_validate_json(make_valid_program_json(goal="TargetGoal"))
|
||||
manager._initialize_internal_state(prog)
|
||||
|
||||
goal_id = str(prog.phases[0].goals[0].id)
|
||||
|
||||
msg = InternalMessage(to="me", sender="ui", body=goal_id, thread="achieve_goal")
|
||||
|
||||
await manager.handle_message(msg)
|
||||
|
||||
# Should send achieved goals to text extractor
|
||||
assert manager.send.await_count == 1
|
||||
msg_sent = manager.send.await_args[0][0]
|
||||
assert msg_sent.to == mock_settings.agent_settings.text_belief_extractor_name
|
||||
assert msg_sent.thread == "achieved_goals"
|
||||
|
||||
# Verify body
|
||||
from control_backend.schemas.belief_list import GoalList
|
||||
|
||||
gl = GoalList.model_validate_json(msg_sent.body)
|
||||
assert len(gl.goals) == 1
|
||||
assert gl.goals[0].name == "TargetGoal"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_achieve_goal_not_found():
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
manager.logger = MagicMock()
|
||||
|
||||
prog = Program.model_validate_json(make_valid_program_json())
|
||||
manager._initialize_internal_state(prog)
|
||||
|
||||
msg = InternalMessage(to="me", sender="ui", body="non_existent_id", thread="achieve_goal")
|
||||
|
||||
await manager.handle_message(msg)
|
||||
|
||||
manager.send.assert_not_called()
|
||||
manager.logger.debug.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup(mock_settings):
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
manager.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
mock_context = MagicMock()
|
||||
mock_sub = MagicMock()
|
||||
mock_context.socket.return_value = mock_sub
|
||||
|
||||
with patch(
|
||||
"control_backend.agents.bdi.bdi_program_manager.Context.instance", return_value=mock_context
|
||||
):
|
||||
# We also need to mock file writing in _create_agentspeak_and_send_to_bdi
|
||||
with patch("builtins.open", new_callable=MagicMock):
|
||||
await manager.setup()
|
||||
|
||||
# Check logic
|
||||
# 1. Sends default empty program to BDI
|
||||
assert manager.send.await_count == 1
|
||||
assert manager.send.await_args[0][0].to == mock_settings.agent_settings.bdi_core_name
|
||||
|
||||
# 2. Connects SUB socket
|
||||
mock_sub.connect.assert_called_with(mock_settings.zmq_settings.internal_sub_address)
|
||||
mock_sub.subscribe.assert_called_with("program")
|
||||
|
||||
# 3. Adds behavior
|
||||
manager.add_behavior.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_program_to_user_interrupt(mock_settings):
|
||||
"""Test directly sending the program to the user interrupt agent."""
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
program = Program.model_validate_json(make_valid_program_json())
|
||||
|
||||
await manager._send_program_to_user_interrupt(program)
|
||||
|
||||
assert manager.send.await_count == 1
|
||||
msg = manager.send.await_args[0][0]
|
||||
assert msg.to == "user_interrupt_agent"
|
||||
assert msg.thread == "new_program"
|
||||
assert "Basic Phase" in msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_complex_program_extraction():
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
|
||||
# 1. Create Complex Components
|
||||
|
||||
# Inferred Belief (A & B)
|
||||
belief_left = KeywordBelief(id=uuid.uuid4(), name="b1", keyword="hot")
|
||||
belief_right = KeywordBelief(id=uuid.uuid4(), name="b2", keyword="sunny")
|
||||
inferred_belief = InferredBelief(
|
||||
id=uuid.uuid4(), name="b_inf", operator="AND", left=belief_left, right=belief_right
|
||||
)
|
||||
|
||||
# Conditional Norm
|
||||
cond_norm = ConditionalNorm(
|
||||
id=uuid.uuid4(), name="norm_cond", norm="wear_hat", condition=inferred_belief
|
||||
)
|
||||
|
||||
# Trigger with Inferred Belief condition
|
||||
dummy_plan = Plan(id=uuid.uuid4(), name="dummy_plan", steps=[])
|
||||
trigger = Trigger(id=uuid.uuid4(), name="trigger_1", condition=inferred_belief, plan=dummy_plan)
|
||||
|
||||
# Nested Goal
|
||||
sub_goal = Goal(
|
||||
id=uuid.uuid4(),
|
||||
name="sub_goal",
|
||||
description="desc",
|
||||
plan=Plan(id=uuid.uuid4(), name="empty", steps=[]),
|
||||
can_fail=True,
|
||||
)
|
||||
|
||||
parent_goal = Goal(
|
||||
id=uuid.uuid4(),
|
||||
name="parent_goal",
|
||||
description="desc",
|
||||
# The plan contains the sub_goal as a step
|
||||
plan=Plan(id=uuid.uuid4(), name="parent_plan", steps=[sub_goal]),
|
||||
can_fail=False,
|
||||
)
|
||||
|
||||
# 2. Assemble Program
|
||||
phase = Phase(
|
||||
id=uuid.uuid4(),
|
||||
name="Complex Phase",
|
||||
norms=[cond_norm],
|
||||
goals=[parent_goal],
|
||||
triggers=[trigger],
|
||||
)
|
||||
program = Program(phases=[phase])
|
||||
|
||||
# 3. Initialize Internal State (Triggers _populate_goal_mapping -> Nested Goal logic)
|
||||
manager._initialize_internal_state(program)
|
||||
|
||||
# Assertion for Line 53-54 (Mapping population)
|
||||
# Both parent and sub-goal should be mapped
|
||||
assert str(parent_goal.id) in manager._goal_mapping
|
||||
assert str(sub_goal.id) in manager._goal_mapping
|
||||
|
||||
# 4. Test Belief Extraction (Triggers lines 132-133, 142-146)
|
||||
beliefs = manager._extract_current_beliefs()
|
||||
|
||||
# Should extract recursive beliefs from cond_norm and trigger
|
||||
# Inferred belief splits into Left + Right. Since we use it twice, we get duplicates
|
||||
# checking existence is enough.
|
||||
belief_names = [b.name for b in beliefs]
|
||||
assert "b1" in belief_names
|
||||
assert "b2" in belief_names
|
||||
|
||||
# 5. Test Goal Extraction (Triggers lines 173, 185)
|
||||
goals = manager._extract_current_goals()
|
||||
|
||||
goal_names = [g.name for g in goals]
|
||||
assert "parent_goal" in goal_names
|
||||
assert "sub_goal" in goal_names
|
||||
|
||||
@@ -1,135 +0,0 @@
|
||||
import json
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.bdi import (
|
||||
BDIBeliefCollectorAgent,
|
||||
)
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
agent = BDIBeliefCollectorAgent("belief_collector_agent")
|
||||
return agent
|
||||
|
||||
|
||||
def make_msg(body: dict, sender: str = "sender"):
|
||||
return InternalMessage(to="collector", sender=sender, body=json.dumps(body))
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_routes_belief_text(agent, mocker):
|
||||
"""
|
||||
Test that when a message is received, _handle_belief_text is called with that message.
|
||||
"""
|
||||
payload = {"type": "belief_extraction_text", "beliefs": {"user_said": [["hi"]]}}
|
||||
spy = mocker.patch.object(agent, "_handle_belief_text", new_callable=AsyncMock)
|
||||
|
||||
await agent.handle_message(make_msg(payload))
|
||||
|
||||
spy.assert_awaited_once_with(payload, "sender")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_routes_emotion(agent, mocker):
|
||||
payload = {"type": "emotion_extraction_text"}
|
||||
spy = mocker.patch.object(agent, "_handle_emo_text", new_callable=AsyncMock)
|
||||
|
||||
await agent.handle_message(make_msg(payload))
|
||||
|
||||
spy.assert_awaited_once_with(payload, "sender")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_bad_json(agent, mocker):
|
||||
agent._handle_belief_text = AsyncMock()
|
||||
bad_msg = InternalMessage(to="collector", sender="sender", body="not json")
|
||||
|
||||
await agent.handle_message(bad_msg)
|
||||
|
||||
agent._handle_belief_text.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_belief_text_sends_when_beliefs_exist(agent, mocker):
|
||||
payload = {"type": "belief_extraction_text", "beliefs": {"user_said": ["hello"]}}
|
||||
spy = mocker.patch.object(agent, "_send_beliefs_to_bdi", new_callable=AsyncMock)
|
||||
expected = [Belief(name="user_said", arguments=["hello"])]
|
||||
|
||||
await agent._handle_belief_text(payload, "origin")
|
||||
|
||||
spy.assert_awaited_once_with(expected, origin="origin")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_belief_text_no_send_when_empty(agent, mocker):
|
||||
payload = {"type": "belief_extraction_text", "beliefs": {}}
|
||||
spy = mocker.patch.object(agent, "_send_beliefs_to_bdi", new_callable=AsyncMock)
|
||||
|
||||
await agent._handle_belief_text(payload, "origin")
|
||||
|
||||
spy.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_beliefs_to_bdi(agent):
|
||||
agent.send = AsyncMock()
|
||||
beliefs = [Belief(name="user_said", arguments=["hello", "world"])]
|
||||
|
||||
await agent._send_beliefs_to_bdi(beliefs, origin="origin")
|
||||
|
||||
agent.send.assert_awaited_once()
|
||||
sent: InternalMessage = agent.send.call_args.args[0]
|
||||
assert sent.to == settings.agent_settings.bdi_core_name
|
||||
assert sent.thread == "beliefs"
|
||||
assert json.loads(sent.body)["create"] == [belief.model_dump() for belief in beliefs]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup_executes(agent):
|
||||
"""Covers setup and asserts the agent has a name."""
|
||||
await agent.setup()
|
||||
assert agent.name == "belief_collector_agent" # simple property assertion
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_unrecognized_type_executes(agent):
|
||||
"""Covers the else branch for unrecognized message type."""
|
||||
payload = {"type": "unknown_type"}
|
||||
msg = make_msg(payload, sender="tester")
|
||||
# Wrap send to ensure nothing is sent
|
||||
agent.send = AsyncMock()
|
||||
await agent.handle_message(msg)
|
||||
# Assert no messages were sent
|
||||
agent.send.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_emo_text_executes(agent):
|
||||
"""Covers the _handle_emo_text method."""
|
||||
# The method does nothing, but we can assert it returns None
|
||||
result = await agent._handle_emo_text({}, "origin")
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_beliefs_to_bdi_empty_executes(agent):
|
||||
"""Covers early return when beliefs are empty."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._send_beliefs_to_bdi({})
|
||||
# Assert that nothing was sent
|
||||
agent.send.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_belief_text_invalid_returns_none(agent, mocker):
|
||||
payload = {"type": "belief_extraction_text", "beliefs": {"user_said": "invalid-argument"}}
|
||||
|
||||
result = await agent._handle_belief_text(payload, "origin")
|
||||
|
||||
# The method itself returns None
|
||||
assert result is None
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import json
|
||||
import uuid
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
@@ -14,6 +20,7 @@ from control_backend.schemas.belief_message import Belief as InternalBelief
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
|
||||
from control_backend.schemas.program import (
|
||||
BaseGoal, # Changed from Goal
|
||||
ConditionalNorm,
|
||||
KeywordBelief,
|
||||
LLMAction,
|
||||
@@ -28,7 +35,8 @@ from control_backend.schemas.program import (
|
||||
@pytest.fixture
|
||||
def llm():
|
||||
llm = TextBeliefExtractorAgent.LLM(MagicMock(), 4)
|
||||
llm._query_llm = AsyncMock()
|
||||
# We must ensure _query_llm returns a dictionary so iterating it doesn't fail
|
||||
llm._query_llm = AsyncMock(return_value={})
|
||||
return llm
|
||||
|
||||
|
||||
@@ -357,6 +365,30 @@ async def test_simulated_real_turn_remove_belief(agent, llm, sample_program):
|
||||
assert any(b.name == "no_more_booze" for b in agent._current_beliefs.false)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_infer_goal_completions_sends_beliefs(agent, llm):
|
||||
"""Test that inferred goal completions are sent to the BDI core."""
