feat: face recognition agent #53
@@ -7,6 +7,7 @@ requires-python = ">=3.13"
|
||||
dependencies = [
|
||||
"agentspeak>=0.2.2",
|
||||
"colorlog>=6.10.1",
|
||||
"deepface>=0.0.96",
|
||||
"fastapi[all]>=0.115.6",
|
||||
"mlx-whisper>=0.4.3 ; sys_platform == 'darwin'",
|
||||
"numpy>=2.3.3",
|
||||
@@ -21,6 +22,7 @@ dependencies = [
|
||||
"silero-vad>=6.0.0",
|
||||
"sphinx>=7.3.7",
|
||||
"sphinx-rtd-theme>=3.0.2",
|
||||
"tf-keras>=2.20.1",
|
||||
"torch>=2.8.0",
|
||||
"uvicorn>=0.37.0",
|
||||
]
|
||||
|
||||
@@ -29,6 +29,8 @@ from control_backend.schemas.program import (
|
||||
BaseGoal,
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
EmotionBelief,
|
||||
FaceBelief,
|
||||
GestureAction,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
@@ -682,6 +684,14 @@ class AgentSpeakGenerator:
|
||||
"""
|
||||
return AstLiteral(self.slugify(sb))
|
||||
|
||||
@_astify.register
|
||||
def _(self, eb: EmotionBelief) -> AstExpression:
|
||||
return AstLiteral("emotion_detected", [AstAtom(eb.emotion)])
|
||||
|
||||
@_astify.register
|
||||
def _(self, eb: FaceBelief) -> AstExpression:
|
||||
return AstLiteral("face_present")
|
||||
|
||||
@_astify.register
|
||||
def _(self, ib: InferredBelief) -> AstExpression:
|
||||
"""
|
||||
|
||||
@@ -9,17 +9,17 @@ import json
|
||||
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
from pydantic import ValidationError
|
||||
from zmq.asyncio import Context
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.actuation.robot_gesture_agent import RobotGestureAgent
|
||||
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognition_agent import ( # noqa
|
||||
VisualEmotionRecognitionAgent,
|
||||
)
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.internal_message import InternalMessage
|
||||
from control_backend.schemas.ri_message import PauseCommand
|
||||
|
||||
from ..actuation.robot_speech_agent import RobotSpeechAgent
|
||||
from ..perception import VADAgent
|
||||
from ..perception import FacePerceptionAgent, VADAgent
|
||||
|
||||
|
||||
class RICommunicationAgent(BaseAgent):
|
||||
@@ -58,6 +58,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
self.connected = False
|
||||
self.gesture_agent: RobotGestureAgent | None = None
|
||||
self.speech_agent: RobotSpeechAgent | None = None
|
||||
self.visual_emotion_recognition_agent: VisualEmotionRecognitionAgent | None = None
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
@@ -180,7 +181,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
bind = port_data["bind"]
|
||||
|
||||
if not bind:
|
||||
addr = f"tcp://{settings.ri_host}:{port}"
|
||||
addr = f"tcp://localhost:{port}"
|
||||
else:
|
||||
addr = f"tcp://*:{port}"
|
||||
|
||||
@@ -215,6 +216,21 @@ class RICommunicationAgent(BaseAgent):
|
||||
case "audio":
|
||||
vad_agent = VADAgent(audio_in_address=addr, audio_in_bind=bind)
|
||||
await vad_agent.start()
|
||||
case "video":
|
||||
visual_emotion_agent = VisualEmotionRecognitionAgent(
|
||||
settings.agent_settings.visual_emotion_recognition_name,
|
||||
socket_address=addr,
|
||||
bind=bind,
|
||||
)
|
||||
self.visual_emotion_recognition_agent = visual_emotion_agent
|
||||
await visual_emotion_agent.start()
|
||||
case "face":
|
||||
face_agent = FacePerceptionAgent(
|
||||
settings.agent_settings.face_agent_name,
|
||||
zmq_address=addr,
|
||||
zmq_bind=bind,
|
||||
)
|
||||
await face_agent.start()
|
||||
case _:
|
||||
self.logger.warning("Unhandled negotiation id: %s", id)
|
||||
|
||||
@@ -320,17 +336,12 @@ class RICommunicationAgent(BaseAgent):
|
||||
if self.speech_agent is not None:
|
||||
await self.speech_agent.stop()
|
||||
|
||||
if self.visual_emotion_recognition_agent is not None:
|
||||
await self.visual_emotion_recognition_agent.stop()
|
||||
|
||||
if self.pub_socket is not None:
|
||||
self.pub_socket.close()
|
||||
|
||||
self.logger.debug("Restarting communication negotiation.")
