Compare commits

...

24 Commits

Author SHA1 Message Date
Twirre Meulenbelt
4b71981a3e fix: some bugs and some tests
ref: N25B-429
2026-01-12 09:00:50 +01:00
866d7c4958 fix: end phase loop correctly notifies about user_said
ref: N25B-429
2026-01-08 15:13:12 +01:00
133019a928 feat: trigger name and trigger checks on belief update
ref: N25B-429
2026-01-08 14:04:44 +01:00
4d0ba69443 fix: don't re-add user_said upon phase transition
ref: N25B-429
2026-01-08 13:44:25 +01:00
625ef0c365 feat: phase transition waits for all goals
ref: N25B-429
2026-01-08 13:36:03 +01:00
b88758fa76 feat: phase transition independent of response
ref: N25B-429
2026-01-08 13:33:37 +01:00
Twirre Meulenbelt
45719c580b feat: prepend more silence before speech audio for better transcription beginnings
ref: N25B-429
2026-01-08 10:49:13 +01:00
5a61225c6f feat: reset extractor history
ref: N25B-429
2026-01-07 18:10:13 +01:00
a30cea5231 Merge branch 'feat/semantic-beliefs' into feat/extra-agentspeak-functionality 2026-01-07 17:51:30 +01:00
Twirre Meulenbelt
93d67ccb66 feat: add reset functionality to semantic belief extractor
ref: N25B-432
2026-01-07 17:50:47 +01:00
240624f887 Merge branch 'dev' into feat/extra-agentspeak-functionality
# Conflicts:
#	src/control_backend/agents/bdi/bdi_program_manager.py
#	src/control_backend/agents/llm/llm_agent.py
#	test/unit/agents/bdi/test_bdi_program_manager.py
2026-01-07 17:46:48 +01:00
8a77e8e1c7 feat: check goals only for this phase
Since conversation history still remains we can still check at a later point.

ref: N25B-429
2026-01-07 17:31:24 +01:00
3b4dccc760 Merge branch 'feat/semantic-beliefs' into feat/extra-agentspeak-functionality
# Conflicts:
#	src/control_backend/agents/bdi/bdi_program_manager.py
2026-01-07 17:20:52 +01:00
3d49e44cf7 fix: complete pipeline working
User interrupts still need to be tested.

ref: N25B-429
2026-01-07 17:13:58 +01:00
Twirre Meulenbelt
aa5b386f65 feat: semantically determine goal completion
ref: N25B-432
2026-01-07 17:08:23 +01:00
Twirre Meulenbelt
3189b9fee3 fix: let belief extractor send user_said belief
ref: N25B-429
2026-01-07 15:19:23 +01:00
Björn Otgaar
612a96940d Merge branch 'feat/environment-variables' into 'dev'
Docs for environment variables, parameterize some constants

See merge request ics/sp/2025/n25b/pepperplus-cb!38
2026-01-06 09:02:49 +00:00
Pim Hutting
4c20656c75 Merge branch 'feat/program-reset-llm' into 'dev'
feat: made program reset LLM

See merge request ics/sp/2025/n25b/pepperplus-cb!39
2026-01-02 15:13:05 +00:00
Pim Hutting
6ca86e4b81 feat: made program reset LLM 2026-01-02 15:13:04 +00:00
Twirre Meulenbelt
7d798f2e77 Merge remote-tracking branch 'origin/dev' into feat/environment-variables
# Conflicts:
#	src/control_backend/core/config.py
#	test/unit/agents/actuation/test_robot_speech_agent.py
2025-12-29 12:40:16 +01:00
Twirre Meulenbelt
5282c2471f Merge remote-tracking branch 'origin/dev' into feat/environment-variables
# Conflicts:
#	src/control_backend/core/config.py
#	test/unit/agents/actuation/test_robot_speech_agent.py
2025-12-29 12:35:39 +01:00
Twirre Meulenbelt
0c682d6440 feat: introduce .env.example, docs
The example includes options that are expected to be changed. It also includes a reference to where in the docs you can find a full list of options.

ref: N25B-352
2025-12-11 13:35:19 +01:00
Twirre Meulenbelt
32d8f20dc9 feat: parameterize RI host
Was "localhost" in RI Communication Agent, now uses configurable setting. Secretly also removing "localhost" from VAD agent, as its socket should be something that's "inproc".

ref: N25B-352
2025-12-11 12:12:15 +01:00
Twirre Meulenbelt
9cc0e39955 fix: failures main tests since VAD agent initialization was changed
The test still expects the VAD agent to be started in main, rather than in the RI Communication Agent.

ref: N25B-356
2025-12-11 12:04:24 +01:00
24 changed files with 973 additions and 354 deletions

20
.env.example Normal file
View File

@@ -0,0 +1,20 @@
# Example .env file. To use, make a copy, call it ".env" (i.e. removing the ".example" suffix), then you edit values.
# The hostname of the Robot Interface. Change if the Control Backend and Robot Interface are running on different computers.
RI_HOST="localhost"
# URL for the local LLM API. Must be an API that implements the OpenAI Chat Completions API, but most do.
LLM_SETTINGS__LOCAL_LLM_URL="http://localhost:1234/v1/chat/completions"
# Name of the local LLM model to use.
LLM_SETTINGS__LOCAL_LLM_MODEL="gpt-oss"
# Number of non-speech chunks to wait before speech ended. A chunk is approximately 31 ms. Increasing this number allows longer pauses in speech, but also increases response time.
BEHAVIOUR_SETTINGS__VAD_NON_SPEECH_PATIENCE_CHUNKS=15
# Timeout in milliseconds for socket polling. Increase this number if network latency/jitter is high, often the case when using Wi-Fi. Perhaps 500 ms. A symptom of this issue is transcriptions getting cut off.
BEHAVIOUR_SETTINGS__SOCKET_POLLER_TIMEOUT_MS=100
# For an exhaustive list of options, see the control_backend.core.config module in the docs.

View File

@@ -27,6 +27,7 @@ This + part might differ based on what model you choose.
copy the model name in the module loaded and replace local_llm_modelL. In settings.
## Running
To run the project (development server), execute the following command (while inside the root repository):
@@ -34,6 +35,14 @@ To run the project (development server), execute the following command (while in
uv run fastapi dev src/control_backend/main.py
```
### Environment Variables
You can use environment variables to change settings. Make a copy of the [`.env.example`](.env.example) file, name it `.env` and put it in the root directory. The file itself describes how to do the configuration.
For an exhaustive list of environment options, see the `control_backend.core.config` module in the docs.
## Testing
Testing happens automatically when opening a merge request to any branch. If you want to manually run the test suite, you can do so by running the following for unit tests:

View File

@@ -33,7 +33,7 @@ class RobotGestureAgent(BaseAgent):
def __init__(
self,
name: str,
address=settings.zmq_settings.ri_command_address,
address: str,
bind=False,
gesture_data=None,
single_gesture_data=None,

View File

@@ -145,7 +145,10 @@ class AgentSpeakGenerator:
type=TriggerType.ADDED_BELIEF,
trigger_literal=AstLiteral("user_said", [AstVar("Message")]),
context=[AstLiteral("phase", [AstString("end")])],
body=[AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("reply"))],
body=[
AstStatement(StatementType.DO_ACTION, AstLiteral("notify_user_said")),
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("reply")),
],
)
)
@@ -157,7 +160,7 @@ class AgentSpeakGenerator:
previous_goal = None
for goal in phase.goals:
self._process_goal(goal, phase, previous_goal)
self._process_goal(goal, phase, previous_goal, main_goal=True)
previous_goal = goal
for trigger in phase.triggers:
@@ -171,26 +174,41 @@ class AgentSpeakGenerator:
self._astify(to_phase) if to_phase else AstLiteral("phase", [AstString("end")])
)
context = [from_phase_ast, ~AstLiteral("responded_this_turn")]
if from_phase and from_phase.goals:
context.append(self._astify(from_phase.goals[-1], achieved=True))
context = [from_phase_ast]
if from_phase:
for goal in from_phase.goals:
context.append(self._astify(goal, achieved=True))
body = [
AstStatement(StatementType.REMOVE_BELIEF, from_phase_ast),
AstStatement(StatementType.ADD_BELIEF, to_phase_ast),
]
if from_phase:
body.extend(
[
AstStatement(
StatementType.TEST_GOAL, AstLiteral("user_said", [AstVar("Message")])
),
AstStatement(
StatementType.REPLACE_BELIEF, AstLiteral("user_said", [AstVar("Message")])
),
]
# if from_phase:
# body.extend(
# [
# AstStatement(
# StatementType.TEST_GOAL, AstLiteral("user_said", [AstVar("Message")])
# ),
# AstStatement(
# StatementType.REPLACE_BELIEF, AstLiteral("user_said", [AstVar("Message")])
# ),
# ]
# )
# Notify outside world about transition
body.append(
AstStatement(
StatementType.DO_ACTION,
AstLiteral(
"notify_transition_phase",
[
AstString(str(from_phase.id)),
AstString(str(to_phase.id) if to_phase else "end"),
],
),
)
)
self._asp.plans.append(
AstPlan(TriggerType.ADDED_GOAL, AstLiteral("transition_phase"), context, body)
@@ -213,6 +231,11 @@ class AgentSpeakGenerator:
def _add_default_loop(self, phase: Phase) -> None:
actions = []
actions.append(
AstStatement(
StatementType.DO_ACTION, AstLiteral("notify_user_said", [AstVar("Message")])
)
)
actions.append(AstStatement(StatementType.REMOVE_BELIEF, AstLiteral("responded_this_turn")))
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("check_triggers")))
@@ -236,6 +259,7 @@ class AgentSpeakGenerator:
phase: Phase,
previous_goal: Goal | None = None,
continues_response: bool = False,
main_goal: bool = False,
) -> None:
context: list[AstExpression] = [self._astify(phase)]
context.append(~self._astify(goal, achieved=True))
@@ -245,6 +269,13 @@ class AgentSpeakGenerator:
context.append(~AstLiteral("responded_this_turn"))
body = []
if main_goal: # UI only needs to know about the main goals
body.append(
AstStatement(
StatementType.DO_ACTION,
AstLiteral("notify_goal_start", [AstString(self.slugify(goal))]),
)
)
subgoals = []
for step in goal.plan.steps:
@@ -283,11 +314,23 @@ class AgentSpeakGenerator:
body = []
subgoals = []
body.append(
AstStatement(
StatementType.DO_ACTION,
AstLiteral("notify_trigger_start", [AstString(self.slugify(trigger))]),
)
)
for step in trigger.plan.steps:
body.append(self._step_to_statement(step))
if isinstance(step, Goal):
step.can_fail = False # triggers are continuous sequence
subgoals.append(step)
body.append(
AstStatement(
StatementType.DO_ACTION,
AstLiteral("notify_trigger_end", [AstString(self.slugify(trigger))]),
)
)
self._asp.plans.append(
AstPlan(
@@ -298,6 +341,9 @@ class AgentSpeakGenerator:
)
)
# Force trigger (from UI)
self._asp.plans.append(AstPlan(TriggerType.ADDED_GOAL, self._astify(trigger), [], body))
for subgoal in subgoals:
self._process_goal(subgoal, phase, continues_response=True)
@@ -332,13 +378,7 @@ class AgentSpeakGenerator:
@_astify.register
def _(self, sb: SemanticBelief) -> AstExpression:
return AstLiteral(self.get_semantic_belief_slug(sb))
@staticmethod
def get_semantic_belief_slug(sb: SemanticBelief) -> str:
# If you need a method like this for other types, make a public slugify singledispatch for
# all types.
return f"semantic_{AgentSpeakGenerator._slugify_str(sb.name)}"
return AstLiteral(self.slugify(sb))
@_astify.register
def _(self, ib: InferredBelief) -> AstExpression:

View File

@@ -1,5 +1,6 @@
import asyncio
import copy
import json
import time
from collections.abc import Iterable
@@ -13,7 +14,7 @@ from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.belief_message import BeliefMessage
from control_backend.schemas.llm_prompt_message import LLMPromptMessage
from control_backend.schemas.ri_message import SpeechCommand
from control_backend.schemas.ri_message import GestureCommand, RIEndpoint, SpeechCommand
DELIMITER = ";\n" # TODO: temporary until we support lists in AgentSpeak
@@ -100,7 +101,6 @@ class BDICoreAgent(BaseAgent):
maybe_more_work = True
while maybe_more_work:
maybe_more_work = False
self.logger.debug("Stepping BDI.")
if self.bdi_agent.step():
maybe_more_work = True
@@ -155,6 +155,17 @@ class BDICoreAgent(BaseAgent):
body=cmd.model_dump_json(),
)
await self.send(out_msg)
case settings.agent_settings.user_interrupt_name:
content = msg.body
self.logger.debug("Received user interruption: %s", content)
match msg.thread:
case "force_phase_transition":
self._set_goal("transition_phase")
case "force_trigger":
self._force_trigger(msg.body)
case _:
self.logger.warning("Received unknow user interruption: %s", msg)
def _apply_belief_changes(self, belief_changes: BeliefMessage):
"""
@@ -201,16 +212,35 @@ class BDICoreAgent(BaseAgent):
agentspeak.runtime.Intention(),
)
# Check for transitions
self.bdi_agent.call(
agentspeak.Trigger.addition,
agentspeak.GoalType.achievement,
agentspeak.Literal("transition_phase"),
agentspeak.runtime.Intention(),
)
# Check triggers
self.bdi_agent.call(
agentspeak.Trigger.addition,
agentspeak.GoalType.achievement,
agentspeak.Literal("check_triggers"),
agentspeak.runtime.Intention(),
)
self._wake_bdi_loop.set()
self.logger.debug(f"Added belief {self.format_belief_string(name, args)}")
def _remove_belief(self, name: str, args: Iterable[str]):
def _remove_belief(self, name: str, args: Iterable[str] | None):
"""
Removes a specific belief (with arguments), if it exists.
"""
new_args = (agentspeak.Literal(arg) for arg in args)
term = agentspeak.Literal(name, new_args)
if args is None:
term = agentspeak.Literal(name)
else:
new_args = (agentspeak.Literal(arg) for arg in args)
term = agentspeak.Literal(name, new_args)
result = self.bdi_agent.call(
agentspeak.Trigger.removal,
@@ -250,6 +280,37 @@ class BDICoreAgent(BaseAgent):
self.logger.debug(f"Removed {removed_count} beliefs.")
def _set_goal(self, name: str, args: Iterable[str] | None = None):
args = args or []
if args:
merged_args = DELIMITER.join(arg for arg in args)
new_args = (agentspeak.Literal(merged_args),)
term = agentspeak.Literal(name, new_args)
else:
term = agentspeak.Literal(name)
self.bdi_agent.call(
agentspeak.Trigger.addition,
agentspeak.GoalType.achievement,
term,
agentspeak.runtime.Intention(),
)
self._wake_bdi_loop.set()
self.logger.debug(f"Set goal !{self.format_belief_string(name, args)}.")
def _force_trigger(self, name: str):
self.bdi_agent.call(
agentspeak.Trigger.addition,
agentspeak.GoalType.achievement,
agentspeak.Literal(name),
agentspeak.runtime.Intention(),
)
self.logger.info("Manually forced trigger %s.", name)
def _add_custom_actions(self) -> None:
"""
Add any custom actions here. Inside `@self.actions.add()`, the first argument is
@@ -258,7 +319,7 @@ class BDICoreAgent(BaseAgent):
"""
@self.actions.add(".reply", 2)
def _reply(agent: "BDICoreAgent", term, intention):
def _reply(agent, term, intention):
"""
Let the LLM generate a response to a user's utterance with the current norms and goals.
"""
@@ -291,7 +352,7 @@ class BDICoreAgent(BaseAgent):
yield
@self.actions.add(".say", 1)
def _say(agent: "BDICoreAgent", term, intention):
def _say(agent, term, intention):
"""
Make the robot say the given text instantly.
"""
@@ -305,12 +366,21 @@ class BDICoreAgent(BaseAgent):
sender=settings.agent_settings.bdi_core_name,
body=speech_command.model_dump_json(),
)
# TODO: add to conversation history
self.add_behavior(self.send(speech_message))
chat_history_message = InternalMessage(
to=settings.agent_settings.llm_name,
thread="assistant_message",
body=str(message_text),
)
self.add_behavior(self.send(chat_history_message))
yield
@self.actions.add(".gesture", 2)
def _gesture(agent: "BDICoreAgent", term, intention):
def _gesture(agent, term, intention):
"""
Make the robot perform the given gesture instantly.
"""
@@ -323,13 +393,113 @@ class BDICoreAgent(BaseAgent):
gesture_name,
)
# gesture = Gesture(type=gesture_type, name=gesture_name)
# gesture_message = InternalMessage(
# to=settings.agent_settings.robot_gesture_name,
# sender=settings.agent_settings.bdi_core_name,
# body=gesture.model_dump_json(),
# )
# asyncio.create_task(agent.send(gesture_message))
if str(gesture_type) == "single":
endpoint = RIEndpoint.GESTURE_SINGLE
elif str(gesture_type) == "tag":
endpoint = RIEndpoint.GESTURE_TAG
else:
self.logger.warning("Gesture type %s could not be resolved.", gesture_type)
endpoint = RIEndpoint.GESTURE_SINGLE
gesture_command = GestureCommand(endpoint=endpoint, data=gesture_name)
gesture_message = InternalMessage(
to=settings.agent_settings.robot_gesture_name,
sender=settings.agent_settings.bdi_core_name,
body=gesture_command.model_dump_json(),
)
self.add_behavior(self.send(gesture_message))
yield
@self.actions.add(".notify_user_said", 1)
def _notify_user_said(agent, term, intention):
user_said = agentspeak.grounded(term.args[0], intention.scope)
msg = InternalMessage(
to=settings.agent_settings.llm_name, thread="user_message", body=str(user_said)
)
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_trigger_start", 1)
def _notify_trigger_start(agent, term, intention):
"""
Notify the UI about the trigger we just started doing.
"""
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
self.logger.debug("Started trigger %s", trigger_name)
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
sender=self.name,
thread="trigger_start",
body=str(trigger_name),
)
# TODO: check with Pim
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_trigger_end", 1)
def _notify_trigger_end(agent, term, intention):
"""
Notify the UI about the trigger we just started doing.
"""
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
self.logger.debug("Finished trigger %s", trigger_name)
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
sender=self.name,
thread="trigger_end",
body=str(trigger_name),
)
# TODO: check with Pim
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_goal_start", 1)
def _notify_goal_start(agent, term, intention):
"""
Notify the UI about the goal we just started chasing.
"""
goal_name = agentspeak.grounded(term.args[0], intention.scope)
self.logger.debug("Started chasing goal %s", goal_name)
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
sender=self.name,
thread="goal_start",
body=str(goal_name),
)
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_transition_phase", 2)
def _notify_transition_phase(agent, term, intention):
"""
Notify the BDI program manager about a phase transition.