|
||||
goal = BaseGoal(
|
||||
id=uuid.uuid4(), name="Say Hello", description="The user said hello", can_fail=True
|
||||
)
|
||||
agent.goal_inferrer.goals = {goal}
|
||||
|
||||
# Mock goal inference: goal is achieved
|
||||
llm.query = AsyncMock(return_value=True)
|
||||
|
||||
await agent._infer_goal_completions()
|
||||
|
||||
# Should send belief change to BDI core
|
||||
agent.send.assert_awaited_once()
|
||||
sent: InternalMessage = agent.send.call_args.args[0]
|
||||
assert sent.to == settings.agent_settings.bdi_core_name
|
||||
assert sent.thread == "beliefs"
|
||||
|
||||
parsed = BeliefMessage.model_validate_json(sent.body)
|
||||
assert len(parsed.create) == 1
|
||||
assert parsed.create[0].name == "achieved_say_hello"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_llm_failure_handling(agent, llm, sample_program):
|
||||
"""
|
||||
@@ -374,3 +406,155 @@ async def test_llm_failure_handling(agent, llm, sample_program):
|
||||
|
||||
assert len(belief_changes.true) == 0
|
||||
assert len(belief_changes.false) == 0
|
||||
|
||||
|
||||
def test_belief_state_bool():
|
||||
# Empty
|
||||
bs = BeliefState()
|
||||
assert not bs
|
||||
|
||||
# True set
|
||||
bs_true = BeliefState(true={InternalBelief(name="a", arguments=None)})
|
||||
assert bs_true
|
||||
|
||||
# False set
|
||||
bs_false = BeliefState(false={InternalBelief(name="a", arguments=None)})
|
||||
assert bs_false
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_beliefs_message_validation_error(agent, mock_settings):
|
||||
# Invalid JSON
|
||||
mock_settings.agent_settings.bdi_program_manager_name = "bdi_program_manager_agent"
|
||||
msg = InternalMessage(
|
||||
to="me",
|
||||
sender=mock_settings.agent_settings.bdi_program_manager_name,
|
||||
thread="beliefs",
|
||||
body="invalid json",
|
||||
)
|
||||
# Should log warning and return
|
||||
agent.logger = MagicMock()
|
||||
await agent.handle_message(msg)
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
# Invalid Model
|
||||
msg.body = json.dumps({"beliefs": [{"invalid": "obj"}]})
|
||||
await agent.handle_message(msg)
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_goals_message_validation_error(agent, mock_settings):
|
||||
mock_settings.agent_settings.bdi_program_manager_name = "bdi_program_manager_agent"
|
||||
msg = InternalMessage(
|
||||
to="me",
|
||||
sender=mock_settings.agent_settings.bdi_program_manager_name,
|
||||
thread="goals",
|
||||
body="invalid json",
|
||||
)
|
||||
agent.logger = MagicMock()
|
||||
await agent.handle_message(msg)
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_goal_achieved_message_validation_error(agent, mock_settings):
|
||||
mock_settings.agent_settings.bdi_program_manager_name = "bdi_program_manager_agent"
|
||||
msg = InternalMessage(
|
||||
to="me",
|
||||
sender=mock_settings.agent_settings.bdi_program_manager_name,
|
||||
thread="achieved_goals",
|
||||
body="invalid json",
|
||||
)
|
||||
agent.logger = MagicMock()
|
||||
await agent.handle_message(msg)
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_goal_inferrer_infer_from_conversation(agent, llm):
|
||||
# Setup goals
|
||||
# Use BaseGoal object as typically received by the extractor
|
||||
g1 = BaseGoal(id=uuid.uuid4(), name="g1", description="desc", can_fail=True)
|
||||
|
||||
# Use real GoalAchievementInferrer
|
||||
from control_backend.agents.bdi.text_belief_extractor_agent import GoalAchievementInferrer
|
||||
|
||||
inferrer = GoalAchievementInferrer(llm)
|
||||
inferrer.goals = {g1}
|
||||
|
||||
# Mock LLM response
|
||||
llm._query_llm.return_value = True
|
||||
|
||||
completions = await inferrer.infer_from_conversation(ChatHistory(messages=[]))
|
||||
assert completions
|
||||
# slugify uses slugify library, hard to predict exact string without it,
|
||||
# but we can check values
|
||||
assert list(completions.values())[0] is True
|
||||
|
||||
|
||||
def test_apply_conversation_message_limit(agent):
|
||||
with patch("control_backend.agents.bdi.text_belief_extractor_agent.settings") as mock_s:
|
||||
mock_s.behaviour_settings.conversation_history_length_limit = 2
|
||||
agent.conversation.messages = []
|
||||
|
||||
agent._apply_conversation_message(ChatMessage(role="user", content="1"))
|
||||
agent._apply_conversation_message(ChatMessage(role="assistant", content="2"))
|
||||
agent._apply_conversation_message(ChatMessage(role="user", content="3"))
|
||||
|
||||
assert len(agent.conversation.messages) == 2
|
||||
assert agent.conversation.messages[0].content == "2"
|
||||
assert agent.conversation.messages[1].content == "3"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_program_manager_reset(agent):
|
||||
with patch("control_backend.agents.bdi.text_belief_extractor_agent.settings") as mock_s:
|
||||
mock_s.agent_settings.bdi_program_manager_name = "pm"
|
||||
agent.conversation.messages = [ChatMessage(role="user", content="hi")]
|
||||
agent.belief_inferrer.available_beliefs = [
|
||||
SemanticBelief(id=uuid.uuid4(), name="b", description="d")
|
||||
]
|
||||
|
||||
msg = InternalMessage(to="me", sender="pm", thread="conversation_history", body="reset")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
assert len(agent.conversation.messages) == 0
|
||||
assert len(agent.belief_inferrer.available_beliefs) == 0
|
||||
|
||||
|
||||
def test_split_into_chunks():
|
||||
from control_backend.agents.bdi.text_belief_extractor_agent import SemanticBeliefInferrer
|
||||
|
||||
items = [1, 2, 3, 4, 5]
|
||||
chunks = SemanticBeliefInferrer._split_into_chunks(items, 2)
|
||||
assert len(chunks) == 2
|
||||
assert len(chunks[0]) + len(chunks[1]) == 5
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_infer_beliefs_call(agent, llm):
|
||||
from control_backend.agents.bdi.text_belief_extractor_agent import SemanticBeliefInferrer
|
||||
|
||||
inferrer = SemanticBeliefInferrer(llm)
|
||||
sb = SemanticBelief(id=uuid.uuid4(), name="is_happy", description="User is happy")
|
||||
|
||||
llm.query = AsyncMock(return_value={"is_happy": True})
|
||||
|
||||
res = await inferrer._infer_beliefs(ChatHistory(messages=[]), [sb])
|
||||
assert res == {"is_happy": True}
|
||||
llm.query.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_infer_goal_call(agent, llm):
|
||||
from control_backend.agents.bdi.text_belief_extractor_agent import GoalAchievementInferrer
|
||||
|
||||
inferrer = GoalAchievementInferrer(llm)
|
||||
goal = BaseGoal(id=uuid.uuid4(), name="g1", description="d")
|
||||
|
||||
llm.query = AsyncMock(return_value=True)
|
||||
|
||||
res = await inferrer._infer_goal(ChatHistory(messages=[]), goal)
|
||||
assert res is True
|
||||
llm.query.assert_called_once()
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
from unittest.mock import ANY, AsyncMock, MagicMock, patch
|
||||
|
||||
@@ -53,7 +59,11 @@ async def test_setup_success_connects_and_starts_robot(zmq_context):
|
||||
MockGesture.return_value.start = AsyncMock()
|
||||
agent = RICommunicationAgent("ri_comm", address="tcp://localhost:5555", bind=False)
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -83,7 +93,11 @@ async def test_setup_binds_when_requested(zmq_context):
|
||||
|
||||
agent = RICommunicationAgent("ri_comm", address="tcp://localhost:5555", bind=True)
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
with (
|
||||
patch(speech_agent_path(), autospec=True) as MockSpeech,
|
||||
@@ -151,6 +165,7 @@ async def test_handle_negotiation_response_updates_req_socket(zmq_context):
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_disconnection_publishes_and_reconnects():
|
||||
pub_socket = AsyncMock()
|
||||
pub_socket.close = MagicMock()
|
||||
agent = RICommunicationAgent("ri_comm")
|
||||
agent.pub_socket = pub_socket
|
||||
agent.connected = True
|
||||
@@ -233,6 +248,25 @@ async def test_handle_negotiation_response_unhandled_id():
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_negotiation_response_audio(zmq_context):
|
||||
agent = RICommunicationAgent("ri_comm")
|
||||
|
||||
with patch(
|
||||
"control_backend.agents.communication.ri_communication_agent.VADAgent", autospec=True
|
||||
) as MockVAD:
|
||||
MockVAD.return_value.start = AsyncMock()
|
||||
|
||||
await agent._handle_negotiation_response(
|
||||
{"data": [{"id": "audio", "port": 7000, "bind": False}]}
|
||||
)
|
||||
|
||||
MockVAD.assert_called_once_with(
|
||||
audio_in_address="tcp://localhost:7000", audio_in_bind=False
|
||||
)
|
||||
MockVAD.return_value.start.assert_awaited_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_stop_closes_sockets():
|
||||
req = MagicMock()
|
||||
@@ -323,6 +357,7 @@ async def test_listen_loop_generic_exception():
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_disconnection_timeout(monkeypatch):
|
||||
pub = AsyncMock()
|
||||
pub.close = MagicMock()
|
||||
pub.send_multipart = AsyncMock(side_effect=TimeoutError)
|
||||
|
||||
agent = RICommunicationAgent("ri_comm")
|
||||
|
||||
@@ -1,4 +1,10 @@
|
||||
"""Mocks `httpx` and tests chunking logic."""
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
--------------------------------------------------------------------------------
|
||||
Mocks `httpx` and tests chunking logic.
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
@@ -18,6 +24,12 @@ def mock_httpx_client():
|
||||
yield mock_client
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch("control_backend.agents.llm.llm_agent.experiment_logger") as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_llm_processing_success(mock_httpx_client, mock_settings):
|
||||
# Setup the mock response for the stream
|
||||
@@ -58,17 +70,64 @@ async def test_llm_processing_success(mock_httpx_client, mock_settings):
|
||||
to="llm_agent",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
body=prompt.model_dump_json(),
|
||||
thread="prompt_message", # REQUIRED: thread must match handle_message logic
|
||||
)
|
||||
|
||||
agent._process_bdi_message = AsyncMock()
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent._process_bdi_message.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_bdi_message_success(mock_httpx_client, mock_settings):
|
||||
# Setup the mock response for the stream
|
||||
mock_response = MagicMock()
|
||||
mock_response.raise_for_status = MagicMock()
|
||||
|
||||
# Simulate stream lines
|
||||
lines = [
|
||||
b'data: {"choices": [{"delta": {"content": "Hello"}}]}',
|
||||
b'data: {"choices": [{"delta": {"content": " world"}}]}',
|
||||
b'data: {"choices": [{"delta": {"content": "."}}]}',
|
||||
b"data: [DONE]",
|
||||
]
|
||||
|
||||
async def aiter_lines_gen():
|
||||
for line in lines:
|
||||
yield line.decode()
|
||||
|
||||
mock_response.aiter_lines.side_effect = aiter_lines_gen
|
||||
|
||||
mock_stream_context = MagicMock()
|
||||
mock_stream_context.__aenter__ = AsyncMock(return_value=mock_response)
|
||||
mock_stream_context.__aexit__ = AsyncMock(return_value=None)
|
||||
|
||||
# Configure the client
|
||||
mock_httpx_client.stream = MagicMock(return_value=mock_stream_context)
|
||||
|
||||
# Setup Agent
|
||||
agent = LLMAgent("llm_agent")
|
||||
agent.send = AsyncMock() # Mock the send method to verify replies
|
||||
|
||||
mock_logger = MagicMock()
|
||||
agent.logger = mock_logger
|
||||
|
||||
# Simulate receiving a message from BDI
|
||||
prompt = LLMPromptMessage(text="Hi", norms=[], goals=[])
|
||||
|
||||
await agent._process_bdi_message(prompt)
|
||||
|
||||
# Verification
|
||||
# "Hello world." constitutes one sentence/chunk based on punctuation split
|
||||
# The agent should call send once with the full sentence
|
||||
# The agent should call send once with the full sentence, PLUS once more for full reply
|
||||
assert agent.send.called
|
||||
args = agent.send.call_args_list[0][0][0]