|
||||
if await self._negotiate_connection(max_retries=2):
|
||||
self.connected = True
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
try:
|
||||
pause_command = PauseCommand.model_validate_json(msg.body)
|
||||
await self._req_socket.send_json(pause_command.model_dump())
|
||||
self.logger.debug(await self._req_socket.recv_json())
|
||||
except ValidationError:
|
||||
self.logger.warning("Incorrect message format for PauseCommand.")
|
||||
|
||||
@@ -7,6 +7,7 @@ Agents responsible for processing sensory input, such as audio transcription and
|
||||
detection.
|
||||
"""
|
||||
|
||||
from .face_rec_agent import FacePerceptionAgent as FacePerceptionAgent
|
||||
from .transcription_agent.transcription_agent import (
|
||||
TranscriptionAgent as TranscriptionAgent,
|
||||
)
|
||||
|
||||
144
src/control_backend/agents/perception/face_rec_agent.py
Normal file
144
src/control_backend/agents/perception/face_rec_agent.py
Normal file
@@ -0,0 +1,144 @@
|
||||
"""
|
||||
This program has been developed by students from the bachelor Computer Science at Utrecht
|
||||
University within the Software Project course.
|
||||
© Copyright Utrecht University (Department of Information and Computing Sciences)
|
||||
"""
|
||||
|
||||
import asyncio
|
||||
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
|
||||
|
||||
class FacePerceptionAgent(BaseAgent):
|
||||
"""
|
||||
Receives face presence updates from the RICommunicationAgent
|
||||
via the internal PUB/SUB bus.
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, zmq_address: str, zmq_bind: bool):
|
||||
"""
|
||||
:param name: The name of the agent.
|
||||
:param zmq_address: The ZMQ address to subscribe to, an endpoint which sends face presence
|
||||
updates.
|
||||
:param zmq_bind: Whether to connect to the ZMQ endpoint, or to bind.
|
||||
"""
|
||||
super().__init__(name)
|
||||
self._zmq_address = zmq_address
|
||||
self._zmq_bind = zmq_bind
|
||||
self._socket: azmq.Socket | None = None
|
||||
|
||||
self._last_face_state: bool | None = None
|
||||
|
||||
# Pause functionality
|
||||
# NOTE: flag is set when running, cleared when paused
|
||||
self._paused = asyncio.Event()
|
||||
self._paused.set()
|
||||
|
||||
async def setup(self):
|
||||
self.logger.info("Starting FacePerceptionAgent")
|
||||
|
||||
if self._socket is None:
|
||||
self._connect_socket()
|
||||
|
||||
self.add_behavior(self._poll_loop())
|
||||
self.logger.info("Finished setting up %s", self.name)
|
||||
|
||||
def _connect_socket(self):
|
||||
if self._socket is not None:
|
||||
self.logger.warning("ZMQ socket already initialized. Did you call setup() twice?")
|
||||
return
|
||||
|
||||
self._socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
self._socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
if self._zmq_bind:
|
||||
self._socket.bind(self._zmq_address)
|
||||
else:
|
||||
self._socket.connect(self._zmq_address)
|
||||
|
||||
async def _poll_loop(self):
|
||||
if self._socket is None:
|
||||
self.logger.warning("Connection not initialized before poll loop. Call setup() first.")
|
||||
return
|
||||
|
||||
while self._running:
|
||||
try:
|
||||
await self._paused.wait()
|
||||
response = await asyncio.wait_for(
|
||||
self._socket.recv_json(), timeout=settings.behaviour_settings.sleep_s
|
||||
)
|
||||
|
||||
face_present = response.get("face_detected", False)
|
||||
|
||||
if self._last_face_state is None:
|
||||
self._last_face_state = face_present
|
||||
continue
|
||||
|
||||
if face_present != self._last_face_state:
|
||||
self._last_face_state = face_present
|
||||
self.logger.debug("Face detected" if face_present else "Face lost")
|
||||
await self._update_face_belief(face_present)
|
||||
except TimeoutError:
|
||||
pass
|
||||
except Exception as e:
|
||||
self.logger.error("Face polling failed", exc_info=e)
|
||||
|
||||
async def _post_face_belief(self, present: bool):
|
||||
"""
|
||||
Send a face_present belief update to the BDI Core Agent.