"""
old = agentspeak.grounded(term.args[0], intention.scope)
new = agentspeak.grounded(term.args[1], intention.scope)
msg = InternalMessage(
to=settings.agent_settings.bdi_program_manager_name,
thread="transition_phase",
body=json.dumps({"old": str(old), "new": str(new)}),
)
self.add_behavior(self.send(msg))
yield
async def _send_to_llm(self, text: str, norms: str, goals: str):
@@ -341,13 +511,14 @@ class BDICoreAgent(BaseAgent):
to=settings.agent_settings.llm_name,
sender=self.name,
body=prompt.model_dump_json(),
thread="prompt_message",
)
await self.send(msg)
self.logger.info("Message sent to LLM agent: %s", text)
@staticmethod
def format_belief_string(name: str, args: Iterable[str] = []):
def format_belief_string(name: str, args: Iterable[str] | None = []):
"""
Given a belief's name and its args, return a string of the form "name(*args)"
"""
return f"{name}{'(' if args else ''}{','.join(args)}{')' if args else ''}"
return f"{name}{'(' if args else ''}{','.join(args or [])}{')' if args else ''}"

View File

@@ -1,4 +1,5 @@
import asyncio
import json
import zmq
from pydantic import ValidationError
@@ -7,9 +8,16 @@ from zmq.asyncio import Context
from control_backend.agents import BaseAgent
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
from control_backend.core.config import settings
from control_backend.schemas.belief_list import BeliefList
from control_backend.schemas.belief_list import BeliefList, GoalList
from control_backend.schemas.internal_message import InternalMessage
from control_backend.schemas.program import Belief, ConditionalNorm, InferredBelief, Program
from control_backend.schemas.program import (
Belief,
ConditionalNorm,
Goal,
InferredBelief,
Phase,
Program,
)
class BDIProgramManager(BaseAgent):
@@ -24,20 +32,20 @@ class BDIProgramManager(BaseAgent):
:ivar sub_socket: The ZMQ SUB socket used to receive program updates.
"""
_program: Program
_phase: Phase | None
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.sub_socket = None
def _initialize_internal_state(self, program: Program):
self._program = program
self._phase = program.phases[0] # start in first phase
async def _create_agentspeak_and_send_to_bdi(self, program: Program):
"""
Convert a received program into BDI beliefs and send them to the BDI Core Agent.
Currently, it takes the **first phase** of the program and extracts:
- **Norms**: Constraints or rules the agent must follow.
- **Goals**: Objectives the agent must achieve.
These are sent as a ``BeliefMessage`` with ``replace=True``, meaning they will
overwrite any existing norms/goals of the same name in the BDI agent.
Convert a received program into an AgentSpeak file and send it to the BDI Core Agent.
:param program: The program object received from the API.
"""
@@ -59,17 +67,45 @@ class BDIProgramManager(BaseAgent):
await self.send(msg)
@staticmethod
def _extract_beliefs_from_program(program: Program) -> list[Belief]:
async def handle_message(self, msg: InternalMessage):
match msg.thread:
case "transition_phase":
phases = json.loads(msg.body)
await self._transition_phase(phases["old"], phases["new"])
async def _transition_phase(self, old: str, new: str):
assert old == str(self._phase.id)
if new == "end":
self._phase = None
return
for phase in self._program.phases:
if str(phase.id) == new:
self._phase = phase
await self._send_beliefs_to_semantic_belief_extractor()
await self._send_goals_to_semantic_belief_extractor()
# Notify user interaction agent
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
thread="transition_phase",
body=str(self._phase.id),
)
self.add_behavior(self.send(msg))
def _extract_current_beliefs(self) -> list[Belief]:
beliefs: list[Belief] = []
for phase in program.phases:
for norm in phase.norms:
if isinstance(norm, ConditionalNorm):
beliefs += BDIProgramManager._extract_beliefs_from_belief(norm.condition)
for norm in self._phase.norms:
if isinstance(norm, ConditionalNorm):
beliefs += self._extract_beliefs_from_belief(norm.condition)
for trigger in phase.triggers:
beliefs += BDIProgramManager._extract_beliefs_from_belief(trigger.condition)
for trigger in self._phase.triggers:
beliefs += self._extract_beliefs_from_belief(trigger.condition)
return beliefs
@@ -81,13 +117,11 @@ class BDIProgramManager(BaseAgent):
) + BDIProgramManager._extract_beliefs_from_belief(belief.right)
return [belief]
async def _send_beliefs_to_semantic_belief_extractor(self, program: Program):
async def _send_beliefs_to_semantic_belief_extractor(self):
"""
Extract beliefs from the program and send them to the Semantic Belief Extractor Agent.
:param program: The program received from the API.
"""
beliefs = BeliefList(beliefs=self._extract_beliefs_from_program(program))
beliefs = BeliefList(beliefs=self._extract_current_beliefs())
message = InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
@@ -98,12 +132,69 @@ class BDIProgramManager(BaseAgent):
await self.send(message)
def _extract_current_goals(self) -> list[Goal]:
"""
Extract all goals from the program, including subgoals.
:return: A list of Goal objects.
"""
goals: list[Goal] = []
def extract_goals_from_goal(goal_: Goal) -> list[Goal]:
goals_: list[Goal] = [goal]
for plan in goal_.plan:
if isinstance(plan, Goal):
goals_.extend(extract_goals_from_goal(plan))
return goals_
for goal in self._phase.goals:
goals.extend(extract_goals_from_goal(goal))
return goals
async def _send_goals_to_semantic_belief_extractor(self):
"""
Extract goals for the current phase and send them to the Semantic Belief Extractor Agent.
"""
goals = GoalList(goals=self._extract_current_goals())
message = InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
sender=self.name,
body=goals.model_dump_json(),
thread="goals",
)
await self.send(message)
async def _send_clear_llm_history(self):
"""
Clear the LLM Agent's conversation history.
Sends an empty history to the LLM Agent to reset its state.
"""
message = InternalMessage(
to=settings.agent_settings.llm_name,
body="clear_history",
)
await self.send(message)
self.logger.debug("Sent message to LLM agent to clear history.")
extractor_msg = InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
thread="conversation_history",
body="reset",
)
await self.send(extractor_msg)
self.logger.debug("Sent message to extractor agent to clear history.")
async def _receive_programs(self):
"""
Continuous loop that receives program updates from the HTTP endpoint.
It listens to the ``program`` topic on the internal ZMQ SUB socket.
When a program is received, it is validated and forwarded to BDI via :meth:`_send_to_bdi`.
Additionally, the LLM history is cleared via :meth:`_send_clear_llm_history`.
"""
while True:
topic, body = await self.sub_socket.recv_multipart()
@@ -111,12 +202,17 @@ class BDIProgramManager(BaseAgent):
try:
program = Program.model_validate_json(body)
except ValidationError:
self.logger.exception("Received an invalid program.")
self.logger.warning("Received an invalid program.")
continue
self._initialize_internal_state(program)
await self._send_clear_llm_history()
await asyncio.gather(
self._create_agentspeak_and_send_to_bdi(program),
self._send_beliefs_to_semantic_belief_extractor(program),
self._send_beliefs_to_semantic_belief_extractor(),
self._send_goals_to_semantic_belief_extractor(),
)
async def setup(self):

View File

@@ -101,7 +101,7 @@ class BDIBeliefCollectorAgent(BaseAgent):
:return: A Belief object if the input is valid or None.
"""
try:
return Belief(name=name, arguments=arguments, replace=name == "user_said")
return Belief(name=name, arguments=arguments)
except ValidationError:
return None

View File

@@ -1,5 +1,6 @@
norms("").
+user_said(Message) : norms(Norms) <-
.notify_user_said(Message);
-user_said(Message);
.reply(Message, Norms).

View File

@@ -2,17 +2,45 @@ import asyncio
import json
import httpx
from pydantic import ValidationError
from pydantic import BaseModel, ValidationError
from control_backend.agents.base import BaseAgent
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.belief_list import BeliefList
from control_backend.schemas.belief_list import BeliefList, GoalList
from control_backend.schemas.belief_message import Belief as InternalBelief
from control_backend.schemas.belief_message import BeliefMessage
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
from control_backend.schemas.program import SemanticBelief
from control_backend.schemas.program import Goal, SemanticBelief
type JSONLike = None | bool | int | float | str | list["JSONLike"] | dict[str, "JSONLike"]
class BeliefState(BaseModel):
true: set[InternalBelief] = set()
false: set[InternalBelief] = set()
def difference(self, other: "BeliefState") -> "BeliefState":
return BeliefState(
true=self.true - other.true,
false=self.false - other.false,
)
def union(self, other: "BeliefState") -> "BeliefState":
return BeliefState(
true=self.true | other.true,
false=self.false | other.false,
)
def __sub__(self, other):
return self.difference(other)
def __or__(self, other):
return self.union(other)
def __bool__(self):
return bool(self.true) or bool(self.false)
class TextBeliefExtractorAgent(BaseAgent):
@@ -27,12 +55,14 @@ class TextBeliefExtractorAgent(BaseAgent):
the message itself.