|
||||
assert args.to == mock_settings.agent_settings.bdi_core_name
|
||||
assert "Hello world." in args.body
|
||||
|
||||
# Check args. We expect at least one call sending "Hello world."
|
||||
calls = agent.send.call_args_list
|
||||
bodies = [c[0][0].body for c in calls]
|
||||
assert any("Hello world." in b for b in bodies)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -76,22 +135,15 @@ async def test_llm_processing_errors(mock_httpx_client, mock_settings):
|
||||
agent = LLMAgent("llm_agent")
|
||||
agent.send = AsyncMock()
|
||||
prompt = LLMPromptMessage(text="Hi", norms=[], goals=[])
|
||||
msg = InternalMessage(
|
||||
to="llm",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
body=prompt.model_dump_json(),
|
||||
)
|
||||
|
||||
# HTTP Error
|
||||
# HTTP Error: stream method RAISES exception immediately
|
||||
mock_httpx_client.stream = MagicMock(side_effect=httpx.HTTPError("Fail"))
|
||||
await agent.handle_message(msg)
|
||||
assert "LLM service unavailable." in agent.send.call_args[0][0].body
|
||||
|
||||
# General Exception
|
||||
agent.send.reset_mock()
|
||||
mock_httpx_client.stream = MagicMock(side_effect=Exception("Boom"))
|
||||
await agent.handle_message(msg)
|
||||
assert "Error processing the request." in agent.send.call_args[0][0].body
|
||||
await agent._process_bdi_message(prompt)
|
||||
|
||||
# Check that error message was sent
|
||||
assert agent.send.called
|
||||
assert "LLM service unavailable." in agent.send.call_args_list[0][0][0].body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -113,16 +165,13 @@ async def test_llm_json_error(mock_httpx_client, mock_settings):
|
||||
|
||||
agent = LLMAgent("llm_agent")
|
||||
agent.send = AsyncMock()
|
||||
# Ensure logger is mocked
|
||||
agent.logger = MagicMock()
|
||||
|
||||
with patch.object(agent.logger, "error") as log:
|
||||
prompt = LLMPromptMessage(text="Hi", norms=[], goals=[])
|
||||
msg = InternalMessage(
|
||||
to="llm",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
body=prompt.model_dump_json(),
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
log.assert_called() # Should log JSONDecodeError
|
||||
prompt = LLMPromptMessage(text="Hi", norms=[], goals=[])
|
||||
await agent._process_bdi_message(prompt)
|
||||
|
||||
agent.logger.error.assert_called() # Should log JSONDecodeError
|
||||
|
||||
|
||||
def test_llm_instructions():
|
||||
@@ -157,6 +206,7 @@ async def test_handle_message_validation_error_branch_no_send(mock_httpx_client,
|
||||
to="llm_agent",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
body=invalid_json,
|
||||
thread="prompt_message",
|
||||
)
|
||||
|
||||
await agent.handle_message(msg)
|
||||
@@ -285,3 +335,28 @@ async def test_clear_history_command(mock_settings):
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
assert len(agent.history) == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_assistant_and_user_messages(mock_settings):
|
||||
agent = LLMAgent("llm_agent")
|
||||
|
||||
# Assistant message
|
||||
msg_ast = InternalMessage(
|
||||
to="llm_agent",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
thread="assistant_message",
|
||||
body="I said this",
|
||||
)
|
||||
await agent.handle_message(msg_ast)
|
||||
assert agent.history[-1] == {"role": "assistant", "content": "I said this"}
|
||||
|
||||
# User message
|
||||
msg_usr = InternalMessage(
|
||||
to="llm_agent",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
thread="user_message",
|
||||
body="User said this",
|
||||
)
|
||||
await agent.handle_message(msg_usr)
|
||||
assert agent.history[-1] == {"role": "user", "content": "User said this"}
|
||||
|
||||
152
test/unit/agents/perception/test_face_detection_agent.py
Normal file
152
test/unit/agents/perception/test_face_detection_agent.py
Normal file
@@ -0,0 +1,152 @@
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
import pytest
|
||||
import zmq
|
||||
|
||||
import control_backend.agents.perception.face_rec_agent as face_module
|
||||
from control_backend.agents.perception.face_rec_agent import FacePerceptionAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
"""Return a FacePerceptionAgent instance for testing."""
|
||||
return FacePerceptionAgent(
|
||||
name="face_agent",
|
||||
zmq_address="inproc://test",
|
||||
zmq_bind=False,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def socket():
|
||||
"""Return a mocked ZMQ socket."""
|
||||
sock = AsyncMock()
|
||||
sock.setsockopt_string = MagicMock()
|
||||
sock.connect = MagicMock()
|
||||
sock.bind = MagicMock()
|
||||
return sock
|
||||
|
||||
|
||||
def test_connect_socket_connect(agent, socket, monkeypatch):
|
||||
"""Test that _connect_socket properly connects when zmq_bind=False."""
|
||||
ctx = MagicMock()
|
||||
ctx.socket.return_value = socket
|
||||
monkeypatch.setattr(face_module.azmq, "Context", MagicMock(instance=lambda: ctx))
|
||||
|
||||
agent._connect_socket()
|
||||
socket.setsockopt_string.assert_called_once_with(zmq.SUBSCRIBE, "")
|
||||
socket.connect.assert_called_once_with(agent._zmq_address)
|
||||
socket.bind.assert_not_called()
|
||||
|
||||
|
||||
def test_connect_socket_bind(agent, socket, monkeypatch):
|
||||
"""Test that _connect_socket properly binds when zmq_bind=True."""
|
||||
agent._zmq_bind = True
|
||||
ctx = MagicMock()
|
||||
ctx.socket.return_value = socket
|
||||
monkeypatch.setattr(face_module.azmq, "Context", MagicMock(instance=lambda: ctx))
|
||||
|
||||
agent._connect_socket()
|
||||
socket.bind.assert_called_once_with(agent._zmq_address)
|
||||
socket.connect.assert_not_called()
|
||||
|
||||
|
||||
def test_connect_socket_twice_is_noop(agent, socket):
|
||||
"""Test that calling _connect_socket twice does not overwrite an existing socket."""
|
||||
agent._socket = socket
|
||||
agent._connect_socket()
|
||||
assert agent._socket is socket
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_face_belief_present(agent):
|
||||
"""Test that _update_face_belief(True) creates the 'face_present' belief."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._update_face_belief(True)
|
||||
msg = agent.send.await_args.args[0]
|
||||
payload = BeliefMessage.model_validate_json(msg.body)
|
||||
assert payload.create[0].name == "face_present"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_face_belief_absent(agent):
|
||||
"""Test that _update_face_belief(False) deletes the 'face_present' belief."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._update_face_belief(False)
|
||||
msg = agent.send.await_args.args[0]
|
||||
payload = BeliefMessage.model_validate_json(msg.body)
|
||||
assert payload.delete[0].name == "face_present"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_post_face_belief_present(agent):
|
||||
"""Test that _post_face_belief(True) sends a belief creation message."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._post_face_belief(True)
|
||||
msg = agent.send.await_args.args[0]
|
||||
assert '"create"' in msg.body and '"face_present"' in msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_post_face_belief_absent(agent):
|
||||
"""Test that _post_face_belief(False) sends a belief deletion message."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._post_face_belief(False)
|
||||
msg = agent.send.await_args.args[0]
|
||||
assert '"delete"' in msg.body and '"face_present"' in msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_pause(agent):
|
||||
"""Test that a 'PAUSE' message clears _paused and resets _last_face_state."""
|
||||
agent._paused.set()
|
||||
agent._last_face_state = True
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender=face_module.settings.agent_settings.user_interrupt_name,
|
||||
thread="cmd",
|
||||
body="PAUSE",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
assert not agent._paused.is_set()
|
||||
assert agent._last_face_state is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_resume(agent):
|
||||
"""Test that a 'RESUME' message sets _paused."""
|
||||
agent._paused.clear()
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender=face_module.settings.agent_settings.user_interrupt_name,
|
||||
thread="cmd",
|
||||
body="RESUME",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
assert agent._paused.is_set()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_unknown_command(agent):
|
||||
"""Test that an unknown command from UserInterruptAgent is ignored (logs a warning)."""
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender=face_module.settings.agent_settings.user_interrupt_name,
|
||||
thread="cmd",
|
||||
body="???",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_unknown_sender(agent):
|
||||
"""Test that messages from unknown senders are ignored."""