|
||||
"""
|
||||
if present:
|
||||
belief_msg = BeliefMessage(create=[{"name": "face_present", "arguments": []}])
|
||||
else:
|
||||
belief_msg = BeliefMessage(delete=[{"name": "face_present", "arguments": []}])
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
thread="beliefs",
|
||||
body=belief_msg.model_dump_json(),
|
||||
)
|
||||
|
||||
await self.send(msg)
|
||||
|
||||
async def _update_face_belief(self, present: bool):
|
||||
"""
|
||||
Add or remove the `face_present` belief in the BDI Core Agent.
|
||||
"""
|
||||
if present:
|
||||
payload = BeliefMessage(create=[Belief(name="face_present").model_dump()])
|
||||
else:
|
||||
payload = BeliefMessage(delete=[Belief(name="face_present").model_dump()])
|
||||
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
thread="beliefs",
|
||||
body=payload.model_dump_json(),
|
||||
)
|
||||
|
||||
await self.send(message)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming pause/resume commands from User Interrupt Agent.
|
||||
"""
|
||||
sender = msg.sender
|
||||
|
||||
if sender == settings.agent_settings.user_interrupt_name:
|
||||
if msg.body == "PAUSE":
|
||||
self.logger.info("Pausing Face Perception processing.")
|
||||
self._paused.clear()
|
||||
self._last_face_state = None
|
||||
elif msg.body == "RESUME":
|
||||
self.logger.info("Resuming Face Perception processing.")
|
||||
self._paused.set()
|
||||
else:
|
||||
self.logger.warning("Unknown command from User Interrupt Agent: %s", msg.body)
|
||||
else:
|
||||
self.logger.debug("Ignoring message from unknown sender: %s", sender)
|
||||
@@ -0,0 +1,207 @@
|
||||
import asyncio
|
||||
import json
|
||||
import time
|
||||
from collections import Counter, defaultdict
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
from pydantic_core import ValidationError
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.perception.visual_emotion_recognition_agent.visual_emotion_recognizer import ( # noqa
|
||||
DeepFaceEmotionRecognizer,
|
||||
)
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief
|
||||
|
||||
|
||||
class VisualEmotionRecognitionAgent(BaseAgent):
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
socket_address: str,
|
||||
bind: bool = False,
|
||||
timeout_ms: int = 1000,
|
||||
window_duration: int = settings.behaviour_settings.visual_emotion_recognition_window_duration_s, # noqa
|
||||
min_frames_required: int = settings.behaviour_settings.visual_emotion_recognition_min_frames_per_face, # noqa
|
||||
):
|
||||
"""
|
||||
Initialize the Visual Emotion Recognition Agent.
|
||||
|
||||
:param name: Name of the agent
|
||||
:param socket_address: Address of the socket to connect or bind to
|
||||
:param bind: Whether to bind to the socket address (True) or connect (False)
|
||||
:param timeout_ms: Timeout for socket receive operations in milliseconds
|
||||
:param window_duration: Duration in seconds over which to aggregate emotions
|
||||
:param min_frames_required: Minimum number of frames per face required to consider a face
|
||||
valid
|
||||
"""
|
||||
super().__init__(name)
|
||||
self.socket_address = socket_address
|
||||
self.socket_bind = bind
|
||||
self.timeout_ms = timeout_ms
|
||||
self.window_duration = window_duration
|
||||
self.min_frames_required = min_frames_required
|
||||
|
||||
# Pause functionality
|
||||
# NOTE: flag is set when running, cleared when paused
|
||||
self._paused = asyncio.Event()
|
||||
self._paused.set()
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent resources.
|
||||
1. Initializes the :class:`VisualEmotionRecognizer`.
|
||||
2. Connects to the video input ZMQ socket.
|
||||
3. Starts the background emotion recognition loop.
|
||||
"""
|
||||
self.logger.info("Setting up %s.", self.name)
|
||||
|
||||
self.emotion_recognizer = DeepFaceEmotionRecognizer()
|
||||
|
||||
self.video_in_socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
|
||||
if self.socket_bind:
|
||||
self.video_in_socket.bind(self.socket_address)
|
||||
else:
|
||||
self.video_in_socket.connect(self.socket_address)
|
||||
|
||||
self.video_in_socket.setsockopt_string(zmq.SUBSCRIBE, "")
|
||||
self.video_in_socket.setsockopt(zmq.RCVTIMEO, self.timeout_ms)
|
||||
self.video_in_socket.setsockopt(zmq.CONFLATE, 1)
|
||||
|
||||
self.add_behavior(self.emotion_update_loop())
|
||||
|
||||
self.logger.info("Finished setting up %s", self.name)
|
||||
|
||||
async def emotion_update_loop(self):
|
||||
"""
|
||||
Background loop to receive video frames, recognize emotions, and update beliefs.