"""
def __init__(self, name: str, temperature: float = settings.llm_settings.code_temperature):
def __init__(self, name: str):
super().__init__(name)
self.beliefs: dict[str, bool] = {}
self.available_beliefs: list[SemanticBelief] = []
self._llm = self.LLM(self, settings.llm_settings.n_parallel)
self.belief_inferrer = SemanticBeliefInferrer(self._llm)
self.goal_inferrer = GoalAchievementInferrer(self._llm)
self._current_beliefs = BeliefState()
self._current_goal_completions: dict[str, bool] = {}
self.conversation = ChatHistory(messages=[])
self.temperature = temperature
async def setup(self):
"""
@@ -53,13 +83,14 @@ class TextBeliefExtractorAgent(BaseAgent):
case settings.agent_settings.transcription_name:
self.logger.debug("Received text from transcriber: %s", msg.body)
self._apply_conversation_message(ChatMessage(role="user", content=msg.body))
await self._infer_new_beliefs()
await self._user_said(msg.body)
await self._infer_new_beliefs()
await self._infer_goal_completions()
case settings.agent_settings.llm_name:
self.logger.debug("Received text from LLM: %s", msg.body)
self._apply_conversation_message(ChatMessage(role="assistant", content=msg.body))
case settings.agent_settings.bdi_program_manager_name:
self._handle_program_manager_message(msg)
await self._handle_program_manager_message(msg)
case _:
self.logger.info("Discarding message from %s", sender)
return
@@ -74,12 +105,33 @@ class TextBeliefExtractorAgent(BaseAgent):
length_limit = settings.behaviour_settings.conversation_history_length_limit
self.conversation.messages = (self.conversation.messages + [message])[-length_limit:]
def _handle_program_manager_message(self, msg: InternalMessage):
async def _handle_program_manager_message(self, msg: InternalMessage):
"""
Handle a message from the program manager: extract available beliefs from it.
Handle a message from the program manager: extract available beliefs and goals from it.
:param msg: The received message from the program manager.
"""
match msg.thread:
case "beliefs":
self._handle_beliefs_message(msg)
await self._infer_new_beliefs()
case "goals":
self._handle_goals_message(msg)
await self._infer_goal_completions()
case "conversation_history":
if msg.body == "reset":
self._reset()
case _:
self.logger.warning("Received unexpected message from %s", msg.sender)
def _reset(self):
self.conversation = ChatHistory(messages=[])
self.belief_inferrer.available_beliefs.clear()
self._current_beliefs = BeliefState()
self.goal_inferrer.goals.clear()
self._current_goal_completions = {}
def _handle_beliefs_message(self, msg: InternalMessage):
try:
belief_list = BeliefList.model_validate_json(msg.body)
except ValidationError:
@@ -88,10 +140,30 @@ class TextBeliefExtractorAgent(BaseAgent):
)
return
self.available_beliefs = [b for b in belief_list.beliefs if isinstance(b, SemanticBelief)]
available_beliefs = [b for b in belief_list.beliefs if isinstance(b, SemanticBelief)]
self.belief_inferrer.available_beliefs = available_beliefs
self.logger.debug(
"Received %d beliefs from the program manager.",
len(self.available_beliefs),
"Received %d semantic beliefs from the program manager: %s",
len(available_beliefs),
", ".join(b.name for b in available_beliefs),
)
def _handle_goals_message(self, msg: InternalMessage):
try:
goals_list = GoalList.model_validate_json(msg.body)
except ValidationError:
self.logger.warning(
"Received message from program manager but it is not a valid list of goals."
)
return
# Use only goals that can fail, as the others are always assumed to be completed
available_goals = [g for g in goals_list.goals if g.can_fail]
self.goal_inferrer.goals = available_goals
self.logger.debug(
"Received %d failable goals from the program manager: %s",
len(available_goals),
", ".join(g.name for g in available_goals),
)
async def _user_said(self, text: str):
@@ -100,121 +172,212 @@ class TextBeliefExtractorAgent(BaseAgent):
:param text: User's transcribed text.
"""
belief = {"beliefs": {"user_said": [text]}, "type": "belief_extraction_text"}
payload = json.dumps(belief)
belief_msg = InternalMessage(
to=settings.agent_settings.bdi_belief_collector_name,
to=settings.agent_settings.bdi_core_name,
sender=self.name,
body=payload,
body=BeliefMessage(
replace=[InternalBelief(name="user_said", arguments=[text])],
).model_dump_json(),
thread="beliefs",
)
await self.send(belief_msg)
async def _infer_new_beliefs(self):
"""
Process conversation history to extract beliefs, semantically. Any changed beliefs are sent
to the BDI core.
"""
# Return instantly if there are no beliefs to infer
if not self.available_beliefs:
conversation_beliefs = await self.belief_inferrer.infer_from_conversation(self.conversation)
new_beliefs = conversation_beliefs - self._current_beliefs
if not new_beliefs:
self.logger.debug("No new beliefs detected.")
return
candidate_beliefs = await self._infer_turn()
belief_changes = BeliefMessage()
for belief_key, belief_value in candidate_beliefs.items():
if belief_value is None:
continue
old_belief_value = self.beliefs.get(belief_key)
if belief_value == old_belief_value:
continue
self._current_beliefs |= new_beliefs
self.beliefs[belief_key] = belief_value
belief_changes = BeliefMessage(
create=list(new_beliefs.true),
delete=list(new_beliefs.false),
)
belief = InternalBelief(name=belief_key, arguments=None)
if belief_value:
belief_changes.create.append(belief)
else:
belief_changes.delete.append(belief)
# Return if there were no changes in beliefs
if not belief_changes.has_values():
return
beliefs_message = InternalMessage(
message = InternalMessage(
to=settings.agent_settings.bdi_core_name,
sender=self.name,
body=belief_changes.model_dump_json(),
thread="beliefs",
)
await self.send(beliefs_message)
await self.send(message)
@staticmethod
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
k, m = divmod(len(items), n)
return [items[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)]
async def _infer_goal_completions(self):
goal_completions = await self.goal_inferrer.infer_from_conversation(self.conversation)
async def _infer_turn(self) -> dict:
new_achieved = [
InternalBelief(name=goal, arguments=None)
for goal, achieved in goal_completions.items()
if achieved and self._current_goal_completions.get(goal) != achieved
]
new_not_achieved = [
InternalBelief(name=goal, arguments=None)
for goal, achieved in goal_completions.items()
if not achieved and self._current_goal_completions.get(goal) != achieved
]
for goal, achieved in goal_completions.items():
self._current_goal_completions[goal] = achieved
if not new_achieved and not new_not_achieved:
self.logger.debug("No goal achievement changes detected.")
return
belief_changes = BeliefMessage(
create=new_achieved,
delete=new_not_achieved,
)
message = InternalMessage(
to=settings.agent_settings.bdi_core_name,
sender=self.name,
body=belief_changes.model_dump_json(),
thread="beliefs",
)
await self.send(message)
class LLM:
"""
Process the stored conversation history to extract semantic beliefs. Returns a list of
beliefs that have been set to ``True``, ``False`` or ``None``.
:return: A dict mapping belief names to a value ``True``, ``False`` or ``None``.
Class that handles sending structured generation requests to an LLM.
"""
def __init__(self, agent: "TextBeliefExtractorAgent", n_parallel: int):
self._agent = agent
self._semaphore = asyncio.Semaphore(n_parallel)
async def query(self, prompt: str, schema: dict, tries: int = 3) -> JSONLike | None:
"""
Query the LLM with the given prompt and schema, return an instance of a dict conforming
to this schema. Try ``tries`` times, or return None.
:param prompt: Prompt to be queried.
:param schema: Schema to be queried.
:param tries: Number of times to try to query the LLM.
:return: An instance of a dict conforming to this schema, or None if failed.
"""
try_count = 0
while try_count < tries:
try_count += 1
try:
return await self._query_llm(prompt, schema)
except (httpx.HTTPError, json.JSONDecodeError, KeyError) as e:
if try_count < tries:
continue
self._agent.logger.exception(
"Failed to get LLM response after %d tries.",
try_count,
exc_info=e,
)
return None
async def _query_llm(self, prompt: str, schema: dict) -> JSONLike:
"""
Query an LLM with the given prompt and schema, return an instance of a dict conforming
to that schema.
:param prompt: The prompt to be queried.
:param schema: Schema to use during response.
:return: A dict conforming to this schema.
:raises httpx.HTTPStatusError: If the LLM server responded with an error.
:raises json.JSONDecodeError: If the LLM response was not valid JSON. May happen if the
response was cut off early due to length limitations.
:raises KeyError: If the LLM server responded with no error, but the response was
invalid.
"""
async with self._semaphore:
async with httpx.AsyncClient() as client:
response = await client.post(
settings.llm_settings.local_llm_url,
json={
"model": settings.llm_settings.local_llm_model,
"messages": [{"role": "user", "content": prompt}],
"response_format": {
"type": "json_schema",
"json_schema": {
"name": "Beliefs",
"strict": True,
"schema": schema,
},
},
"reasoning_effort": "low",
"temperature": settings.llm_settings.code_temperature,
"stream": False,
},
timeout=30.0,
)
response.raise_for_status()
response_json = response.json()
json_message = response_json["choices"][0]["message"]["content"]
return json.loads(json_message)
class SemanticBeliefInferrer:
"""
Class that handles only prompting an LLM for semantic beliefs.
"""
def __init__(
self,
llm: "TextBeliefExtractorAgent.LLM",
available_beliefs: list[SemanticBelief] | None = None,
):
self._llm = llm
self.available_beliefs: list[SemanticBelief] = available_beliefs or []
async def infer_from_conversation(self, conversation: ChatHistory) -> BeliefState:
"""
Process conversation history to extract beliefs, semantically. The result is an object that
describes all beliefs that hold or don't hold based on the full conversation.
:param conversation: The conversation history to be processed.
:return: An object that describes beliefs.