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender="someone_else",
|
||||
thread="cmd",
|
||||
body="PAUSE",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
|
||||
@@ -55,4 +61,6 @@ def test_get_decode_options():
|
||||
assert isinstance(options["sample_len"], int)
|
||||
|
||||
# When disabled, it should not limit output length based on input size
|
||||
assert "sample_rate" not in options
|
||||
recognizer = OpenAIWhisperSpeechRecognizer(limit_output_length=False)
|
||||
options = recognizer._get_decode_options(audio)
|
||||
assert "sample_len" not in options
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
@@ -14,6 +20,15 @@ from control_backend.agents.perception.transcription_agent.transcription_agent i
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch(
|
||||
"control_backend.agents.perception"
|
||||
".transcription_agent.transcription_agent.experiment_logger"
|
||||
) as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_transcription_agent_flow(mock_zmq_context):
|
||||
mock_sub = MagicMock()
|
||||
@@ -36,7 +51,12 @@ async def test_transcription_agent_flow(mock_zmq_context):
|
||||
agent.send = AsyncMock()
|
||||
|
||||
agent._running = True
|
||||
agent.add_behavior = AsyncMock()
|
||||
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -143,7 +163,12 @@ async def test_transcription_loop_continues_after_error(mock_zmq_context):
|
||||
agent = TranscriptionAgent("tcp://in")
|
||||
agent._running = True # ← REQUIRED to enter the loop
|
||||
agent.send = AsyncMock() # should never be called
|
||||
agent.add_behavior = AsyncMock() # match other tests
|
||||
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro) # match other tests
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -180,7 +205,12 @@ async def test_transcription_continue_branch_when_empty(mock_zmq_context):
|
||||
# Make loop runnable
|
||||
agent._running = True
|
||||
agent.send = AsyncMock()
|
||||
agent.add_behavior = AsyncMock()
|
||||
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
|
||||
158
test/unit/agents/perception/vad_agent/test_vad_agent_unit.py
Normal file
158
test/unit/agents/perception/vad_agent/test_vad_agent_unit.py
Normal file
@@ -0,0 +1,158 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.perception.vad_agent import VADAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.schemas.program_status import PROGRAM_STATUS, ProgramStatus
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_zmq():
|
||||
with patch("zmq.asyncio.Context") as mock:
|
||||
mock.instance.return_value = MagicMock()
|
||||
yield mock
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
return VADAgent("tcp://localhost:5555", False)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_pause(agent):
|
||||
agent._paused = MagicMock()
|
||||
# It starts set (not paused)
|
||||
|
||||
msg = InternalMessage(to="vad", sender="user_interrupt_agent", body="PAUSE")
|
||||
|
||||
# We need to mock settings to match sender name
|
||||
with patch("control_backend.agents.perception.vad_agent.settings") as mock_settings:
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent._paused.clear.assert_called_once()
|
||||
assert agent._reset_needed is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_resume(agent):
|
||||
agent._paused = MagicMock()
|
||||
msg = InternalMessage(to="vad", sender="user_interrupt_agent", body="RESUME")
|
||||
|
||||
with patch("control_backend.agents.perception.vad_agent.settings") as mock_settings:
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent._paused.set.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_unknown_command(agent):
|
||||
agent._paused = MagicMock()
|
||||
msg = InternalMessage(to="vad", sender="user_interrupt_agent", body="UNKNOWN")
|
||||
|
||||
with patch("control_backend.agents.perception.vad_agent.settings") as mock_settings:
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
agent.logger = MagicMock()
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent._paused.clear.assert_not_called()
|
||||
agent._paused.set.assert_not_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_unknown_sender(agent):
|
||||
agent._paused = MagicMock()
|
||||
msg = InternalMessage(to="vad", sender="other_agent", body="PAUSE")
|
||||
|
||||
with patch("control_backend.agents.perception.vad_agent.settings") as mock_settings:
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent._paused.clear.assert_not_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_status_loop_waits_for_running(agent):
|
||||
agent._running = True
|
||||
agent.program_sub_socket = AsyncMock()
|
||||
agent.program_sub_socket.close = MagicMock()
|
||||
agent._reset_stream = AsyncMock()
|
||||
|
||||
# Sequence of messages:
|
||||
# 1. Wrong topic
|
||||
# 2. Right topic, wrong status (STARTING)
|
||||
# 3. Right topic, RUNNING -> Should break loop
|
||||
|
||||
agent.program_sub_socket.recv_multipart.side_effect = [
|
||||
(b"wrong_topic", b"whatever"),
|
||||
(PROGRAM_STATUS, ProgramStatus.STARTING.value),
|
||||
(PROGRAM_STATUS, ProgramStatus.RUNNING.value),
|
||||
]
|
||||
|
||||
await agent._status_loop()
|
||||
|
||||
assert agent._reset_stream.await_count == 1
|
||||
agent.program_sub_socket.close.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup_success(agent, mock_zmq):
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
mock_context = mock_zmq.instance.return_value
|
||||
mock_sub = MagicMock()
|
||||
mock_pub = MagicMock()
|
||||
|
||||
# We expect multiple socket calls:
|
||||
# 1. audio_in (SUB)
|
||||
# 2. audio_out (PUB)
|
||||
# 3. program_sub (SUB)
|
||||
mock_context.socket.side_effect = [mock_sub, mock_pub, mock_sub]
|
||||
|
||||
with patch("control_backend.agents.perception.vad_agent.torch.hub.load") as mock_load:
|
||||
mock_load.return_value = (MagicMock(), None)
|
||||
|
||||
with patch("control_backend.agents.perception.vad_agent.TranscriptionAgent") as MockTrans:
|
||||
mock_trans_instance = MockTrans.return_value
|
||||
mock_trans_instance.start = AsyncMock()
|
||||
|
||||
await agent.setup()
|
||||
|
||||
mock_trans_instance.start.assert_awaited_once()
|
||||
|
||||
assert agent.add_behavior.call_count == 2 # streaming_loop + status_loop
|
||||
assert agent.audio_in_socket is not None
|
||||
assert agent.audio_out_socket is not None
|
||||
assert agent.program_sub_socket is not None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_reset_stream(agent):
|
||||
mock_poller = MagicMock()
|
||||
agent.audio_in_poller = mock_poller
|
||||
|
||||
# poll(1) returns not None twice, then None
|
||||
mock_poller.poll = AsyncMock(side_effect=[b"data", b"data", None])
|
||||
|
||||
agent._ready = MagicMock()
|
||||
|
||||
await agent._reset_stream()
|
||||
|
||||
assert mock_poller.poll.await_count == 3
|
||||
agent._ready.set.assert_called_once()
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
import pytest
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import numpy as np
|
||||
@@ -5,6 +11,7 @@ import pytest
|
||||
import zmq
|
||||
|
||||
from control_backend.agents.perception.vad_agent import VADAgent
|
||||
from control_backend.core.config import settings
|
||||
|
||||
|
||||
# We don't want to use real ZMQ in unit tests, for example because it can give errors when sockets
|
||||
@@ -23,7 +30,9 @@ def audio_out_socket():
|
||||
|
||||
@pytest.fixture
|
||||
def vad_agent(audio_out_socket):
|
||||
return VADAgent("tcp://localhost:5555", False)
|
||||
agent = VADAgent("tcp://localhost:5555", False)
|
||||
agent._internal_pub_socket = AsyncMock()
|
||||
return agent
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
@@ -43,6 +52,12 @@ def patch_settings(monkeypatch):
|
||||
monkeypatch.setattr(vad_agent.settings.vad_settings, "sample_rate_hz", 16_000, raising=False)
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch("control_backend.agents.perception.vad_agent.experiment_logger") as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
async def simulate_streaming_with_probabilities(streaming, probabilities: list[float]):
|
||||
"""
|
||||
Simulates a streaming scenario with given VAD model probabilities for testing purposes.
|
||||
@@ -83,14 +98,15 @@ async def test_voice_activity_detected(audio_out_socket, vad_agent):
|
||||
Test a scenario where there is voice activity detected between silences.
|
||||
"""
|
||||
speech_chunk_count = 5
|
||||
probabilities = [0.0] * 5 + [1.0] * speech_chunk_count + [0.0] * 5
|
||||
begin_silence_chunks = settings.behaviour_settings.vad_begin_silence_chunks
|
||||
probabilities = [0.0] * 15 + [1.0] * speech_chunk_count + [0.0] * 5
|
||||
vad_agent.audio_out_socket = audio_out_socket
|
||||
await simulate_streaming_with_probabilities(vad_agent, probabilities)
|
||||
|
||||
audio_out_socket.send.assert_called_once()
|
||||
data = audio_out_socket.send.call_args[0][0]
|
||||
assert isinstance(data, bytes)
|
||||
assert len(data) == 512 * 4 * (speech_chunk_count + 1)
|
||||
assert len(data) == 512 * 4 * (begin_silence_chunks + speech_chunk_count)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -100,8 +116,9 @@ async def test_voice_activity_short_pause(audio_out_socket, vad_agent):
|
||||
short pause.
|
||||
"""
|
||||
speech_chunk_count = 5
|
||||
begin_silence_chunks = settings.behaviour_settings.vad_begin_silence_chunks
|
||||
probabilities = (
|
||||
[0.0] * 5 + [1.0] * speech_chunk_count + [0.0] + [1.0] * speech_chunk_count + [0.0] * 5
|
||||
[0.0] * 15 + [1.0] * speech_chunk_count + [0.0] + [1.0] * speech_chunk_count + [0.0] * 5
|
||||
)
|
||||
vad_agent.audio_out_socket = audio_out_socket
|
||||
await simulate_streaming_with_probabilities(vad_agent, probabilities)
|
||||
@@ -109,8 +126,8 @@ async def test_voice_activity_short_pause(audio_out_socket, vad_agent):
|
||||
audio_out_socket.send.assert_called_once()
|
||||
data = audio_out_socket.send.call_args[0][0]
|
||||
assert isinstance(data, bytes)
|
||||
# Expecting 13 chunks (2*5 with speech, 1 pause between, 1 as padding)
|
||||
assert len(data) == 512 * 4 * (speech_chunk_count * 2 + 1 + 1)
|
||||
# Expecting 13 chunks (2*5 with speech, 1 pause between, begin_silence_chunks as padding)
|
||||
assert len(data) == 512 * 4 * (speech_chunk_count * 2 + 1 + begin_silence_chunks)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -135,6 +152,54 @@ async def test_no_data(audio_out_socket, vad_agent):
|
||||
assert len(vad_agent.audio_buffer) == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_streaming_loop_reset_needed(audio_out_socket, vad_agent):
|
||||
"""Test that _reset_needed branch works as expected."""
|
||||
vad_agent._reset_needed = True
|
||||
vad_agent._ready.set()
|
||||
vad_agent._paused.set()
|
||||
vad_agent._running = True
|
||||
vad_agent.audio_buffer = np.array([1.0], dtype=np.float32)
|
||||
vad_agent.i_since_speech = 0
|
||||
|
||||
# Mock _reset_stream to stop the loop by setting _running=False
|
||||
async def mock_reset():
|
||||
vad_agent._running = False
|
||||
|
||||
vad_agent._reset_stream = mock_reset
|
||||
|
||||
# Needs a poller to avoid AssertionError
|
||||
vad_agent.audio_in_poller = AsyncMock()
|
||||
vad_agent.audio_in_poller.poll.return_value = None
|
||||
|
||||
await vad_agent._streaming_loop()
|
||||
|
||||
assert vad_agent._reset_needed is False
|
||||
assert len(vad_agent.audio_buffer) == 0
|
||||
assert vad_agent.i_since_speech == settings.behaviour_settings.vad_initial_since_speech
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_streaming_loop_no_data_clears_buffer(audio_out_socket, vad_agent):
|
||||
"""Test that if poll returns None, buffer is cleared if not empty."""
|
||||
vad_agent.audio_buffer = np.array([1.0], dtype=np.float32)
|
||||
vad_agent._ready.set()
|
||||
vad_agent._paused.set()
|
||||
vad_agent._running = True
|
||||
|
||||
class MockPoller:
|
||||
async def poll(self, timeout_ms=None):
|
||||
vad_agent._running = False # stop after one poll
|
||||
return None
|
||||
|
||||
vad_agent.audio_in_poller = MockPoller()
|
||||
|
||||
await vad_agent._streaming_loop()
|
||||
|
||||
assert len(vad_agent.audio_buffer) == 0
|
||||
assert vad_agent.i_since_speech == settings.behaviour_settings.vad_initial_since_speech
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_vad_model_load_failure_stops_agent(vad_agent):
|
||||
"""
|
||||
|
||||
30
test/unit/agents/test_base.py
Normal file
30
test/unit/agents/test_base.py
Normal file
@@ -0,0 +1,30 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
from control_backend.agents.base import BaseAgent
|
||||
|
||||
|
||||
class MyAgent(BaseAgent):
|
||||
async def setup(self):
|
||||
pass
|
||||
|
||||
async def handle_message(self, msg):
|
||||
pass
|
||||
|
||||
|
||||
def test_base_agent_logger_init():
|
||||
# When defining a subclass, __init_subclass__ runs
|
||||
# The BaseAgent in agents/base.py sets the logger
|
||||
assert hasattr(MyAgent, "logger")
|
||||
assert isinstance(MyAgent.logger, logging.Logger)
|
||||
# The logger name depends on the package.
|
||||
# Since this test file is running as a module, __package__ might be None or the test package.
|
||||
# In 'src/control_backend/agents/base.py', it uses __package__ of base.py which is
|
||||
# 'control_backend.agents'.
|
||||
# So logger name should be control_backend.agents.MyAgent
|
||||
assert MyAgent.logger.name == "control_backend.agents.MyAgent"
|
||||
@@ -1,12 +1,28 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.user_interrupt.user_interrupt_agent import UserInterruptAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.program import (
|
||||
ConditionalNorm,
|
||||
Goal,
|
||||
KeywordBelief,
|
||||
Phase,
|
||||
Plan,
|
||||
Program,
|
||||
Trigger,
|
||||
)
|
||||
from control_backend.schemas.ri_message import RIEndpoint
|
||||
|
||||
|
||||
@@ -16,9 +32,18 @@ def agent():
|
||||
agent.send = AsyncMock()
|
||||
agent.logger = MagicMock()
|
||||
agent.sub_socket = AsyncMock()
|
||||
agent.pub_socket = AsyncMock()
|
||||
return agent
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_experiment_logger():
|
||||
with patch(
|
||||
"control_backend.agents.user_interrupt.user_interrupt_agent.experiment_logger"
|
||||
) as logger:
|
||||
yield logger
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_speech_agent(agent):
|
||||
"""Verify speech command format."""
|
||||
@@ -49,21 +74,18 @@ async def test_send_to_gesture_agent(agent):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_program_manager(agent):
|
||||
async def test_send_to_bdi_belief(agent):
|
||||
"""Verify belief update format."""