|
||||
1. Receives video frames from the ZMQ socket.
|
||||
2. Uses the :class:`VisualEmotionRecognizer` to detect emotions.
|
||||
3. Aggregates emotions over a time window.
|
||||
4. Sends updates to the BDI Core Agent about detected emotions.
|
||||
"""
|
||||
# Next time to process the window and update emotions
|
||||
next_window_time = time.time() + self.window_duration
|
||||
|
||||
# Tracks counts of detected emotions per face index
|
||||
face_stats = defaultdict(Counter)
|
||||
|
||||
prev_dominant_emotions = set()
|
||||
|
||||
while self._running:
|
||||
try:
|
||||
await self._paused.wait()
|
||||
|
||||
frame_bytes = await self.video_in_socket.recv()
|
||||
|
||||
# Convert bytes to a numpy buffer
|
||||
nparr = np.frombuffer(frame_bytes, np.uint8)
|
||||
|
||||
# Decode image into the generic Numpy Array DeepFace expects
|
||||
frame_image = cv2.imdecode(nparr, cv2.IMREAD_COLOR)
|
||||
|
||||
if frame_image is None:
|
||||
# Could not decode image, skip this frame
|
||||
self.logger.warning("Received invalid video frame, skipping.")
|
||||
continue
|
||||
|
||||
# Get the dominant emotion from each face
|
||||
current_emotions = self.emotion_recognizer.sorted_dominant_emotions(frame_image)
|
||||
# Update emotion counts for each detected face
|
||||
for i, emotion in enumerate(current_emotions):
|
||||
face_stats[i][emotion] += 1
|
||||
|
||||
# If window duration has passed, process the collected stats
|
||||
if time.time() >= next_window_time:
|
||||
window_dominant_emotions = set()
|
||||
# Determine dominant emotion for each face in the window
|
||||
for _, counter in face_stats.items():
|
||||
total_detections = sum(counter.values())
|
||||
|
||||
if total_detections >= self.min_frames_required:
|
||||
dominant_emotion = counter.most_common(1)[0][0]
|
||||
window_dominant_emotions.add(dominant_emotion)
|
||||
|
||||
await self.update_emotions(prev_dominant_emotions, window_dominant_emotions)
|
||||
prev_dominant_emotions = window_dominant_emotions
|
||||
face_stats.clear()
|
||||
next_window_time = time.time() + self.window_duration
|
||||
|
||||
except zmq.Again:
|
||||
self.logger.warning("No video frame received within timeout.")
|
||||
|
||||
async def update_emotions(self, prev_emotions: set[str], emotions: set[str]):
|
||||
"""
|
||||
Compare emotions from previous window and current emotions,
|
||||
send updates to BDI Core Agent.
|
||||
"""
|
||||
emotions_to_remove = prev_emotions - emotions
|
||||
emotions_to_add = emotions - prev_emotions
|
||||
|
||||
if not emotions_to_add and not emotions_to_remove:
|
||||
return
|
||||
|
||||
emotion_beliefs_remove = []
|
||||
for emotion in emotions_to_remove:
|
||||
self.logger.info(f"Emotion '{emotion}' has disappeared.")
|
||||
try:
|
||||
emotion_beliefs_remove.append(
|
||||
Belief(name="emotion_detected", arguments=[emotion], remove=True)
|
||||
)
|
||||
except ValidationError:
|
||||
self.logger.warning("Invalid belief for emotion removal: %s", emotion)
|
||||
|
||||
emotion_beliefs_add = []
|
||||
for emotion in emotions_to_add:
|
||||
self.logger.info(f"New emotion detected: '{emotion}'")
|
||||
try:
|
||||
emotion_beliefs_add.append(Belief(name="emotion_detected", arguments=[emotion]))
|
||||
except ValidationError:
|
||||
self.logger.warning("Invalid belief for new emotion: %s", emotion)
|
||||
|
||||
beliefs_list_add = [b.model_dump() for b in emotion_beliefs_add]
|
||||
beliefs_list_remove = [b.model_dump() for b in emotion_beliefs_remove]
|
||||
payload = {"create": beliefs_list_add, "delete": beliefs_list_remove}
|
||||
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=json.dumps(payload),
|
||||
thread="beliefs",
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming messages.
|
||||
|
||||
Expects messages to pause or resume the Visual Emotion Recognition
|
||||
processing from User Interrupt Agent.
|
||||
|
||||
:param msg: The received internal message.
|
||||
"""
|
||||
sender = msg.sender
|
||||
|
||||
if sender == settings.agent_settings.user_interrupt_name:
|
||||
if msg.body == "PAUSE":
|
||||
self.logger.info("Pausing Visual Emotion Recognition processing.")