"""
# Return instantly if there are no beliefs to infer
if not self.available_beliefs:
return BeliefState()
n_parallel = max(1, min(settings.llm_settings.n_parallel - 1, len(self.available_beliefs)))
all_beliefs = await asyncio.gather(
all_beliefs: list[dict[str, bool | None] | None] = await asyncio.gather(
*[
self._infer_beliefs(self.conversation, beliefs)
self._infer_beliefs(conversation, beliefs)
for beliefs in self._split_into_chunks(self.available_beliefs, n_parallel)
]
)
retval = {}
retval = BeliefState()
for beliefs in all_beliefs:
if beliefs is None:
continue
retval.update(beliefs)
for belief_name, belief_holds in beliefs.items():
if belief_holds is None:
continue
belief = InternalBelief(name=belief_name, arguments=None)
if belief_holds:
retval.true.add(belief)
else:
retval.false.add(belief)
return retval
@staticmethod
def _create_belief_schema(belief: SemanticBelief) -> tuple[str, dict]:
return AgentSpeakGenerator.slugify(belief), {
"type": ["boolean", "null"],
"description": belief.description,
}
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
"""
Split a list into ``n`` chunks, making each chunk approximately ``len(items) / n`` long.
@staticmethod
def _create_beliefs_schema(beliefs: list[SemanticBelief]) -> dict:
belief_schemas = [
TextBeliefExtractorAgent._create_belief_schema(belief) for belief in beliefs
]
return {
"type": "object",
"properties": dict(belief_schemas),
"required": [name for name, _ in belief_schemas],
}
@staticmethod
def _format_message(message: ChatMessage):
return f"{message.role.upper()}:\n{message.content}"
@staticmethod
def _format_conversation(conversation: ChatHistory):
return "\n\n".join(
[TextBeliefExtractorAgent._format_message(message) for message in conversation.messages]
)
@staticmethod
def _format_beliefs(beliefs: list[SemanticBelief]):
return "\n".join(
[f"- {AgentSpeakGenerator.slugify(belief)}: {belief.description}" for belief in beliefs]
)
:param items: The list of items to split.
:param n: The number of desired chunks.
:return: A list of chunks each approximately ``len(items) / n`` long.
"""
k, m = divmod(len(items), n)
return [items[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)]
async def _infer_beliefs(
self,
conversation: ChatHistory,
beliefs: list[SemanticBelief],
) -> dict | None:
) -> dict[str, bool | None] | None:
"""
Infer given beliefs based on the given conversation.
:param conversation: The conversation to infer beliefs from.
@@ -241,70 +404,79 @@ Respond with a JSON similar to the following, but with the property names as giv
schema = self._create_beliefs_schema(beliefs)
return await self._retry_query_llm(prompt, schema)
return await self._llm.query(prompt, schema)
async def _retry_query_llm(self, prompt: str, schema: dict, tries: int = 3) -> dict | None:
@staticmethod
def _create_belief_schema(belief: SemanticBelief) -> tuple[str, dict]:
return AgentSpeakGenerator.slugify(belief), {
"type": ["boolean", "null"],
"description": belief.description,
}
@staticmethod
def _create_beliefs_schema(beliefs: list[SemanticBelief]) -> dict:
belief_schemas = [
SemanticBeliefInferrer._create_belief_schema(belief) for belief in beliefs
]
return {
"type": "object",
"properties": dict(belief_schemas),
"required": [name for name, _ in belief_schemas],
}
@staticmethod
def _format_message(message: ChatMessage):
return f"{message.role.upper()}:\n{message.content}"
@staticmethod
def _format_conversation(conversation: ChatHistory):
return "\n\n".join(
[SemanticBeliefInferrer._format_message(message) for message in conversation.messages]
)
@staticmethod
def _format_beliefs(beliefs: list[SemanticBelief]):
return "\n".join(
[f"- {AgentSpeakGenerator.slugify(belief)}: {belief.description}" for belief in beliefs]
)
class GoalAchievementInferrer(SemanticBeliefInferrer):
def __init__(self, llm: TextBeliefExtractorAgent.LLM):
super().__init__(llm)
self.goals = []
async def infer_from_conversation(self, conversation: ChatHistory) -> dict[str, bool]:
"""
Query the LLM with the given prompt and schema, return an instance of a dict conforming
to this schema. Try ``tries`` times, or return None.
Determine which goals have been achieved based on the given conversation.
:param prompt: Prompt to be queried.
:param schema: Schema to be queried.
:return: An instance of a dict conforming to this schema, or None if failed.
:param conversation: The conversation to infer goal completion from.
:return: A mapping of goals and a boolean whether they have been achieved.
"""
try_count = 0
while try_count < tries:
try_count += 1
if not self.goals:
return {}
try:
return await self._query_llm(prompt, schema)
except (httpx.HTTPError, json.JSONDecodeError, KeyError) as e:
if try_count < tries:
continue
self.logger.exception(
"Failed to get LLM response after %d tries.",
try_count,
exc_info=e,
)
goals_achieved = await asyncio.gather(
*[self._infer_goal(conversation, g) for g in self.goals]
)
return {
f"achieved_{AgentSpeakGenerator.slugify(goal)}": achieved
for goal, achieved in zip(self.goals, goals_achieved, strict=True)
}
return None
async def _infer_goal(self, conversation: ChatHistory, goal: Goal) -> bool:
prompt = f"""{self._format_conversation(conversation)}
async def _query_llm(self, prompt: str, schema: dict) -> dict:
"""
Query an LLM with the given prompt and schema, return an instance of a dict conforming to
that schema.
Given the above conversation, what has the following goal been achieved?
:param prompt: The prompt to be queried.
:param schema: Schema to use during response.
:return: A dict conforming to this schema.
:raises httpx.HTTPStatusError: If the LLM server responded with an error.
:raises json.JSONDecodeError: If the LLM response was not valid JSON. May happen if the
response was cut off early due to length limitations.
:raises KeyError: If the LLM server responded with no error, but the response was invalid.
"""
async with httpx.AsyncClient() as client:
response = await client.post(
settings.llm_settings.local_llm_url,
json={
"model": settings.llm_settings.local_llm_model,
"messages": [{"role": "user", "content": prompt}],
"response_format": {
"type": "json_schema",
"json_schema": {
"name": "Beliefs",
"strict": True,
"schema": schema,
},
},
"reasoning_effort": "low",
"temperature": self.temperature,
"stream": False,
},
timeout=None,
)
response.raise_for_status()
The name of the goal: {goal.name}
Description of the goal: {goal.description}
response_json = response.json()
json_message = response_json["choices"][0]["message"]["content"]
beliefs = json.loads(json_message)
return beliefs
Answer with literally only `true` or `false` (without backticks)."""
schema = {
"type": "boolean",
}
return await self._llm.query(prompt, schema)

View File

@@ -38,7 +38,7 @@ class RICommunicationAgent(BaseAgent):
def __init__(
self,
name: str,
address=settings.zmq_settings.ri_command_address,
address=settings.zmq_settings.ri_communication_address,
bind=False,
):
super().__init__(name)
@@ -168,7 +168,7 @@ class RICommunicationAgent(BaseAgent):
bind = port_data["bind"]
if not bind:
addr = f"tcp://localhost:{port}"
addr = f"tcp://{settings.ri_host}:{port}"
else:
addr = f"tcp://*:{port}"
@@ -248,7 +248,8 @@ class RICommunicationAgent(BaseAgent):
self._req_socket.recv_json(), timeout=seconds_to_wait_total / 2
)
self.logger.debug(f'Received message "{message}" from RI.')
if "endpoint" in message and message["endpoint"] != "ping":
self.logger.debug(f'Received message "{message}" from RI.')
if "endpoint" not in message:
self.logger.warning("No received endpoint in message, expected ping endpoint.")
continue

View File

@@ -46,14 +46,23 @@ class LLMAgent(BaseAgent):
:param msg: The received internal message.
"""
if msg.sender == settings.agent_settings.bdi_core_name:
self.logger.debug("Processing message from BDI core.")
try:
prompt_message = LLMPromptMessage.model_validate_json(msg.body)
await self._process_bdi_message(prompt_message)
except ValidationError:
self.logger.debug("Prompt message from BDI core is invalid.")
match msg.thread:
case "prompt_message":
try:
prompt_message = LLMPromptMessage.model_validate_json(msg.body)
await self._process_bdi_message(prompt_message)
except ValidationError:
self.logger.debug("Prompt message from BDI core is invalid.")
case "assistant_message":
self.history.append({"role": "assistant", "content": msg.body})
case "user_message":
self.history.append({"role": "user", "content": msg.body})
elif msg.sender == settings.agent_settings.bdi_program_manager_name:
if msg.body == "clear_history":
self.logger.debug("Clearing conversation history.")
self.history.clear()
else:
self.logger.debug("Message ignored (not from BDI core.")
self.logger.debug("Message ignored.")
async def _process_bdi_message(self, message: LLMPromptMessage):
"""
@@ -114,13 +123,6 @@ class LLMAgent(BaseAgent):
:param goals: Goals the LLM should achieve.
:yield: Fragments of the LLM-generated content (e.g., sentences/phrases).