|
||||
context_str = "2"
|
||||
context_str = "some_goal"
|
||||
|
||||
await agent._send_to_program_manager(context_str)
|
||||
await agent._send_to_bdi_belief(context_str, "goal")
|
||||
|
||||
agent.send.assert_awaited_once()
|
||||
sent_msg: InternalMessage = agent.send.call_args.args[0]
|
||||
assert agent.send.await_count == 1
|
||||
sent_msg = agent.send.call_args.args[0]
|
||||
|
||||
assert sent_msg.to == settings.agent_settings.bdi_program_manager_name
|
||||
assert sent_msg.thread == "belief_override_id"
|
||||
|
||||
body = json.loads(sent_msg.body)
|
||||
|
||||
assert body["belief"] == context_str
|
||||
assert sent_msg.to == settings.agent_settings.bdi_core_name
|
||||
assert sent_msg.thread == "beliefs"
|
||||
assert "achieved_some_goal" in sent_msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -77,6 +99,10 @@ async def test_receive_loop_routing_success(agent):
|
||||
# Prepare JSON payloads as bytes
|
||||
payload_speech = json.dumps({"type": "speech", "context": "Hello Speech"}).encode()
|
||||
payload_gesture = json.dumps({"type": "gesture", "context": "Hello Gesture"}).encode()
|
||||
# override calls _send_to_bdi (for trigger/norm) OR _send_to_bdi_belief (for goal).
|
||||
|
||||
# To test routing, we need to populate the maps
|
||||
agent._goal_map["Hello Override"] = "some_goal_slug"
|
||||
payload_override = json.dumps({"type": "override", "context": "Hello Override"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
@@ -88,7 +114,7 @@ async def test_receive_loop_routing_success(agent):
|
||||
|
||||
agent._send_to_speech_agent = AsyncMock()
|
||||
agent._send_to_gesture_agent = AsyncMock()
|
||||
agent._send_to_program_manager = AsyncMock()
|
||||
agent._send_to_bdi_belief = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
@@ -103,12 +129,12 @@ async def test_receive_loop_routing_success(agent):
|
||||
# Gesture
|
||||
agent._send_to_gesture_agent.assert_awaited_once_with("Hello Gesture")
|
||||
|
||||
# Override
|
||||
agent._send_to_program_manager.assert_awaited_once_with("Hello Override")
|
||||
# Override (since we mapped it to a goal)
|
||||
agent._send_to_bdi_belief.assert_awaited_once_with("some_goal_slug", "goal")
|
||||
|
||||
assert agent._send_to_speech_agent.await_count == 1
|
||||
assert agent._send_to_gesture_agent.await_count == 1
|
||||
assert agent._send_to_program_manager.await_count == 1
|
||||
assert agent._send_to_bdi_belief.await_count == 1
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -125,7 +151,6 @@ async def test_receive_loop_unknown_type(agent):
|
||||
|
||||
agent._send_to_speech_agent = AsyncMock()
|
||||
agent._send_to_gesture_agent = AsyncMock()
|
||||
agent._send_to_belief_collector = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
@@ -137,10 +162,514 @@ async def test_receive_loop_unknown_type(agent):
|
||||
# Ensure no handlers were called
|
||||
agent._send_to_speech_agent.assert_not_called()
|
||||
agent._send_to_gesture_agent.assert_not_called()
|
||||
agent._send_to_belief_collector.assert_not_called()
|
||||
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_mapping(agent):
|
||||
# Create a program with a trigger, goal, and conditional norm
|
||||
import uuid
|
||||
|
||||
trigger_id = uuid.uuid4()
|
||||
goal_id = uuid.uuid4()
|
||||
norm_id = uuid.uuid4()
|
||||
|
||||
cond = KeywordBelief(id=uuid.uuid4(), name="k1", keyword="key")
|
||||
plan = Plan(id=uuid.uuid4(), name="p1", steps=[])
|
||||
|
||||
trigger = Trigger(id=trigger_id, name="my_trigger", condition=cond, plan=plan)
|
||||
goal = Goal(id=goal_id, name="my_goal", description="desc", plan=plan)
|
||||
|
||||
cn = ConditionalNorm(id=norm_id, name="my_norm", norm="be polite", condition=cond)
|
||||
|
||||
phase = Phase(id=uuid.uuid4(), name="phase1", norms=[cn], goals=[goal], triggers=[trigger])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
# Call create_mapping via handle_message
|
||||
msg = InternalMessage(to="me", thread="new_program", body=prog.model_dump_json())
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# Check maps
|
||||
assert str(trigger_id) in agent._trigger_map
|
||||
assert agent._trigger_map[str(trigger_id)] == "trigger_my_trigger"
|
||||
|
||||
assert str(goal_id) in agent._goal_map
|
||||
assert agent._goal_map[str(goal_id)] == "my_goal"
|
||||
|
||||
assert str(norm_id) in agent._cond_norm_map
|
||||
assert agent._cond_norm_map[str(norm_id)] == "norm_be_polite"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_mapping_invalid_json(agent):
|
||||
# Pass invalid json to handle_message thread "new_program"
|
||||
msg = InternalMessage(to="me", thread="new_program", body="invalid json")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# Should log error and maps should remain empty or cleared
|
||||
agent.logger.error.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_trigger_start(agent):
|
||||
# Setup reverse map manually
|
||||
agent._trigger_reverse_map["trigger_slug"] = "ui_id_123"
|
||||
|
||||
msg = InternalMessage(to="me", thread="trigger_start", body="trigger_slug")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.pub_socket.send_multipart.assert_awaited_once()
|
||||
args = agent.pub_socket.send_multipart.call_args[0][0]
|
||||
assert args[0] == b"experiment"
|
||||
payload = json.loads(args[1])
|
||||
assert payload["type"] == "trigger_update"
|
||||
assert payload["id"] == "ui_id_123"
|
||||
assert payload["achieved"] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_trigger_end(agent):
|
||||
agent._trigger_reverse_map["trigger_slug"] = "ui_id_123"
|
||||
|
||||
msg = InternalMessage(to="me", thread="trigger_end", body="trigger_slug")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.pub_socket.send_multipart.assert_awaited_once()
|
||||
payload = json.loads(agent.pub_socket.send_multipart.call_args[0][0][1])
|
||||
assert payload["type"] == "trigger_update"
|
||||
assert payload["achieved"] is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_transition_phase(agent):
|
||||
msg = InternalMessage(to="me", thread="transition_phase", body="phase_id_123")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.pub_socket.send_multipart.assert_awaited_once()
|
||||
payload = json.loads(agent.pub_socket.send_multipart.call_args[0][0][1])
|
||||
assert payload["type"] == "phase_update"
|
||||
assert payload["id"] == "phase_id_123"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_goal_start(agent):
|
||||
agent._goal_reverse_map["goal_slug"] = "goal_id_123"
|
||||
|
||||
msg = InternalMessage(to="me", thread="goal_start", body="goal_slug")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.pub_socket.send_multipart.assert_awaited_once()
|
||||
payload = json.loads(agent.pub_socket.send_multipart.call_args[0][0][1])
|
||||
assert payload["type"] == "goal_update"
|
||||
assert payload["id"] == "goal_id_123"
|
||||
assert payload["active"] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_active_norms_update(agent):
|
||||
agent._cond_norm_reverse_map["norm_active"] = "id_1"
|
||||
agent._cond_norm_reverse_map["norm_inactive"] = "id_2"
|
||||
|
||||
# Body is like: "('norm_active', 'other')"
|
||||
# The split logic handles quotes etc.
|
||||
msg = InternalMessage(to="me", thread="active_norms_update", body="'norm_active', 'other'")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.pub_socket.send_multipart.assert_awaited_once()
|
||||
payload = json.loads(agent.pub_socket.send_multipart.call_args[0][0][1])
|
||||
assert payload["type"] == "cond_norms_state_update"
|
||||
norms = {n["id"]: n["active"] for n in payload["norms"]}
|
||||
assert norms["id_1"] is True
|
||||
assert norms["id_2"] is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_experiment_control(agent):
|
||||
# Test next_phase
|
||||
await agent._send_experiment_control_to_bdi_core("next_phase")
|
||||
agent.send.assert_awaited()
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == "force_next_phase"
|
||||
|
||||
# Test reset_phase
|
||||
await agent._send_experiment_control_to_bdi_core("reset_phase")
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == "reset_current_phase"
|
||||
|
||||
# Test reset_experiment
|
||||
await agent._send_experiment_control_to_bdi_core("reset_experiment")
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == "reset_experiment"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup(agent):
|
||||
"""Test the setup method initializes sockets correctly."""
|
||||
with patch("control_backend.agents.user_interrupt.user_interrupt_agent.Context") as MockContext:
|
||||
mock_ctx_instance = MagicMock()
|
||||
MockContext.instance.return_value = mock_ctx_instance
|
||||
|
||||
mock_sub = MagicMock()
|
||||
mock_pub = MagicMock()
|
||||
mock_ctx_instance.socket.side_effect = [mock_sub, mock_pub]
|
||||
|
||||
# MOCK add_behavior so we don't rely on internal attributes
|
||||
agent.add_behavior = MagicMock()
|
||||
|
||||
await agent.setup()
|
||||
|
||||
# Check sockets
|
||||
mock_sub.connect.assert_called_with(settings.zmq_settings.internal_sub_address)
|
||||
mock_pub.connect.assert_called_with(settings.zmq_settings.internal_pub_address)
|
||||
|
||||
# Verify add_behavior was called
|
||||
agent.add_behavior.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_json_error(agent):
|
||||
"""Verify that malformed JSON is caught and logged without crashing the loop."""
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
(b"topic", b"INVALID{JSON"),
|
||||
asyncio.CancelledError,
|
||||
]
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent.logger.error.assert_called_with("Received invalid JSON payload on topic %s", b"topic")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_override_trigger(agent):
|
||||
"""Verify routing 'override' to a Trigger."""
|
||||
agent._trigger_map["101"] = "trigger_slug"
|
||||
payload = json.dumps({"type": "override", "context": "101"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [(b"topic", payload), asyncio.CancelledError]
|
||||
agent._send_to_bdi = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent._send_to_bdi.assert_awaited_once_with("force_trigger", "trigger_slug")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_override_norm(agent):
|
||||
"""Verify routing 'override' to a Conditional Norm."""
|
||||
agent._cond_norm_map["202"] = "norm_slug"
|
||||
payload = json.dumps({"type": "override", "context": "202"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [(b"topic", payload), asyncio.CancelledError]
|
||||
agent._send_to_bdi_belief = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent._send_to_bdi_belief.assert_awaited_once_with("norm_slug", "cond_norm")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_override_missing(agent):
|
||||
"""Verify warning log when an override ID is not found in any map."""
|
||||
payload = json.dumps({"type": "override", "context": "999"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [(b"topic", payload), asyncio.CancelledError]
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent.logger.warning.assert_called_with("Could not determine which element to override.")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_unachieve_logic(agent):
|
||||
"""Verify success and failure paths for override_unachieve."""
|
||||
agent._cond_norm_map["202"] = "norm_slug"
|
||||
|
||||
success_payload = json.dumps({"type": "override_unachieve", "context": "202"}).encode()
|
||||
fail_payload = json.dumps({"type": "override_unachieve", "context": "999"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
(b"topic", success_payload),
|
||||
(b"topic", fail_payload),
|
||||
asyncio.CancelledError,
|
||||
]
|
||||
agent._send_to_bdi_belief = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
# Assert success call (True flag for unachieve)
|
||||
agent._send_to_bdi_belief.assert_any_call("norm_slug", "cond_norm", True)
|
||||
# Assert failure log
|
||||
agent.logger.warning.assert_called_with(
|
||||
"Could not determine which conditional norm to unachieve."
