Compare commits
59 Commits
feat/reset
...
test/incre
| Author | SHA1 | Date | |
|---|---|---|---|
| 8506c0d9ef | |||
| b1c18abffd | |||
| 39e1bb1ead | |||
| 8f6662e64a | |||
| 0794c549a8 | |||
| ff24ab7a27 | |||
| 43ac8ad69f | |||
|
|
f7669c021b | ||
|
|
8f52f8bf0c | ||
|
|
2a94a45b34 | ||
| f87651f691 | |||
|
|
65e0b2d250 | ||
| 177e844349 | |||
|
|
0df6040444 | ||
|
|
af81bd8620 | ||
|
|
70e05b6c92 | ||
| c0b8fb8612 | |||
|
|
d499111ea4 | ||
|
|
72c2c57f26 | ||
|
|
4a014b577a | ||
|
|
c45a258b22 | ||
| 0f09276477 | |||
| 4e113c2d5c | |||
|
|
54c835cc0f | ||
|
|
c4ccbcd354 | ||
|
|
d202abcd1b | ||
|
|
4b71981a3e | ||
| 866d7c4958 | |||
|
|
5e2126fc21 | ||
|
|
500bbc2d82 | ||
| 133019a928 | |||
| 4d0ba69443 | |||
| 625ef0c365 | |||
| b88758fa76 | |||
|
|
3a8d1730a1 | ||
|
|
b27e5180c4 | ||
|
|
6b34f4b82c | ||
|
|
45719c580b | ||
|
|
4bf2be6359 | ||
|
|
20e5e46639 | ||
|
|
365d449666 | ||
| 5a61225c6f | |||
| a30cea5231 | |||
|
|
93d67ccb66 | ||
| 240624f887 | |||
|
|
be6bbbb849 | ||
| 8a77e8e1c7 | |||
| 3b4dccc760 | |||
| 3d49e44cf7 | |||
|
|
aa5b386f65 | ||
|
|
3189b9fee3 | ||
|
|
612a96940d | ||
|
|
4c20656c75 | ||
|
|
6ca86e4b81 | ||
|
|
7d798f2e77 | ||
|
|
5282c2471f | ||
|
|
0c682d6440 | ||
|
|
32d8f20dc9 | ||
|
|
9cc0e39955 |
20
.env.example
Normal file
20
.env.example
Normal file
@@ -0,0 +1,20 @@
|
||||
# Example .env file. To use, make a copy, call it ".env" (i.e. removing the ".example" suffix), then you edit values.
|
||||
|
||||
# The hostname of the Robot Interface. Change if the Control Backend and Robot Interface are running on different computers.
|
||||
RI_HOST="localhost"
|
||||
|
||||
# URL for the local LLM API. Must be an API that implements the OpenAI Chat Completions API, but most do.
|
||||
LLM_SETTINGS__LOCAL_LLM_URL="http://localhost:1234/v1/chat/completions"
|
||||
|
||||
# Name of the local LLM model to use.
|
||||
LLM_SETTINGS__LOCAL_LLM_MODEL="gpt-oss"
|
||||
|
||||
# Number of non-speech chunks to wait before speech ended. A chunk is approximately 31 ms. Increasing this number allows longer pauses in speech, but also increases response time.
|
||||
BEHAVIOUR_SETTINGS__VAD_NON_SPEECH_PATIENCE_CHUNKS=15
|
||||
|
||||
# Timeout in milliseconds for socket polling. Increase this number if network latency/jitter is high, often the case when using Wi-Fi. Perhaps 500 ms. A symptom of this issue is transcriptions getting cut off.
|
||||
BEHAVIOUR_SETTINGS__SOCKET_POLLER_TIMEOUT_MS=100
|
||||
|
||||
|
||||
|
||||
# For an exhaustive list of options, see the control_backend.core.config module in the docs.
|
||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -222,6 +222,8 @@ __marimo__/
|
||||
docs/*
|
||||
!docs/conf.py
|
||||
|
||||
# Generated files
|
||||
agentspeak.asl
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -27,6 +27,7 @@ This + part might differ based on what model you choose.
|
||||
copy the model name in the module loaded and replace local_llm_modelL. In settings.