"""
self.history.append(
{
"role": "user",
"content": prompt,
}
)
instructions = LLMInstructions(norms if norms else None, goals if goals else None)
messages = [
{

View File

@@ -103,12 +103,11 @@ class VADAgent(BaseAgent):
self._connect_audio_in_socket()
audio_out_port = self._connect_audio_out_socket()
if audio_out_port is None:
audio_out_address = self._connect_audio_out_socket()
if audio_out_address is None:
self.logger.error("Could not bind output socket, stopping.")
await self.stop()
return
audio_out_address = f"tcp://localhost:{audio_out_port}"
# Connect to internal communication socket
self.program_sub_socket = azmq.Context.instance().socket(zmq.SUB)
@@ -161,13 +160,14 @@ class VADAgent(BaseAgent):
self.audio_in_socket.connect(self.audio_in_address)
self.audio_in_poller = SocketPoller[bytes](self.audio_in_socket)
def _connect_audio_out_socket(self) -> int | None:
def _connect_audio_out_socket(self) -> str | None:
"""
Returns the port bound, or None if binding failed.
Returns the address that was bound to, or None if binding failed.
"""
try:
self.audio_out_socket = azmq.Context.instance().socket(zmq.PUB)
return self.audio_out_socket.bind_to_random_port("tcp://localhost", max_tries=100)
self.audio_out_socket.bind(settings.zmq_settings.vad_pub_address)
return settings.zmq_settings.vad_pub_address
except zmq.ZMQBindError:
self.logger.error("Failed to bind an audio output socket after 100 tries.")
self.audio_out_socket = None
@@ -229,10 +229,11 @@ class VADAgent(BaseAgent):
assert self.model is not None
prob = self.model(torch.from_numpy(chunk), settings.vad_settings.sample_rate_hz).item()
non_speech_patience = settings.behaviour_settings.vad_non_speech_patience_chunks
begin_silence_length = settings.behaviour_settings.vad_begin_silence_chunks
prob_threshold = settings.behaviour_settings.vad_prob_threshold
if prob > prob_threshold:
if self.i_since_speech > non_speech_patience:
if self.i_since_speech > non_speech_patience + begin_silence_length:
self.logger.debug("Speech started.")
self.audio_buffer = np.append(self.audio_buffer, chunk)
self.i_since_speech = 0
@@ -246,11 +247,12 @@ class VADAgent(BaseAgent):
continue
# Speech probably ended. Make sure we have a usable amount of data.
if len(self.audio_buffer) >= 3 * len(chunk):
if len(self.audio_buffer) > begin_silence_length * len(chunk):
self.logger.debug("Speech ended.")
assert self.audio_out_socket is not None
await self.audio_out_socket.send(self.audio_buffer[: -2 * len(chunk)].tobytes())
# At this point, we know that the speech has ended.
# Prepend the last chunk that had no speech, for a more fluent boundary
self.audio_buffer = chunk
# At this point, we know that there is no speech.
# Prepend the last few chunks that had no speech, for a more fluent boundary.
self.audio_buffer = np.append(self.audio_buffer, chunk)
self.audio_buffer = self.audio_buffer[-begin_silence_length * len(chunk) :]

View File

@@ -131,6 +131,7 @@ class BaseAgent(ABC):
:param message: The message to send.
"""
target = AgentDirectory.get(message.to)
message.sender = self.name
if target:
await target.inbox.put(message)
self.logger.debug(f"Sent message {message.body} to {message.to} via regular inbox.")
@@ -192,7 +193,16 @@ class BaseAgent(ABC):
:param coro: The coroutine to execute as a task.
"""
task = asyncio.create_task(coro)
async def try_coro(coro_: Coroutine):
try:
await coro_
except asyncio.CancelledError:
self.logger.debug("A behavior was canceled successfully: %s", coro_)
except Exception:
self.logger.warning("An exception occurred in a behavior.", exc_info=True)
task = asyncio.create_task(try_coro(coro))
self._tasks.add(task)
task.add_done_callback(self._tasks.discard)
return task

View File

@@ -1,3 +1,12 @@
"""
An exhaustive overview of configurable options. All of these can be set using environment variables
by nesting with double underscores (__). Start from the ``Settings`` class.
For example, ``settings.ri_host`` becomes ``RI_HOST``, and
``settings.zmq_settings.ri_communication_address`` becomes
``ZMQ_SETTINGS__RI_COMMUNICATION_ADDRESS``.
"""
from pydantic import BaseModel
from pydantic_settings import BaseSettings, SettingsConfigDict
@@ -8,16 +17,17 @@ class ZMQSettings(BaseModel):
:ivar internal_pub_address: Address for the internal PUB socket.
:ivar internal_sub_address: Address for the internal SUB socket.
:ivar ri_command_address: Address for sending commands to the Robot Interface.
:ivar ri_communication_address: Address for receiving communication from the Robot Interface.
:ivar vad_agent_address: Address for the Voice Activity Detection (VAD) agent.
:ivar ri_communication_address: Address for the endpoint that the Robot Interface connects to.
:ivar vad_pub_address: Address that the VAD agent binds to and publishes audio segments to.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
internal_pub_address: str = "tcp://localhost:5560"
internal_sub_address: str = "tcp://localhost:5561"
ri_command_address: str = "tcp://localhost:0000"
ri_communication_address: str = "tcp://*:5555"
internal_gesture_rep_adress: str = "tcp://localhost:7788"
vad_pub_address: str = "inproc://vad_stream"
class AgentSettings(BaseModel):
@@ -36,6 +46,8 @@ class AgentSettings(BaseModel):
:ivar robot_speech_name: Name of the Robot Speech Agent.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
# agent names
bdi_core_name: str = "bdi_core_agent"
bdi_belief_collector_name: str = "belief_collector_agent"
@@ -61,6 +73,7 @@ class BehaviourSettings(BaseModel):
:ivar vad_prob_threshold: Probability threshold for Voice Activity Detection.
:ivar vad_initial_since_speech: Initial value for 'since speech' counter in VAD.
:ivar vad_non_speech_patience_chunks: Number of non-speech chunks to wait before speech ended.
:ivar vad_begin_silence_chunks: The number of chunks of silence to prepend to speech chunks.
:ivar transcription_max_concurrent_tasks: Maximum number of concurrent transcription tasks.
:ivar transcription_words_per_minute: Estimated words per minute for transcription timing.
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
@@ -68,6 +81,8 @@ class BehaviourSettings(BaseModel):
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
sleep_s: float = 1.0
comm_setup_max_retries: int = 5
socket_poller_timeout_ms: int = 100
@@ -75,7 +90,8 @@ class BehaviourSettings(BaseModel):
# VAD settings
vad_prob_threshold: float = 0.5
vad_initial_since_speech: int = 100
vad_non_speech_patience_chunks: int = 3
vad_non_speech_patience_chunks: int = 15
vad_begin_silence_chunks: int = 6
# transcription behaviour
transcription_max_concurrent_tasks: int = 3
@@ -99,6 +115,8 @@ class LLMSettings(BaseModel):
:ivar n_parallel: The number of parallel calls allowed to be made to the LLM.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
local_llm_url: str = "http://localhost:1234/v1/chat/completions"
local_llm_model: str = "gpt-oss"
chat_temperature: float = 1.0
@@ -115,6 +133,8 @@ class VADSettings(BaseModel):
:ivar sample_rate_hz: Sample rate in Hz for the VAD model.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
repo_or_dir: str = "snakers4/silero-vad"
model_name: str = "silero_vad"
sample_rate_hz: int = 16000
@@ -128,6 +148,8 @@ class SpeechModelSettings(BaseModel):
:ivar openai_model_name: Model name for OpenAI-based speech recognition.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
# model identifiers for speech recognition
mlx_model_name: str = "mlx-community/whisper-small.en-mlx"
openai_model_name: str = "small.en"
@@ -139,6 +161,7 @@ class Settings(BaseSettings):
:ivar app_title: Title of the application.
:ivar ui_url: URL of the frontend UI.
:ivar ri_host: The hostname of the Robot Interface.
:ivar zmq_settings: ZMQ configuration.
:ivar agent_settings: Agent name configuration.
:ivar behaviour_settings: Behavior configuration.
@@ -151,6 +174,8 @@ class Settings(BaseSettings):
ui_url: str = "http://localhost:5173"
ri_host: str = "localhost"
zmq_settings: ZMQSettings = ZMQSettings()
agent_settings: AgentSettings = AgentSettings()

View File

@@ -1,6 +1,7 @@
from pydantic import BaseModel
from control_backend.schemas.program import Belief as ProgramBelief
from control_backend.schemas.program import Goal
class BeliefList(BaseModel):
@@ -12,3 +13,7 @@ class BeliefList(BaseModel):
"""
beliefs: list[ProgramBelief]
class GoalList(BaseModel):
goals: list[Goal]

View File

@@ -13,6 +13,9 @@ class Belief(BaseModel):
name: str
arguments: list[str] | None
# To make it hashable
model_config = {"frozen": True}
class BeliefMessage(BaseModel):
"""

View File

@@ -12,6 +12,6 @@ class InternalMessage(BaseModel):
"""
to: str
sender: str
sender: str | None = None
body: str
thread: str | None = None

View File

@@ -117,7 +117,7 @@ class Goal(ProgramElement):
:ivar can_fail: Whether we can fail to achieve the goal after executing the plan.
"""
description: str
description: str = ""
plan: Plan
can_fail: bool = True
@@ -180,7 +180,6 @@ class Trigger(ProgramElement):
:ivar plan: The plan to execute.