|
||||
self._paused.clear()
|
||||
elif msg.body == "RESUME":
|
||||
self.logger.info("Resuming Visual Emotion Recognition processing.")
|
||||
self._paused.set()
|
||||
else:
|
||||
self.logger.warning(f"Unknown command from User Interrupt Agent: {msg.body}")
|
||||
else:
|
||||
self.logger.debug(f"Ignoring message from unknown sender: {sender}")
|
||||
|
||||
async def stop(self):
|
||||
"""
|
||||
Clean up resources used by the agent.
|
||||
"""
|
||||
self.video_in_socket.close()
|
||||
await super().stop()
|
||||
@@ -0,0 +1,54 @@
|
||||
import abc
|
||||
|
||||
import numpy as np
|
||||
from deepface import DeepFace
|
||||
|
||||
|
||||
class VisualEmotionRecognizer(abc.ABC):
|
||||
@abc.abstractmethod
|
||||
def load_model(self):
|
||||
"""Load the visual emotion recognition model into memory."""
|
||||
pass
|
||||
|
||||
@abc.abstractmethod
|
||||
def sorted_dominant_emotions(self, image) -> list[str]:
|
||||
"""
|
||||
Recognize dominant emotions from faces in the given image.
|
||||
Emotions can be one of ['angry', 'disgust', 'fear', 'happy', 'sad', 'surprise', 'neutral'].
|
||||
To minimize false positives, consider filtering faces with low confidence.
|
||||
|
||||
:param image: The input image for emotion recognition.
|
||||
:return: List of dominant emotion detected for each face in the image,
|
||||
sorted per face.
|
||||
"""
|
||||
pass
|
||||
|
||||
|
||||
class DeepFaceEmotionRecognizer(VisualEmotionRecognizer):
|
||||
"""
|
||||
DeepFace-based implementation of VisualEmotionRecognizer.
|
||||
DeepFape has proven to be quite a pessimistic model, so expect sad, fear and neutral
|
||||
emotions to be over-represented.
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
self.load_model()
|
||||
|
||||
def load_model(self):
|
||||
print("Loading Deepface Emotion Model...")
|
||||
dummy_img = np.zeros((224, 224, 3), dtype=np.uint8)
|
||||
# analyze does not take a model as an argument, calling it once on a dummy image to load
|
||||
# the model
|
||||
DeepFace.analyze(dummy_img, actions=["emotion"], enforce_detection=False)
|
||||
print("Deepface Emotion Model loaded.")
|
||||
|
||||
def sorted_dominant_emotions(self, image) -> list[str]:
|
||||
analysis = DeepFace.analyze(image, actions=["emotion"], enforce_detection=False)
|
||||
|
||||
# Sort faces by x coordinate to maintain left-to-right order
|
||||
analysis.sort(key=lambda face: face["region"]["x"])
|
||||
|
||||
analysis = [face for face in analysis if face["face_confidence"] >= 0.90]
|
||||
|
||||
dominant_emotions = [face["dominant_emotion"] for face in analysis]
|
||||
return dominant_emotions
|
||||
@@ -18,7 +18,6 @@ from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
from control_backend.schemas.program import ConditionalNorm, Goal, Program
|
||||
from control_backend.schemas.ri_message import (
|
||||
GestureCommand,
|
||||
PauseCommand,
|
||||
RIEndpoint,
|
||||
SpeechCommand,
|
||||
)
|
||||
@@ -398,34 +397,35 @@ class UserInterruptAgent(BaseAgent):
|
||||
self.logger.debug("Sending experiment control '%s' to BDI Core.", thread)
|
||||
await self.send(out_msg)
|
||||
|
||||
async def _send_pause_command(self, pause):
|
||||
async def _send_pause_command(self, pause: str):
|
||||
"""
|
||||
Send a pause command to the Robot Interface via the RI Communication Agent.
|
||||
Send a pause command to the other internal agents; for now just VAD agent.
|
||||
Send a pause command to the other internal agents; for now just VAD and VED agent.
|
||||
"""
|
||||
cmd = PauseCommand(data=pause)
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.ri_communication_name,
|
||||
sender=self.name,
|
||||
body=cmd.model_dump_json(),
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
if pause == "true":
|
||||
# Send pause to VAD agent
|
||||
# Send pause to VAD and VED agent
|
||||
vad_message = InternalMessage(
|
||||
to=settings.agent_settings.vad_name,
|
||||
to=[
|
||||
settings.agent_settings.vad_name,
|
||||
settings.agent_settings.visual_emotion_recognition_name,
|
||||
settings.agent_settings.face_agent_name,
|
||||
],
|
||||
sender=self.name,
|
||||
body="PAUSE",
|
||||
)
|
||||
await self.send(vad_message)
|
||||
self.logger.info("Sent pause command to VAD Agent and RI Communication Agent.")