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_pause_resume(agent):
|
||||
"""Verify pause and resume toggle logic and logging."""
|
||||
pause_payload = json.dumps({"type": "pause", "context": "true"}).encode()
|
||||
resume_payload = json.dumps({"type": "pause", "context": ""}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
(b"topic", pause_payload),
|
||||
(b"topic", resume_payload),
|
||||
asyncio.CancelledError,
|
||||
]
|
||||
agent._send_pause_command = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent._send_pause_command.assert_any_call("true")
|
||||
agent._send_pause_command.assert_any_call("")
|
||||
agent.logger.info.assert_any_call("Sent pause command.")
|
||||
agent.logger.info.assert_any_call("Sent resume command.")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_phase_control(agent):
|
||||
"""Verify experiment flow control (next_phase)."""
|
||||
payload = json.dumps({"type": "next_phase", "context": ""}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [(b"topic", payload), asyncio.CancelledError]
|
||||
agent._send_experiment_control_to_bdi_core = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
agent._send_experiment_control_to_bdi_core.assert_awaited_once_with("next_phase")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_unknown_thread(agent):
|
||||
"""Test handling of an unknown message thread (lines 213-214)."""
|
||||
msg = InternalMessage(to="me", thread="unknown_thread", body="test")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.logger.debug.assert_called_with(
|
||||
"Received internal message on unhandled thread: unknown_thread"
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_bdi_belief_edge_cases(agent):
|
||||
"""
|
||||
Covers:
|
||||
- Unknown asl_type warning (lines 326-328)
|
||||
- unachieve=True logic (lines 334-337)
|
||||
"""
|
||||
# 1. Unknown Type
|
||||
await agent._send_to_bdi_belief("slug", "unknown_type")
|
||||
|
||||
agent.logger.warning.assert_called_with("Tried to send belief with unknown type")
|
||||
agent.send.assert_not_called()
|
||||
|
||||
# Reset mock for part 2
|
||||
agent.send.reset_mock()
|
||||
|
||||
# 2. Unachieve = True
|
||||
await agent._send_to_bdi_belief("slug", "cond_norm", unachieve=True)
|
||||
|
||||
agent.send.assert_awaited()
|
||||
sent_msg = agent.send.call_args.args[0]
|
||||
|
||||
# Verify it is a delete operation
|
||||
body_obj = BeliefMessage.model_validate_json(sent_msg.body)
|
||||
|
||||
# Verify 'delete' has content
|
||||
assert body_obj.delete is not None
|
||||
assert len(body_obj.delete) == 1
|
||||
assert body_obj.delete[0].name == "force_slug"
|
||||
|
||||
# Verify 'create' is empty (handling both None and [])
|
||||
assert not body_obj.create
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_experiment_control_unknown(agent):
|
||||
"""Test sending an unknown experiment control type (lines 366-367)."""
|
||||
await agent._send_experiment_control_to_bdi_core("invalid_command")
|
||||
|
||||
agent.logger.warning.assert_called_with(
|
||||
"Received button press with unknown type '%s' (context: '%s').",
|
||||
"unknown_thing",
|
||||
"some_data",
|
||||
"Received unknown experiment control type '%s' to send to BDI Core.", "invalid_command"
|
||||
)
|
||||
|
||||
# Ensure it still sends an empty message (as per code logic, though thread is empty)
|
||||
agent.send.assert_awaited()
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == ""
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_mapping_recursive_goals(agent):
|
||||
"""Verify that nested subgoals are correctly registered in the mapping."""
|
||||
import uuid
|
||||
|
||||
# 1. Setup IDs
|
||||
parent_goal_id = uuid.uuid4()
|
||||
child_goal_id = uuid.uuid4()
|
||||
|
||||
# 2. Create the child goal
|
||||
child_goal = Goal(
|
||||
id=child_goal_id,
|
||||
name="child_goal",
|
||||
description="I am a subgoal",
|
||||
plan=Plan(id=uuid.uuid4(), name="p_child", steps=[]),
|
||||
)
|
||||
|
||||
# 3. Create the parent goal and put the child goal inside its plan steps
|
||||
parent_goal = Goal(
|
||||
id=parent_goal_id,
|
||||
name="parent_goal",
|
||||
description="I am a parent",
|
||||
plan=Plan(id=uuid.uuid4(), name="p_parent", steps=[child_goal]), # Nested here
|
||||
)
|
||||
|
||||
# 4. Build the program
|
||||
phase = Phase(
|
||||
id=uuid.uuid4(),
|
||||
name="phase1",
|
||||
norms=[],
|
||||
goals=[parent_goal], # Only the parent is top-level
|
||||
triggers=[],
|
||||
)
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
# 5. Execute mapping
|
||||
msg = InternalMessage(to="me", thread="new_program", body=prog.model_dump_json())
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# 6. Assertions
|
||||
# Check parent
|
||||
assert str(parent_goal_id) in agent._goal_map
|
||||
assert agent._goal_map[str(parent_goal_id)] == "parent_goal"
|
||||
|
||||
# Check child (This confirms the recursion worked)
|
||||
assert str(child_goal_id) in agent._goal_map
|
||||
assert agent._goal_map[str(child_goal_id)] == "child_goal"
|
||||
assert agent._goal_reverse_map["child_goal"] == str(child_goal_id)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_loop_advanced_scenarios(agent):
|
||||
"""
|
||||
Covers:
|
||||
- JSONDecodeError (lines 86-88)
|
||||
- Override: Trigger found (lines 108-109)
|
||||
- Override: Norm found (lines 114-115)
|
||||
- Override: Nothing found (line 134)
|
||||
- Override Unachieve: Success & Fail (lines 136-145)
|
||||
- Pause: Context true/false logs (lines 150-157)
|
||||
- Next Phase (line 160)
|
||||
"""
|
||||
# 1. Setup Data Maps
|
||||
agent._trigger_map["101"] = "trigger_slug"
|
||||
agent._cond_norm_map["202"] = "norm_slug"
|
||||
|
||||
# 2. Define Payloads
|
||||
# A. Invalid JSON
|
||||
bad_json = b"INVALID{JSON"
|
||||
|
||||
# B. Override -> Trigger
|
||||
override_trigger = json.dumps({"type": "override", "context": "101"}).encode()
|
||||
|
||||
# C. Override -> Norm
|
||||
override_norm = json.dumps({"type": "override", "context": "202"}).encode()
|
||||
|
||||
# D. Override -> Unknown
|
||||
override_fail = json.dumps({"type": "override", "context": "999"}).encode()
|
||||
|
||||
# E. Unachieve -> Success
|
||||
unachieve_success = json.dumps({"type": "override_unachieve", "context": "202"}).encode()
|
||||
|
||||
# F. Unachieve -> Fail
|
||||
unachieve_fail = json.dumps({"type": "override_unachieve", "context": "999"}).encode()
|
||||
|
||||
# G. Pause (True)
|
||||
pause_true = json.dumps({"type": "pause", "context": "true"}).encode()
|
||||
|
||||
# H. Pause (False/Resume)
|
||||
pause_false = json.dumps({"type": "pause", "context": ""}).encode()
|
||||
|
||||
# I. Next Phase
|
||||
next_phase = json.dumps({"type": "next_phase", "context": ""}).encode()
|
||||
|
||||
# 3. Setup Socket
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
(b"topic", bad_json),
|
||||
(b"topic", override_trigger),
|
||||
(b"topic", override_norm),
|
||||
(b"topic", override_fail),
|
||||
(b"topic", unachieve_success),
|
||||
(b"topic", unachieve_fail),
|
||||
(b"topic", pause_true),
|
||||
(b"topic", pause_false),
|
||||
(b"topic", next_phase),
|
||||
asyncio.CancelledError, # End loop
|
||||
]
|
||||
|
||||
# Mock internal helpers to verify calls
|
||||
agent._send_to_bdi = AsyncMock()
|
||||
agent._send_to_bdi_belief = AsyncMock()
|
||||
agent._send_pause_command = AsyncMock()
|
||||
agent._send_experiment_control_to_bdi_core = AsyncMock()
|
||||
|
||||
# 4. Run Loop
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
except asyncio.CancelledError:
|
||||
pass
|
||||
|
||||
# 5. Assertions
|
||||
|
||||
# JSON Error
|
||||
agent.logger.error.assert_called_with("Received invalid JSON payload on topic %s", b"topic")
|
||||
|
||||
# Override Trigger
|
||||
agent._send_to_bdi.assert_awaited_with("force_trigger", "trigger_slug")
|
||||
|
||||
# Override Norm
|
||||
# We expect _send_to_bdi_belief to be called for the norm
|
||||
# Note: The loop calls _send_to_bdi_belief(asl_cond_norm, "cond_norm")
|
||||
agent._send_to_bdi_belief.assert_any_call("norm_slug", "cond_norm")
|
||||
|
||||
# Override Fail (Warning log)
|
||||
agent.logger.warning.assert_any_call("Could not determine which element to override.")
|
||||
|
||||
# Unachieve Success
|
||||
# Loop calls _send_to_bdi_belief(asl_cond_norm, "cond_norm", True)
|
||||
agent._send_to_bdi_belief.assert_any_call("norm_slug", "cond_norm", True)
|
||||
|
||||
# Unachieve Fail
|
||||
agent.logger.warning.assert_any_call("Could not determine which conditional norm to unachieve.")
|
||||
|
||||
# Pause Logic
|
||||
agent._send_pause_command.assert_any_call("true")
|
||||
agent.logger.info.assert_any_call("Sent pause command.")
|
||||
|
||||
# Resume Logic
|
||||
agent._send_pause_command.assert_any_call("")
|
||||
agent.logger.info.assert_any_call("Sent resume command.")
|
||||
|
||||
# Next Phase
|
||||
agent._send_experiment_control_to_bdi_core.assert_awaited_with("next_phase")
|
||||
|
||||
@@ -1,7 +1,13 @@
|
||||
from unittest.mock import patch
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from fastapi import FastAPI
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.testclient import TestClient
|
||||
from starlette.responses import StreamingResponse
|
||||
|
||||
@@ -61,3 +67,67 @@ async def test_log_stream_endpoint_lines(client):
|
||||
# Optional: assert subscribe/connect were called
|
||||
assert dummy_socket.subscribed # at least some log levels subscribed
|
||||
assert dummy_socket.connected # connect was called
|
||||
|
||||
|
||||
@patch("control_backend.api.v1.endpoints.logs.LOGGING_DIR")
|
||||
def test_files_endpoint(LOGGING_DIR, client):
|
||||
file_1, file_2 = MagicMock(), MagicMock()
|
||||
file_1.name = "file_1"
|
||||
file_2.name = "file_2"
|
||||
LOGGING_DIR.glob.return_value = [file_1, file_2]
|
||||
result = client.get("/api/logs/files")
|
||||
|
||||
assert result.status_code == 200
|
||||
assert result.json() == ["file_1", "file_2"]
|
||||
|
||||
|
||||
@patch("control_backend.api.v1.endpoints.logs.FileResponse")
|
||||
@patch("control_backend.api.v1.endpoints.logs.LOGGING_DIR")
|
||||
def test_log_file_endpoint_success(LOGGING_DIR, MockFileResponse, client):
|
||||
mock_file_path = MagicMock()
|
||||
mock_file_path.is_relative_to.return_value = True
|
||||
mock_file_path.is_file.return_value = True
|
||||
mock_file_path.name = "test.log"
|
||||
|
||||
LOGGING_DIR.__truediv__ = MagicMock(return_value=mock_file_path)
|
||||
mock_file_path.resolve.return_value = mock_file_path
|
||||
|
||||
MockFileResponse.return_value = MagicMock()
|
||||
|
||||
result = client.get("/api/logs/files/test.log")
|
||||
|
||||
assert result.status_code == 200
|
||||
MockFileResponse.assert_called_once_with(mock_file_path, filename="test.log")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@patch("control_backend.api.v1.endpoints.logs.LOGGING_DIR")
|
||||
async def test_log_file_endpoint_path_traversal(LOGGING_DIR):
|
||||
from control_backend.api.v1.endpoints.logs import log_file
|
||||
|
||||
mock_file_path = MagicMock()
|
||||
mock_file_path.is_relative_to.return_value = False
|
||||
|
||||
LOGGING_DIR.__truediv__ = MagicMock(return_value=mock_file_path)
|
||||
mock_file_path.resolve.return_value = mock_file_path
|
||||
|
||||
with pytest.raises(HTTPException) as exc_info:
|
||||
await log_file("../secret.txt")
|
||||
|
||||
assert exc_info.value.status_code == 400
|
||||
assert exc_info.value.detail == "Invalid filename."
|
||||
|
||||
|
||||
@patch("control_backend.api.v1.endpoints.logs.LOGGING_DIR")
|
||||
def test_log_file_endpoint_file_not_found(LOGGING_DIR, client):
|
||||
mock_file_path = MagicMock()
|
||||
mock_file_path.is_relative_to.return_value = True
|
||||
mock_file_path.is_file.return_value = False
|
||||
|
||||
LOGGING_DIR.__truediv__ = MagicMock(return_value=mock_file_path)
|
||||
mock_file_path.resolve.return_value = mock_file_path
|
||||
|
||||
result = client.get("/api/logs/files/nonexistent.log")
|
||||
|
||||
assert result.status_code == 404
|
||||
assert result.json()["detail"] == "File not found."