"""
name: str = ""
condition: Belief
plan: Plan

View File

@@ -91,7 +91,7 @@ def test_out_socket_creation(zmq_context):
assert per_vad_agent.audio_out_socket is not None
zmq_context.return_value.socket.assert_called_once_with(zmq.PUB)
zmq_context.return_value.socket.return_value.bind_to_random_port.assert_called_once()
zmq_context.return_value.socket.return_value.bind.assert_called_once_with("inproc://vad_stream")
@pytest.mark.asyncio

View File

@@ -73,7 +73,7 @@ async def test_setup_connect(zmq_context, mocker):
async def test_handle_message_sends_valid_gesture_command():
"""Internal message with valid gesture tag is forwarded to robot pub socket."""
pubsocket = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.pubsocket = pubsocket
payload = {
@@ -91,7 +91,7 @@ async def test_handle_message_sends_valid_gesture_command():
async def test_handle_message_sends_non_gesture_command():
"""Internal message with non-gesture endpoint is not forwarded by this agent."""
pubsocket = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.pubsocket = pubsocket
payload = {"endpoint": "some_other_endpoint", "data": "invalid_tag_not_in_list"}
@@ -107,7 +107,7 @@ async def test_handle_message_sends_non_gesture_command():
async def test_handle_message_rejects_invalid_gesture_tag():
"""Internal message with invalid gesture tag is not forwarded."""
pubsocket = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.pubsocket = pubsocket
# Use a tag that's not in gesture_data
@@ -123,7 +123,7 @@ async def test_handle_message_rejects_invalid_gesture_tag():
async def test_handle_message_invalid_payload():
"""Invalid payload is caught and does not send."""
pubsocket = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.pubsocket = pubsocket
msg = InternalMessage(to="robot", sender="tester", body=json.dumps({"bad": "data"}))
@@ -142,12 +142,12 @@ async def test_zmq_command_loop_valid_gesture_payload():
async def recv_once():
# stop after first iteration
agent._running = False
return (b"command", json.dumps(command).encode("utf-8"))
return b"command", json.dumps(command).encode("utf-8")
fake_socket.recv_multipart = recv_once
fake_socket.send_json = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.subsocket = fake_socket
agent.pubsocket = fake_socket
agent._running = True
@@ -165,12 +165,12 @@ async def test_zmq_command_loop_valid_non_gesture_payload():
async def recv_once():
agent._running = False
return (b"command", json.dumps(command).encode("utf-8"))
return b"command", json.dumps(command).encode("utf-8")
fake_socket.recv_multipart = recv_once
fake_socket.send_json = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.subsocket = fake_socket
agent.pubsocket = fake_socket
agent._running = True
@@ -188,12 +188,12 @@ async def test_zmq_command_loop_invalid_gesture_tag():
async def recv_once():
agent._running = False
return (b"command", json.dumps(command).encode("utf-8"))
return b"command", json.dumps(command).encode("utf-8")
fake_socket.recv_multipart = recv_once
fake_socket.send_json = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.subsocket = fake_socket
agent.pubsocket = fake_socket
agent._running = True
@@ -210,12 +210,12 @@ async def test_zmq_command_loop_invalid_json():
async def recv_once():
agent._running = False
return (b"command", b"{not_json}")
return b"command", b"{not_json}"
fake_socket.recv_multipart = recv_once
fake_socket.send_json = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.subsocket = fake_socket
agent.pubsocket = fake_socket
agent._running = True
@@ -232,12 +232,12 @@ async def test_zmq_command_loop_ignores_send_gestures_topic():
async def recv_once():
agent._running = False
return (b"send_gestures", b"{}")
return b"send_gestures", b"{}"
fake_socket.recv_multipart = recv_once
fake_socket.send_json = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.subsocket = fake_socket
agent.pubsocket = fake_socket
agent._running = True
@@ -259,7 +259,9 @@ async def test_fetch_gestures_loop_without_amount():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"])
agent = RobotGestureAgent(
"robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"], address=""
)
agent.repsocket = fake_repsocket
agent._running = True
@@ -287,7 +289,9 @@ async def test_fetch_gestures_loop_with_amount():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"])
agent = RobotGestureAgent(
"robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"], address=""
)
agent.repsocket = fake_repsocket
agent._running = True
@@ -315,7 +319,7 @@ async def test_fetch_gestures_loop_with_integer_request():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.repsocket = fake_repsocket
agent._running = True
@@ -340,7 +344,7 @@ async def test_fetch_gestures_loop_with_invalid_json():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.repsocket = fake_repsocket
agent._running = True
@@ -365,7 +369,7 @@ async def test_fetch_gestures_loop_with_non_integer_json():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.repsocket = fake_repsocket
agent._running = True
@@ -381,7 +385,7 @@ async def test_fetch_gestures_loop_with_non_integer_json():
def test_gesture_data_attribute():
"""Test that gesture_data returns the expected list."""
gesture_data = ["hello", "yes", "no", "wave"]
agent = RobotGestureAgent("robot_gesture", gesture_data=gesture_data)
agent = RobotGestureAgent("robot_gesture", gesture_data=gesture_data, address="")
assert agent.gesture_data == gesture_data
assert isinstance(agent.gesture_data, list)
@@ -398,7 +402,7 @@ async def test_stop_closes_sockets():
pubsocket = MagicMock()
subsocket = MagicMock()
repsocket = MagicMock()
agent = RobotGestureAgent("robot_gesture")
agent = RobotGestureAgent("robot_gesture", address="")
agent.pubsocket = pubsocket
agent.subsocket = subsocket
agent.repsocket = repsocket
@@ -415,7 +419,7 @@ async def test_stop_closes_sockets():
async def test_initialization_with_custom_gesture_data():
"""Agent can be initialized with custom gesture data."""
custom_gestures = ["custom1", "custom2", "custom3"]
agent = RobotGestureAgent("robot_gesture", gesture_data=custom_gestures)
agent = RobotGestureAgent("robot_gesture", gesture_data=custom_gestures, address="")
assert agent.gesture_data == custom_gestures
@@ -432,7 +436,7 @@ async def test_fetch_gestures_loop_handles_exception():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.repsocket = fake_repsocket
agent.logger = MagicMock()
agent._running = True

View File

@@ -80,6 +80,7 @@ async def test_receive_programs_valid_and_invalid():
manager._internal_pub_socket = AsyncMock()
manager.sub_socket = sub
manager._create_agentspeak_and_send_to_bdi = AsyncMock()
manager._send_clear_llm_history = AsyncMock()
try:
# Will give StopAsyncIteration when the predefined `sub.recv_multipart` side-effects run out
@@ -92,3 +93,24 @@ async def test_receive_programs_valid_and_invalid():
forwarded: Program = manager._create_agentspeak_and_send_to_bdi.await_args[0][0]
assert forwarded.phases[0].norms[0].name == "N1"
assert forwarded.phases[0].goals[0].name == "G1"
# Verify history clear was triggered
assert manager._send_clear_llm_history.await_count == 1
@pytest.mark.asyncio
async def test_send_clear_llm_history(mock_settings):
# Ensure the mock returns a string for the agent name (just like in your LLM tests)
mock_settings.agent_settings.llm_agent_name = "llm_agent"
manager = BDIProgramManager(name="program_manager_test")
manager.send = AsyncMock()
await manager._send_clear_llm_history()
assert manager.send.await_count == 2
msg: InternalMessage = manager.send.await_args_list[0][0][0]
# Verify the content and recipient
assert msg.body == "clear_history"
assert msg.to == "llm_agent"

View File

@@ -6,10 +6,13 @@ import httpx
import pytest
from control_backend.agents.bdi import TextBeliefExtractorAgent
from control_backend.agents.bdi.text_belief_extractor_agent import BeliefState
from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.belief_list import BeliefList
from control_backend.schemas.belief_message import Belief as InternalBelief
from control_backend.schemas.belief_message import BeliefMessage
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
from control_backend.schemas.program import (
ConditionalNorm,
KeywordBelief,
@@ -23,11 +26,21 @@ from control_backend.schemas.program import (
@pytest.fixture
def agent():
agent = TextBeliefExtractorAgent("text_belief_agent")
agent.send = AsyncMock()
agent._query_llm = AsyncMock()
return agent
def llm():
llm = TextBeliefExtractorAgent.LLM(MagicMock(), 4)
llm._query_llm = AsyncMock()
return llm
@pytest.fixture
def agent(llm):
with patch(
"control_backend.agents.bdi.text_belief_extractor_agent.TextBeliefExtractorAgent.LLM",
return_value=llm,
):
agent = TextBeliefExtractorAgent("text_belief_agent")
agent.send = AsyncMock()
return agent
@pytest.fixture
@@ -102,24 +115,12 @@ async def test_handle_message_from_transcriber(agent, mock_settings):
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
sent: InternalMessage = agent.send.call_args.args[0] # noqa
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
assert sent.to == mock_settings.agent_settings.bdi_core_name
assert sent.thread == "beliefs"
parsed = json.loads(sent.body)
assert parsed == {"beliefs": {"user_said": [transcription]}, "type": "belief_extraction_text"}
@pytest.mark.asyncio
async def test_process_user_said(agent, mock_settings):
transcription = "this is a test"
await agent._user_said(transcription)
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
sent: InternalMessage = agent.send.call_args.args[0] # noqa
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
assert sent.thread == "beliefs"
parsed = json.loads(sent.body)
assert parsed["beliefs"]["user_said"] == [transcription]
parsed = BeliefMessage.model_validate_json(sent.body)
replaced_last = parsed.replace.pop()
assert replaced_last.name == "user_said"
assert replaced_last.arguments == [transcription]
@pytest.mark.asyncio
@@ -144,46 +145,46 @@ async def test_query_llm():
"control_backend.agents.bdi.text_belief_extractor_agent.httpx.AsyncClient",
return_value=mock_async_client,
):
agent = TextBeliefExtractorAgent("text_belief_agent")
llm = TextBeliefExtractorAgent.LLM(MagicMock(), 4)
res = await agent._query_llm("hello world", {"type": "null"})
res = await llm._query_llm("hello world", {"type": "null"})
# Response content was set as "null", so should be deserialized as None
assert res is None
@pytest.mark.asyncio
async def test_retry_query_llm_success(agent):
agent._query_llm.return_value = None
res = await agent._retry_query_llm("hello world", {"type": "null"})
async def test_retry_query_llm_success(llm):
llm._query_llm.return_value = None
res = await llm.query("hello world", {"type": "null"})
agent._query_llm.assert_called_once()
llm._query_llm.assert_called_once()
assert res is None
@pytest.mark.asyncio
async def test_retry_query_llm_success_after_failure(agent):
agent._query_llm.side_effect = [KeyError(), "real value"]
res = await agent._retry_query_llm("hello world", {"type": "string"})
async def test_retry_query_llm_success_after_failure(llm):
llm._query_llm.side_effect = [KeyError(), "real value"]
res = await llm.query("hello world", {"type": "string"})
assert agent._query_llm.call_count == 2
assert llm._query_llm.call_count == 2
assert res == "real value"
@pytest.mark.asyncio
async def test_retry_query_llm_failures(agent):
agent._query_llm.side_effect = [KeyError(), KeyError(), KeyError(), "real value"]
res = await agent._retry_query_llm("hello world", {"type": "string"})
async def test_retry_query_llm_failures(llm):
llm._query_llm.side_effect = [KeyError(), KeyError(), KeyError(), "real value"]
res = await llm.query("hello world", {"type": "string"})
assert agent._query_llm.call_count == 3
assert llm._query_llm.call_count == 3
assert res is None
@pytest.mark.asyncio
async def test_retry_query_llm_fail_immediately(agent):
agent._query_llm.side_effect = [KeyError(), "real value"]
res = await agent._retry_query_llm("hello world", {"type": "string"}, tries=1)
async def test_retry_query_llm_fail_immediately(llm):
llm._query_llm.side_effect = [KeyError(), "real value"]
res = await llm.query("hello world", {"type": "string"}, tries=1)
assert agent._query_llm.call_count == 1
assert llm._query_llm.call_count == 1
assert res is None
@@ -192,7 +193,7 @@ async def test_extracting_semantic_beliefs(agent):
"""
The Program Manager sends beliefs to this agent. Test whether the agent handles them correctly.