|
||||
# Voice Activity Detection and Visual Emotion Recognition agents
|
||||
self.logger.info("Sent pause command to perception agents.")
|
||||
else:
|
||||
# Send resume to VAD agent
|
||||
# Send resume to VAD and VED agents
|
||||
vad_message = InternalMessage(
|
||||
to=settings.agent_settings.vad_name,
|
||||
to=[
|
||||
settings.agent_settings.vad_name,
|
||||
settings.agent_settings.visual_emotion_recognition_name,
|
||||
settings.agent_settings.face_agent_name,
|
||||
],
|
||||
sender=self.name,
|
||||
body="RESUME",
|
||||
)
|
||||
await self.send(vad_message)
|
||||
self.logger.info("Sent resume command to VAD Agent and RI Communication Agent.")
|
||||
# Voice Activity Detection and Visual Emotion Recognition agents
|
||||
self.logger.info("Sent resume command to perception agents.")
|
||||
|
||||
@@ -12,7 +12,7 @@ api_router = APIRouter()
|
||||
|
||||
api_router.include_router(message.router, tags=["Messages"])
|
||||
|
||||
api_router.include_router(robot.router, prefix="/robot", tags=["Pings", "Commands"])
|
||||
api_router.include_router(robot.router, prefix="/robot", tags=["Pings", "Commands", "Face"])
|
||||
|
||||
api_router.include_router(logs.router, tags=["Logs"])
|
||||
|
||||
|
||||
@@ -54,6 +54,7 @@ class AgentSettings(BaseModel):
|
||||
# agent names
|
||||
bdi_core_name: str = "bdi_core_agent"
|
||||
bdi_program_manager_name: str = "bdi_program_manager_agent"
|
||||
visual_emotion_recognition_name: str = "visual_emotion_recognition_agent"
|
||||
text_belief_extractor_name: str = "text_belief_extractor_agent"
|
||||
vad_name: str = "vad_agent"
|
||||
llm_name: str = "llm_agent"
|
||||
@@ -63,6 +64,7 @@ class AgentSettings(BaseModel):
|
||||
robot_speech_name: str = "robot_speech_agent"
|
||||
robot_gesture_name: str = "robot_gesture_agent"
|
||||
user_interrupt_name: str = "user_interrupt_agent"
|
||||
face_agent_name: str = "face_detection_agent"
|
||||
|
||||
|
||||
class BehaviourSettings(BaseModel):
|
||||
@@ -83,6 +85,10 @@ class BehaviourSettings(BaseModel):
|
||||
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
|
||||
:ivar trigger_time_to_wait: Amount of milliseconds to wait before informing the UI about trigger
|
||||
completion.
|
||||
:ivar visual_emotion_recognition_window_duration_s: Duration in seconds over which to aggregate
|
||||
emotions and update emotion beliefs.
|
||||
:ivar visual_emotion_recognition_min_frames_per_face: Minimum number of frames per face required
|
||||
to consider a face valid.
|
||||
"""
|
||||
|
||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||
@@ -110,6 +116,10 @@ class BehaviourSettings(BaseModel):
|
||||
trigger_time_to_wait: int = 2000
|
||||
agentspeak_file: str = "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
|
||||
# Visual Emotion Recognition settings
|
||||
visual_emotion_recognition_window_duration_s: int = 5
|
||||
visual_emotion_recognition_min_frames_per_face: int = 3
|
||||
|
||||
|
||||
class LLMSettings(BaseModel):
|
||||
"""
|
||||
|
||||
@@ -41,8 +41,8 @@ class LogicalOperator(Enum):
|
||||
OR = "OR"
|
||||
|
||||
|
||||
type Belief = KeywordBelief | SemanticBelief | InferredBelief
|
||||
type BasicBelief = KeywordBelief | SemanticBelief
|
||||
type Belief = KeywordBelief | SemanticBelief | InferredBelief | EmotionBelief | FaceBelief
|
||||
type BasicBelief = KeywordBelief | SemanticBelief | EmotionBelief | FaceBelief
|
||||
|
||||
|
||||
class KeywordBelief(ProgramElement):
|
||||
@@ -106,6 +106,27 @@ class InferredBelief(ProgramElement):
|
||||
right: Belief
|
||||
|
||||
|
||||
class EmotionBelief(ProgramElement):
|
||||
"""
|
||||
Represents a belief that is set when a certain emotion is detected.