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import json
|
||||
|
||||
import pytest
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import json
|
||||
import uuid
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
# tests/test_robot_endpoints.py
|
||||
import json
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from fastapi.routing import APIRoute
|
||||
|
||||
from control_backend.api.v1.router import api_router # <--- corrected import
|
||||
@@ -11,6 +17,5 @@ def test_router_includes_expected_paths():
|
||||
# Ensure at least one route under each prefix exists
|
||||
assert any(p.startswith("/robot") for p in paths)
|
||||
assert any(p.startswith("/message") for p in paths)
|
||||
assert any(p.startswith("/sse") for p in paths)
|
||||
assert any(p.startswith("/logs") for p in paths)
|
||||
assert any(p.startswith("/program") for p in paths)
|
||||
|
||||
@@ -1,24 +0,0 @@
|
||||
import pytest
|
||||
from fastapi import FastAPI
|
||||
from fastapi.testclient import TestClient
|
||||
|
||||
from control_backend.api.v1.endpoints import sse
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def app():
|
||||
app = FastAPI()
|
||||
app.include_router(sse.router)
|
||||
return app
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def client(app):
|
||||
return TestClient(app)
|
||||
|
||||
|
||||
def test_sse_route_exists(client):
|
||||
"""Minimal smoke test to ensure /sse route exists and responds."""
|
||||
response = client.get("/sse")
|
||||
# Since implementation is not done, we only assert it doesn't crash
|
||||
assert response.status_code == 200
|
||||
154
test/unit/api/v1/endpoints/test_user_interact.py
Normal file
154
test/unit/api/v1/endpoints/test_user_interact.py
Normal file
@@ -0,0 +1,154 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from fastapi import FastAPI
|
||||
from fastapi.testclient import TestClient
|
||||
|
||||
from control_backend.api.v1.endpoints import user_interact
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def app():
|
||||
app = FastAPI()
|
||||
app.include_router(user_interact.router)
|
||||
return app
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def client(app):
|
||||
return TestClient(app)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_button_event(client):
|
||||
mock_pub_socket = AsyncMock()
|
||||
client.app.state.endpoints_pub_socket = mock_pub_socket
|
||||
|
||||
payload = {"type": "speech", "context": "hello"}
|
||||
response = client.post("/button_pressed", json=payload)
|
||||
|
||||
assert response.status_code == 202
|
||||
assert response.json() == {"status": "Event received"}
|
||||
|
||||
mock_pub_socket.send_multipart.assert_awaited_once()
|
||||
args = mock_pub_socket.send_multipart.call_args[0][0]
|
||||
assert args[0] == b"button_pressed"
|
||||
assert "speech" in args[1].decode()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_button_event_invalid_payload(client):
|
||||
mock_pub_socket = AsyncMock()
|
||||
client.app.state.endpoints_pub_socket = mock_pub_socket
|
||||
|
||||
# Missing context
|
||||
payload = {"type": "speech"}
|
||||
response = client.post("/button_pressed", json=payload)
|
||||
|
||||
assert response.status_code == 422
|
||||
mock_pub_socket.send_multipart.assert_not_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_experiment_stream_direct_call():
|
||||
"""
|
||||
Directly calling the endpoint function to test the streaming logic
|
||||
without dealing with TestClient streaming limitations.
|
||||
"""
|
||||
mock_socket = AsyncMock()
|
||||
# 1. recv data
|
||||
# 2. recv timeout
|
||||
# 3. disconnect (request.is_disconnected returns True)
|
||||
mock_socket.recv_multipart.side_effect = [
|
||||
(b"topic", b"message1"),
|
||||
TimeoutError(),
|
||||
(b"topic", b"message2"), # Should not be reached if disconnect checks work
|
||||
]
|
||||
mock_socket.close = MagicMock()
|
||||
mock_socket.connect = MagicMock()
|
||||
mock_socket.subscribe = MagicMock()
|
||||
|
||||
mock_context = MagicMock()
|
||||
mock_context.socket.return_value = mock_socket
|
||||
|
||||
with patch(
|
||||
"control_backend.api.v1.endpoints.user_interact.Context.instance", return_value=mock_context
|
||||
):
|
||||
mock_request = AsyncMock()
|
||||
# is_disconnected sequence:
|
||||
# 1. False (before first recv) -> reads message1
|
||||
# 2. False (before second recv) -> triggers TimeoutError, continues
|
||||
# 3. True (before third recv) -> break loop
|
||||
mock_request.is_disconnected.side_effect = [False, False, True]
|
||||
|
||||
response = await user_interact.experiment_stream(mock_request)
|
||||
|
||||
lines = []
|
||||
# Consume the generator
|
||||
async for line in response.body_iterator:
|
||||
lines.append(line)
|
||||
|
||||
assert "data: message1\n\n" in lines
|
||||
assert len(lines) == 1
|
||||
|
||||
mock_socket.connect.assert_called()
|
||||
mock_socket.subscribe.assert_called_with(b"experiment")
|
||||
mock_socket.close.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_status_stream_direct_call():
|
||||
"""
|
||||
Test the status stream, ensuring it handles messages and sends pings on timeout.
|
||||
"""
|
||||
mock_socket = AsyncMock()
|
||||
|
||||
# Define the sequence of events for the socket:
|
||||
# 1. Successfully receive a message
|
||||
# 2. Timeout (which should trigger the ': ping' yield)
|
||||
# 3. Another message (which won't be reached because we'll simulate disconnect)
|
||||
mock_socket.recv_multipart.side_effect = [
|
||||
(b"topic", b"status_update"),
|
||||
TimeoutError(),
|
||||
(b"topic", b"ignored_msg"),
|
||||
]
|
||||
|
||||
mock_socket.close = MagicMock()
|
||||
mock_socket.connect = MagicMock()
|
||||
mock_socket.subscribe = MagicMock()
|
||||
|
||||
mock_context = MagicMock()
|
||||
mock_context.socket.return_value = mock_socket
|
||||
|
||||
# Mock the ZMQ Context to return our mock_socket
|
||||
with patch(
|
||||
"control_backend.api.v1.endpoints.user_interact.Context.instance", return_value=mock_context
|
||||
):
|
||||
mock_request = AsyncMock()
|
||||
|
||||
# is_disconnected sequence:
|
||||
# 1. False -> Process "status_update"
|
||||
# 2. False -> Process TimeoutError (yield ping)
|
||||
# 3. True -> Break loop (client disconnected)
|
||||
mock_request.is_disconnected.side_effect = [False, False, True]
|
||||
|
||||
# Call the status_stream function explicitly
|
||||
response = await user_interact.status_stream(mock_request)
|
||||
|
||||
lines = []
|
||||
async for line in response.body_iterator:
|
||||
lines.append(line)
|
||||
|
||||
# Assertions
|
||||
assert "data: status_update\n\n" in lines
|
||||
assert ": ping\n\n" in lines # Verify lines 91-92 (ping logic)
|
||||
|
||||
mock_socket.connect.assert_called()
|
||||
mock_socket.subscribe.assert_called_with(b"status")
|
||||
mock_socket.close.assert_called()
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
@@ -25,7 +31,6 @@ def mock_settings():
|
||||
mock.zmq_settings.internal_sub_address = "tcp://localhost:5561"
|
||||
mock.zmq_settings.ri_command_address = "tcp://localhost:0000"
|
||||
mock.agent_settings.bdi_core_name = "bdi_core_agent"
|
||||
mock.agent_settings.bdi_belief_collector_name = "belief_collector_agent"
|
||||
mock.agent_settings.llm_name = "llm_agent"
|
||||
mock.agent_settings.robot_speech_name = "robot_speech_agent"
|
||||
mock.agent_settings.transcription_name = "transcription_agent"
|
||||
@@ -33,6 +38,7 @@ def mock_settings():
|
||||
mock.agent_settings.vad_name = "vad_agent"
|
||||
mock.behaviour_settings.sleep_s = 0.01 # Speed up tests
|
||||
mock.behaviour_settings.comm_setup_max_retries = 1
|
||||
mock.behaviour_settings.agentspeak_file = "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
yield mock
|
||||
|
||||
|
||||
|
||||
@@ -1,4 +1,10 @@
|
||||
"""Test the base class logic, message passing and background task handling."""
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
--------------------------------------------------------------------------------
|
||||
Test the base class logic, message passing and background task handling.
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
import logging
|
||||
@@ -99,12 +105,75 @@ async def test_send_to_local_agent(monkeypatch):
|
||||
# Patch inbox.put
|
||||
target.inbox.put = AsyncMock()
|
||||
|
||||
message = InternalMessage(to="receiver", sender="sender", body="hello")
|
||||
message = InternalMessage(to=target.name, sender=sender.name, body="hello")
|
||||
|
||||
await sender.send(message)
|
||||
|
||||
target.inbox.put.assert_awaited_once_with(message)
|
||||
sender.logger.debug.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_zmq_agent(monkeypatch):
|
||||
sender = DummyAgent("sender")
|
||||
target = "remote_receiver"
|
||||
|
||||
# Fake logger
|
||||
sender.logger = MagicMock()
|
||||
|
||||
# Fake zmq
|
||||
sender._internal_pub_socket = AsyncMock()
|
||||
|
||||
message = InternalMessage(to=target, sender=sender.name, body="hello")
|
||||
|
||||
await sender.send(message)
|
||||
|
||||
zmq_calls = sender._internal_pub_socket.send_multipart.call_args[0][0]
|
||||
assert zmq_calls[0] == f"internal/{target}".encode()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_multiple_local_agents(monkeypatch):
|
||||
sender = DummyAgent("sender")
|
||||
target1 = DummyAgent("receiver1")
|
||||
target2 = DummyAgent("receiver2")
|
||||
|
||||
# Fake logger
|
||||
sender.logger = MagicMock()
|
||||
|
||||
# Patch inbox.put
|
||||
target1.inbox.put = AsyncMock()
|
||||
target2.inbox.put = AsyncMock()
|
||||
|
||||
message = InternalMessage(to=[target1.name, target2.name], sender=sender.name, body="hello")
|
||||
|
||||
await sender.send(message)
|
||||
|
||||
target1.inbox.put.assert_awaited_once_with(message)
|
||||
target2.inbox.put.assert_awaited_once_with(message)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_multiple_agents(monkeypatch):
|
||||
sender = DummyAgent("sender")
|
||||
target1 = DummyAgent("receiver1")
|
||||
target2 = "remote_receiver"
|
||||
|
||||
# Fake logger
|
||||
sender.logger = MagicMock()
|
||||
|
||||
# Fake zmq
|
||||
sender._internal_pub_socket = AsyncMock()
|
||||
|
||||
# Patch inbox.put
|
||||
target1.inbox.put = AsyncMock()
|
||||
|
||||
message = InternalMessage(to=[target1.name, target2], sender=sender.name, body="hello")
|
||||
|
||||
await sender.send(message)
|
||||
|
||||
target1.inbox.put.assert_awaited_once_with(message)
|
||||
zmq_calls = sender._internal_pub_socket.send_multipart.call_args[0][0]
|
||||
assert zmq_calls[0] == f"internal/{target2}".encode()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
||||
@@ -1,4 +1,10 @@
|
||||
"""Test if settings load correctly and environment variables override defaults."""