"""
assert len(agent.available_beliefs) == 0
assert len(agent.belief_inferrer.available_beliefs) == 0
beliefs = BeliefList(
beliefs=[
KeywordBelief(
@@ -213,26 +214,28 @@ async def test_extracting_semantic_beliefs(agent):
to=settings.agent_settings.text_belief_extractor_name,
sender=settings.agent_settings.bdi_program_manager_name,
body=beliefs.model_dump_json(),
thread="beliefs",
),
)
assert len(agent.available_beliefs) == 2
assert len(agent.belief_inferrer.available_beliefs) == 2
@pytest.mark.asyncio
async def test_handle_invalid_program(agent, sample_program):
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
assert len(agent.available_beliefs) == 2
async def test_handle_invalid_beliefs(agent, sample_program):
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
assert len(agent.belief_inferrer.available_beliefs) == 2
await agent.handle_message(
InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
sender=settings.agent_settings.bdi_program_manager_name,
body=json.dumps({"phases": "Invalid"}),
thread="beliefs",
),
)
assert len(agent.available_beliefs) == 2
assert len(agent.belief_inferrer.available_beliefs) == 2
@pytest.mark.asyncio
@@ -254,13 +257,13 @@ async def test_handle_robot_response(agent):
@pytest.mark.asyncio
async def test_simulated_real_turn_with_beliefs(agent, sample_program):
async def test_simulated_real_turn_with_beliefs(agent, llm, sample_program):
"""Test sending user message to extract beliefs from."""
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
# Send a user message with the belief that there's no more booze
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": True}
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": True}
assert len(agent.conversation.messages) == 0
await agent.handle_message(
InternalMessage(
@@ -275,20 +278,20 @@ async def test_simulated_real_turn_with_beliefs(agent, sample_program):
assert agent.send.call_count == 2
# First should be the beliefs message
message: InternalMessage = agent.send.call_args_list[0].args[0]
message: InternalMessage = agent.send.call_args_list[1].args[0]
beliefs = BeliefMessage.model_validate_json(message.body)
assert len(beliefs.create) == 1
assert beliefs.create[0].name == "no_more_booze"
@pytest.mark.asyncio
async def test_simulated_real_turn_no_beliefs(agent, sample_program):
async def test_simulated_real_turn_no_beliefs(agent, llm, sample_program):
"""Test a user message to extract beliefs from, but no beliefs are formed."""
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
# Send a user message with no new beliefs
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": None}
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": None}
await agent.handle_message(
InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
@@ -302,17 +305,17 @@ async def test_simulated_real_turn_no_beliefs(agent, sample_program):
@pytest.mark.asyncio
async def test_simulated_real_turn_no_new_beliefs(agent, sample_program):
async def test_simulated_real_turn_no_new_beliefs(agent, llm, sample_program):
"""
Test a user message to extract beliefs from, but no new beliefs are formed because they already
existed.
"""
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent.beliefs["is_pirate"] = True
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent._current_beliefs = BeliefState(true={InternalBelief(name="is_pirate", arguments=None)})
# Send a user message with the belief the user is a pirate, still
agent._query_llm.return_value = {"is_pirate": True, "no_more_booze": None}
llm._query_llm.return_value = {"is_pirate": True, "no_more_booze": None}
await agent.handle_message(
InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
@@ -326,17 +329,19 @@ async def test_simulated_real_turn_no_new_beliefs(agent, sample_program):
@pytest.mark.asyncio
async def test_simulated_real_turn_remove_belief(agent, sample_program):
async def test_simulated_real_turn_remove_belief(agent, llm, sample_program):
"""
Test a user message to extract beliefs from, but an existing belief is determined no longer to
hold.
"""
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent.beliefs["no_more_booze"] = True
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent._current_beliefs = BeliefState(
true={InternalBelief(name="no_more_booze", arguments=None)},
)
# Send a user message with the belief the user is a pirate, still
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": False}
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": False}
await agent.handle_message(
InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
@@ -349,18 +354,23 @@ async def test_simulated_real_turn_remove_belief(agent, sample_program):
assert agent.send.call_count == 2
# Agent's current beliefs should've changed
assert not agent.beliefs["no_more_booze"]
assert any(b.name == "no_more_booze" for b in agent._current_beliefs.false)
@pytest.mark.asyncio
async def test_llm_failure_handling(agent, sample_program):
async def test_llm_failure_handling(agent, llm, sample_program):
"""
Check that the agent handles failures gracefully without crashing.
"""
agent._query_llm.side_effect = httpx.HTTPError("")
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
llm._query_llm.side_effect = httpx.HTTPError("")
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
belief_changes = await agent._infer_turn()
belief_changes = await agent.belief_inferrer.infer_from_conversation(
ChatHistory(
messages=[ChatMessage(role="user", content="Good day!")],
),
)
assert len(belief_changes) == 0
assert len(belief_changes.true) == 0
assert len(belief_changes.false) == 0

View File

@@ -265,3 +265,23 @@ async def test_stream_query_llm_skips_non_data_lines(mock_httpx_client, mock_set
# Only the valid 'data:' line should yield content
assert tokens == ["Hi"]
@pytest.mark.asyncio
async def test_clear_history_command(mock_settings):
"""Test that the 'clear_history' message clears the agent's memory."""
# setup LLM to have some history
mock_settings.agent_settings.bdi_program_manager_name = "bdi_program_manager_agent"
agent = LLMAgent("llm_agent")
agent.history = [
{"role": "user", "content": "Old conversation context"},
{"role": "assistant", "content": "Old response"},
]
assert len(agent.history) == 2
msg = InternalMessage(
to="llm_agent",
sender=mock_settings.agent_settings.bdi_program_manager_name,
body="clear_history",
)
await agent.handle_message(msg)
assert len(agent.history) == 0

View File

@@ -7,6 +7,15 @@ import zmq
from control_backend.agents.perception.vad_agent import VADAgent
# We don't want to use real ZMQ in unit tests, for example because it can give errors when sockets
# aren't closed properly.
@pytest.fixture(autouse=True)
def mock_zmq():
with patch("zmq.asyncio.Context") as mock:
mock.instance.return_value = MagicMock()
yield mock
@pytest.fixture
def audio_out_socket():
return AsyncMock()
@@ -140,12 +149,10 @@ async def test_vad_model_load_failure_stops_agent(vad_agent):
# Patch stop to an AsyncMock so we can check it was awaited
vad_agent.stop = AsyncMock()
result = await vad_agent.setup()
await vad_agent.setup()
# Assert stop was called
vad_agent.stop.assert_awaited_once()
# Assert setup returned None
assert result is None
@pytest.mark.asyncio
@@ -155,7 +162,7 @@ async def test_audio_out_bind_failure_sets_none_and_logs(vad_agent, caplog):
audio_out_socket is set to None, None is returned, and an error is logged.
"""
mock_socket = MagicMock()
mock_socket.bind_to_random_port.side_effect = zmq.ZMQBindError()
mock_socket.bind.side_effect = zmq.ZMQBindError()
with patch("control_backend.agents.perception.vad_agent.azmq.Context.instance") as mock_ctx:
mock_ctx.return_value.socket.return_value = mock_socket