|
||||
|
||||
:ivar emotion: The emotion on which this belief gets set.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
emotion: str
|
||||
|
||||
|
||||
class FaceBelief(ProgramElement):
|
||||
"""
|
||||
Represents the belief that at least one face is currently detected.
|
||||
This belief is maintained by a perception agent (not inferred).
|
||||
"""
|
||||
|
||||
face_present: bool
|
||||
name: str = ""
|
||||
|
||||
|
||||
class Norm(ProgramElement):
|
||||
"""
|
||||
Base class for behavioral norms that guide the robot's interactions.
|
||||
@@ -315,3 +336,9 @@ class Program(BaseModel):
|
||||
"""
|
||||
|
||||
phases: list[Phase]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
input = input("Enter program JSON: ")
|
||||
program = Program.model_validate_json(input)
|
||||
print(program)
|
||||
|
||||
@@ -10,8 +10,6 @@ from unittest.mock import ANY, AsyncMock, MagicMock, patch
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.communication.ri_communication_agent import RICommunicationAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.schemas.ri_message import PauseCommand, RIEndpoint
|
||||
|
||||
|
||||
def speech_agent_path():
|
||||
@@ -402,38 +400,3 @@ async def test_negotiate_req_socket_none_causes_retry(zmq_context):
|
||||
result = await agent._negotiate_connection(max_retries=1)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_pause_command(zmq_context):
|
||||
"""Test handle_message with a valid PauseCommand."""
|
||||
agent = RICommunicationAgent("ri_comm")
|
||||
agent._req_socket = AsyncMock()
|
||||
agent.logger = MagicMock()
|
||||
|
||||
agent._req_socket.recv_json.return_value = {"status": "ok"}
|
||||
|
||||
pause_cmd = PauseCommand(data=True)
|
||||
msg = InternalMessage(to="ri_comm", sender="user_int", body=pause_cmd.model_dump_json())
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent._req_socket.send_json.assert_awaited_once()
|
||||
args = agent._req_socket.send_json.await_args[0][0]
|
||||
assert args["endpoint"] == RIEndpoint.PAUSE.value
|
||||
assert args["data"] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_invalid_pause_command(zmq_context):
|
||||
"""Test handle_message with invalid JSON."""
|
||||
agent = RICommunicationAgent("ri_comm")
|
||||
agent._req_socket = AsyncMock()
|
||||
agent.logger = MagicMock()
|
||||
|
||||
msg = InternalMessage(to="ri_comm", sender="user_int", body="invalid json")
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.logger.warning.assert_called_with("Incorrect message format for PauseCommand.")
|
||||
agent._req_socket.send_json.assert_not_called()
|
||||
|
||||
152
test/unit/agents/perception/test_face_detection_agent.py
Normal file
152
test/unit/agents/perception/test_face_detection_agent.py
Normal file
@@ -0,0 +1,152 @@
|
||||
from unittest.mock import AsyncMock, MagicMock
|
||||
|
||||
import pytest
|
||||
import zmq
|
||||
|
||||
import control_backend.agents.perception.face_rec_agent as face_module
|
||||
from control_backend.agents.perception.face_rec_agent import FacePerceptionAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
"""Return a FacePerceptionAgent instance for testing."""
|
||||
return FacePerceptionAgent(
|
||||
name="face_agent",
|
||||
zmq_address="inproc://test",
|
||||
zmq_bind=False,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def socket():
|
||||
"""Return a mocked ZMQ socket."""
|
||||
sock = AsyncMock()
|
||||
sock.setsockopt_string = MagicMock()
|
||||
sock.connect = MagicMock()
|
||||
sock.bind = MagicMock()
|
||||
return sock
|
||||
|
||||
|
||||
def test_connect_socket_connect(agent, socket, monkeypatch):
|
||||
"""Test that _connect_socket properly connects when zmq_bind=False."""
|
||||
ctx = MagicMock()
|
||||
ctx.socket.return_value = socket
|
||||
monkeypatch.setattr(face_module.azmq, "Context", MagicMock(instance=lambda: ctx))
|
||||
|
||||
agent._connect_socket()
|
||||
socket.setsockopt_string.assert_called_once_with(zmq.SUBSCRIBE, "")
|
||||
socket.connect.assert_called_once_with(agent._zmq_address)
|
||||
socket.bind.assert_not_called()
|
||||
|
||||
|
||||
def test_connect_socket_bind(agent, socket, monkeypatch):
|
||||
"""Test that _connect_socket properly binds when zmq_bind=True."""