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
--------------------------------------------------------------------------------
|
||||
Test if settings load correctly and environment variables override defaults.
|
||||
"""
|
||||
|
||||
from control_backend.core.config import Settings
|
||||
|
||||
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
from unittest.mock import mock_open, patch
|
||||
|
||||
|
||||
51
test/unit/logging/test_dated_file_handler.py
Normal file
51
test/unit/logging/test_dated_file_handler.py
Normal file
@@ -0,0 +1,51 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.logging.dated_file_handler import DatedFileHandler
|
||||
|
||||
|
||||
@patch("control_backend.logging.dated_file_handler.DatedFileHandler._open")
|
||||
def test_reset(open_):
|
||||
stream = MagicMock()
|
||||
open_.return_value = stream
|
||||
|
||||
# A file should be opened when the logger is created
|
||||
handler = DatedFileHandler(file_prefix="anything")
|
||||
assert open_.call_count == 1
|
||||
|
||||
# Upon reset, the current file should be closed, and a new one should be opened
|
||||
handler.do_rollover()
|
||||
assert stream.close.call_count == 1
|
||||
assert open_.call_count == 2
|
||||
|
||||
|
||||
@patch("control_backend.logging.dated_file_handler.Path")
|
||||
@patch("control_backend.logging.dated_file_handler.DatedFileHandler._open")
|
||||
def test_creates_dir(open_, Path_):
|
||||
stream = MagicMock()
|
||||
open_.return_value = stream
|
||||
|
||||
test_path = MagicMock()
|
||||
test_path.parent.is_dir.return_value = False
|
||||
Path_.return_value = test_path
|
||||
|
||||
DatedFileHandler(file_prefix="anything")
|
||||
|
||||
# The directory should've been created
|
||||
test_path.parent.mkdir.assert_called_once()
|
||||
|
||||
|
||||
@patch("control_backend.logging.dated_file_handler.DatedFileHandler._open")
|
||||
def test_invalid_constructor(_):
|
||||
with pytest.raises(ValueError):
|
||||
DatedFileHandler(file_prefix=None)
|
||||
|
||||
with pytest.raises(ValueError):
|
||||
DatedFileHandler(file_prefix="")
|
||||
224
test/unit/logging/test_optional_field_formatter.py
Normal file
224
test/unit/logging/test_optional_field_formatter.py
Normal file
@@ -0,0 +1,224 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.logging.optional_field_formatter import OptionalFieldFormatter
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def logger():
|
||||
"""Create a fresh logger for each test."""
|
||||
logger = logging.getLogger(f"test_{id(object())}")
|
||||
logger.setLevel(logging.DEBUG)
|
||||
logger.handlers = []
|
||||
return logger
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def log_output(logger):
|
||||
"""Capture log output and return a function to get it."""
|
||||
|
||||
class ListHandler(logging.Handler):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.records = []
|
||||
|
||||
def emit(self, record):
|
||||
self.records.append(self.format(record))
|
||||
|
||||
handler = ListHandler()
|
||||
logger.addHandler(handler)
|
||||
|
||||
def get_output():
|
||||
return handler.records
|
||||
|
||||
return get_output
|
||||
|
||||
|
||||
def test_optional_field_present(logger, log_output):
|
||||
"""Optional field should appear when provided in extra."""
|
||||
formatter = OptionalFieldFormatter("%(levelname)s - %(role?)s - %(message)s")
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test message", extra={"role": "user"})
|
||||
|
||||
assert log_output() == ["INFO - user - test message"]
|
||||
|
||||
|
||||
def test_optional_field_missing_no_default(logger, log_output):
|
||||
"""Missing optional field with no default should be None."""
|
||||
formatter = OptionalFieldFormatter("%(levelname)s - %(role?)s - %(message)s")
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test message")
|
||||
|
||||
assert log_output() == ["INFO - None - test message"]
|
||||
|
||||
|
||||
def test_optional_field_missing_with_default(logger, log_output):
|
||||
"""Missing optional field should use provided default."""
|
||||
formatter = OptionalFieldFormatter(
|
||||
"%(levelname)s - %(role?)s - %(message)s", defaults={"role": "assistant"}
|
||||
)
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test message")
|
||||
|
||||
assert log_output() == ["INFO - assistant - test message"]
|
||||
|
||||
|
||||
def test_optional_field_overrides_default(logger, log_output):
|
||||
"""Provided extra value should override default."""
|
||||
formatter = OptionalFieldFormatter(
|
||||
"%(levelname)s - %(role?)s - %(message)s", defaults={"role": "assistant"}
|
||||
)
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test message", extra={"role": "user"})
|
||||
|
||||
assert log_output() == ["INFO - user - test message"]
|
||||
|
||||
|
||||
def test_multiple_optional_fields(logger, log_output):
|
||||
"""Multiple optional fields should work independently."""
|
||||
formatter = OptionalFieldFormatter(
|
||||
"%(levelname)s - %(role?)s - %(request_id?)s - %(message)s", defaults={"role": "assistant"}
|
||||
)
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test", extra={"request_id": "123"})
|
||||
|
||||
assert log_output() == ["INFO - assistant - 123 - test"]
|
||||
|
||||
|
||||
def test_mixed_optional_and_required_fields(logger, log_output):
|
||||
"""Standard fields should work alongside optional fields."""
|
||||
formatter = OptionalFieldFormatter("%(levelname)s %(name)s %(role?)s %(message)s")
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test", extra={"role": "user"})
|
||||
|
||||
output = log_output()[0]
|
||||
assert "INFO" in output
|
||||
assert "user" in output
|
||||
assert "test" in output
|
||||
|
||||
|
||||
def test_no_optional_fields(logger, log_output):
|
||||
"""Formatter should work normally with no optional fields."""
|
||||
formatter = OptionalFieldFormatter("%(levelname)s %(message)s")
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test message")
|
||||
|
||||
assert log_output() == ["INFO test message"]
|
||||
|
||||
|
||||
def test_integer_format_specifier(logger, log_output):
|
||||
"""Optional fields with %d specifier should work."""
|
||||
formatter = OptionalFieldFormatter(
|
||||
"%(levelname)s %(count?)d %(message)s", defaults={"count": 0}
|
||||
)
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test", extra={"count": 42})
|
||||
|
||||
assert log_output() == ["INFO 42 test"]
|
||||
|
||||
|
||||
def test_float_format_specifier(logger, log_output):
|
||||
"""Optional fields with %f specifier should work."""
|
||||
formatter = OptionalFieldFormatter(
|
||||
"%(levelname)s %(duration?)f %(message)s", defaults={"duration": 0.0}
|
||||
)
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test", extra={"duration": 1.5})
|
||||
|
||||
assert "1.5" in log_output()[0]
|
||||
|
||||
|
||||
def test_empty_string_default(logger, log_output):
|
||||
"""Empty string default should work."""
|
||||
formatter = OptionalFieldFormatter("%(levelname)s %(role?)s %(message)s", defaults={"role": ""})
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test")
|
||||
|
||||
assert log_output() == ["INFO test"]
|
||||
|
||||
|
||||
def test_none_format_string():
|
||||
"""None format string should not raise."""
|
||||
formatter = OptionalFieldFormatter(fmt=None)
|
||||
assert formatter.optional_fields == set()
|
||||
|
||||
|
||||
def test_optional_fields_parsed_correctly():
|
||||
"""Check that optional fields are correctly identified."""
|
||||
formatter = OptionalFieldFormatter("%(asctime)s %(role?)s %(level?)d %(name)s")
|
||||
|
||||
assert formatter.optional_fields == {("role", "s"), ("level", "d")}
|
||||
|
||||
|
||||
def test_format_string_normalized():
|
||||
"""Check that ? is removed from format string."""
|
||||
formatter = OptionalFieldFormatter("%(role?)s %(message)s")
|
||||
|
||||
assert "?" not in formatter._style._fmt
|
||||
assert "%(role)s" in formatter._style._fmt
|
||||
|
||||
|
||||
def test_field_with_underscore(logger, log_output):
|
||||
"""Field names with underscores should work."""
|
||||
formatter = OptionalFieldFormatter("%(levelname)s %(user_id?)s %(message)s")
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test", extra={"user_id": "abc123"})
|
||||
|
||||
assert log_output() == ["INFO abc123 test"]
|
||||
|
||||
|
||||
def test_field_with_numbers(logger, log_output):
|
||||
"""Field names with numbers should work."""
|
||||
formatter = OptionalFieldFormatter("%(levelname)s %(field2?)s %(message)s")
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test", extra={"field2": "value"})
|
||||
|
||||
assert log_output() == ["INFO value test"]
|
||||
|
||||
|
||||
def test_multiple_log_calls(logger, log_output):
|
||||
"""Formatter should work correctly across multiple log calls."""
|
||||
formatter = OptionalFieldFormatter(
|
||||
"%(levelname)s %(role?)s %(message)s", defaults={"role": "other"}
|
||||
)
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("first", extra={"role": "assistant"})
|
||||
logger.info("second")
|
||||
logger.info("third", extra={"role": "user"})
|
||||
|
||||
assert log_output() == [
|
||||
"INFO assistant first",
|
||||
"INFO other second",
|
||||
"INFO user third",
|
||||
]
|
||||
|
||||
|
||||
def test_default_not_mutated(logger, log_output):
|
||||
"""Original defaults dict should not be mutated."""
|
||||
defaults = {"role": "other"}
|
||||
formatter = OptionalFieldFormatter("%(levelname)s %(role?)s %(message)s", defaults=defaults)
|
||||
logger.handlers[0].setFormatter(formatter)
|
||||
|
||||
logger.info("test")
|
||||
|
||||
assert defaults == {"role": "other"}
|
||||
89
test/unit/logging/test_partial_filter.py
Normal file
89
test/unit/logging/test_partial_filter.py
Normal file
@@ -0,0 +1,89 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import logging
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.logging import PartialFilter
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def logger():
|
||||
"""Create a fresh logger for each test."""
|
||||
logger = logging.getLogger(f"test_{id(object())}")
|
||||
logger.setLevel(logging.DEBUG)
|
||||
logger.handlers = []
|
||||
return logger
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def log_output(logger):
|
||||
"""Capture log output and return a function to get it."""
|
||||
|
||||
class ListHandler(logging.Handler):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.records = []
|
||||
|
||||
def emit(self, record):
|
||||
self.records.append(self.format(record))
|
||||
|
||||
handler = ListHandler()
|
||||
handler.addFilter(PartialFilter())
|
||||
handler.setFormatter(logging.Formatter("%(message)s"))
|
||||
logger.addHandler(handler)
|
||||
|
||||
return lambda: handler.records
|
||||
|
||||
|
||||
def test_no_partial_attribute(logger, log_output):
|
||||
"""Records without partial attribute should pass through."""
|
||||
logger.info("normal message")
|
||||
|
||||
assert log_output() == ["normal message"]
|
||||
|
||||
|
||||
def test_partial_true_filtered(logger, log_output):
|
||||
"""Records with partial=True should be filtered out."""
|
||||
logger.info("partial message", extra={"partial": True})
|
||||
|
||||
assert log_output() == []
|
||||
|
||||
|
||||
def test_partial_false_passes(logger, log_output):
|
||||
"""Records with partial=False should pass through."""
|
||||
logger.info("complete message", extra={"partial": False})
|
||||
|
||||
assert log_output() == ["complete message"]
|
||||
|
||||
|
||||
def test_partial_none_passes(logger, log_output):
|
||||
"""Records with partial=None should pass through."""
|
||||
logger.info("message", extra={"partial": None})
|
||||
|
||||
assert log_output() == ["message"]
|
||||
|
||||
|
||||
def test_partial_truthy_value_passes(logger, log_output):
|
||||
"""
|
||||
Records with truthy but non-True partial should pass through, that is, only when it's exactly
|
||||
``True`` should it pass.
|
||||
"""
|
||||
logger.info("message", extra={"partial": "yes"})
|
||||
|
||||
assert log_output() == ["message"]
|
||||
|
||||
|
||||
def test_multiple_records_mixed(logger, log_output):
|
||||
"""Filter should handle mixed records correctly."""
|
||||
logger.info("first")
|
||||
logger.info("second", extra={"partial": True})
|
||||
logger.info("third", extra={"partial": False})
|
||||
logger.info("fourth", extra={"partial": True})
|
||||
logger.info("fifth")
|
||||
|
||||
assert log_output() == ["first", "third", "fifth"]
|
||||
@@ -1,3 +1,9 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
from control_backend.schemas.message import Message
|
||||
|
||||
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user