|
||||
agent._zmq_bind = True
|
||||
ctx = MagicMock()
|
||||
ctx.socket.return_value = socket
|
||||
monkeypatch.setattr(face_module.azmq, "Context", MagicMock(instance=lambda: ctx))
|
||||
|
||||
agent._connect_socket()
|
||||
socket.bind.assert_called_once_with(agent._zmq_address)
|
||||
socket.connect.assert_not_called()
|
||||
|
||||
|
||||
def test_connect_socket_twice_is_noop(agent, socket):
|
||||
"""Test that calling _connect_socket twice does not overwrite an existing socket."""
|
||||
agent._socket = socket
|
||||
agent._connect_socket()
|
||||
assert agent._socket is socket
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_face_belief_present(agent):
|
||||
"""Test that _update_face_belief(True) creates the 'face_present' belief."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._update_face_belief(True)
|
||||
msg = agent.send.await_args.args[0]
|
||||
payload = BeliefMessage.model_validate_json(msg.body)
|
||||
assert payload.create[0].name == "face_present"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_update_face_belief_absent(agent):
|
||||
"""Test that _update_face_belief(False) deletes the 'face_present' belief."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._update_face_belief(False)
|
||||
msg = agent.send.await_args.args[0]
|
||||
payload = BeliefMessage.model_validate_json(msg.body)
|
||||
assert payload.delete[0].name == "face_present"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_post_face_belief_present(agent):
|
||||
"""Test that _post_face_belief(True) sends a belief creation message."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._post_face_belief(True)
|
||||
msg = agent.send.await_args.args[0]
|
||||
assert '"create"' in msg.body and '"face_present"' in msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_post_face_belief_absent(agent):
|
||||
"""Test that _post_face_belief(False) sends a belief deletion message."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._post_face_belief(False)
|
||||
msg = agent.send.await_args.args[0]
|
||||
assert '"delete"' in msg.body and '"face_present"' in msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_pause(agent):
|
||||
"""Test that a 'PAUSE' message clears _paused and resets _last_face_state."""
|
||||
agent._paused.set()
|
||||
agent._last_face_state = True
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender=face_module.settings.agent_settings.user_interrupt_name,
|
||||
thread="cmd",
|
||||
body="PAUSE",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
assert not agent._paused.is_set()
|
||||
assert agent._last_face_state is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_resume(agent):
|
||||
"""Test that a 'RESUME' message sets _paused."""
|
||||
agent._paused.clear()
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender=face_module.settings.agent_settings.user_interrupt_name,
|
||||
thread="cmd",
|
||||
body="RESUME",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
assert agent._paused.is_set()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_unknown_command(agent):
|
||||
"""Test that an unknown command from UserInterruptAgent is ignored (logs a warning)."""
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender=face_module.settings.agent_settings.user_interrupt_name,
|
||||
thread="cmd",
|
||||
body="???",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_unknown_sender(agent):
|
||||
"""Test that messages from unknown senders are ignored."""
|
||||
msg = InternalMessage(
|
||||
to=agent.name,
|
||||
sender="someone_else",
|
||||
thread="cmd",
|
||||
body="PAUSE",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
@@ -303,29 +303,6 @@ async def test_send_experiment_control(agent):
|
||||
assert msg.thread == "reset_experiment"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_pause_command(agent):
|
||||
await agent._send_pause_command("true")
|
||||
# Sends to RI and VAD
|
||||
assert agent.send.await_count == 2
|
||||
msgs = [call.args[0] for call in agent.send.call_args_list]
|
||||
|
||||
ri_msg = next(m for m in msgs if m.to == settings.agent_settings.ri_communication_name)
|
||||
assert json.loads(ri_msg.body)["endpoint"] == "" # PAUSE endpoint
|
||||
assert json.loads(ri_msg.body)["data"] is True
|
||||
|
||||
vad_msg = next(m for m in msgs if m.to == settings.agent_settings.vad_name)
|
||||
assert vad_msg.body == "PAUSE"
|
||||
|
||||
agent.send.reset_mock()
|
||||
await agent._send_pause_command("false")
|
||||
assert agent.send.await_count == 2
|
||||
vad_msg = next(
|
||||
m for m in agent.send.call_args_list if m.args[0].to == settings.agent_settings.vad_name
|
||||
).args[0]
|
||||
assert vad_msg.body == "RESUME"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup(agent):
|
||||
"""Test the setup method initializes sockets correctly."""
|
||||
|
||||
Reference in New Issue
Block a user