|
||||
|
||||
|
||||
|
||||
## Running
|
||||
To run the project (development server), execute the following command (while inside the root repository):
|
||||
|
||||
@@ -34,6 +35,14 @@ To run the project (development server), execute the following command (while in
|
||||
uv run fastapi dev src/control_backend/main.py
|
||||
```
|
||||
|
||||
### Environment Variables
|
||||
|
||||
You can use environment variables to change settings. Make a copy of the [`.env.example`](.env.example) file, name it `.env` and put it in the root directory. The file itself describes how to do the configuration.
|
||||
|
||||
For an exhaustive list of environment options, see the `control_backend.core.config` module in the docs.
|
||||
|
||||
|
||||
|
||||
## Testing
|
||||
Testing happens automatically when opening a merge request to any branch. If you want to manually run the test suite, you can do so by running the following for unit tests:
|
||||
|
||||
|
||||
@@ -33,7 +33,7 @@ class RobotGestureAgent(BaseAgent):
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
address=settings.zmq_settings.ri_command_address,
|
||||
address: str,
|
||||
bind=False,
|
||||
gesture_data=None,
|
||||
single_gesture_data=None,
|
||||
|
||||
@@ -1,8 +1,5 @@
|
||||
from control_backend.agents.bdi.bdi_core_agent import BDICoreAgent as BDICoreAgent
|
||||
|
||||
from .belief_collector_agent import (
|
||||
BDIBeliefCollectorAgent as BDIBeliefCollectorAgent,
|
||||
)
|
||||
from .text_belief_extractor_agent import (
|
||||
TextBeliefExtractorAgent as TextBeliefExtractorAgent,
|
||||
)
|
||||
|
||||
@@ -77,7 +77,7 @@ class AstTerm(AstExpression, ABC):
|
||||
return AstBinaryOp(self, BinaryOperatorType.NOT_EQUALS, _coalesce_expr(other))
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstAtom(AstTerm):
|
||||
"""
|
||||
Grounded expression in all lowercase.
|
||||
@@ -89,7 +89,7 @@ class AstAtom(AstTerm):
|
||||
return self.value.lower()
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstVar(AstTerm):
|
||||
"""
|
||||
Ungrounded variable expression. First letter capitalized.
|
||||
@@ -101,7 +101,7 @@ class AstVar(AstTerm):
|
||||
return self.name.capitalize()
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstNumber(AstTerm):
|
||||
value: int | float
|
||||
|
||||
@@ -109,7 +109,7 @@ class AstNumber(AstTerm):
|
||||
return str(self.value)
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstString(AstTerm):
|
||||
value: str
|
||||
|
||||
@@ -117,7 +117,7 @@ class AstString(AstTerm):
|
||||
return f'"{self.value}"'
|
||||
|
||||
|
||||
@dataclass
|
||||
@dataclass(eq=False)
|
||||
class AstLiteral(AstTerm):
|
||||
functor: str
|
||||
terms: list[AstTerm] = field(default_factory=list)
|
||||
|
||||
@@ -3,9 +3,11 @@ from functools import singledispatchmethod
|
||||
from slugify import slugify
|
||||
|
||||
from control_backend.agents.bdi.agentspeak_ast import (
|
||||
AstAtom,
|
||||
AstBinaryOp,
|
||||
AstExpression,
|
||||
AstLiteral,
|
||||
AstNumber,
|
||||
AstPlan,
|
||||
AstProgram,
|
||||
AstRule,
|
||||
@@ -17,6 +19,7 @@ from control_backend.agents.bdi.agentspeak_ast import (
|
||||
TriggerType,
|
||||
)
|
||||
from control_backend.schemas.program import (
|
||||
BaseGoal,
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
GestureAction,
|
||||
@@ -42,7 +45,13 @@ class AgentSpeakGenerator:
|
||||
def generate(self, program: Program) -> str:
|
||||
self._asp = AstProgram()
|
||||
|
||||
self._asp.rules.append(AstRule(self._astify(program.phases[0])))
|
||||
if program.phases:
|
||||
self._asp.rules.append(AstRule(self._astify(program.phases[0])))
|
||||
else:
|
||||
self._asp.rules.append(AstRule(AstLiteral("phase", [AstString("end")])))
|
||||
|
||||
self._asp.rules.append(AstRule(AstLiteral("!notify_cycle")))
|
||||
|
||||
self._add_keyword_inference()
|
||||
self._add_default_plans()
|
||||
|
||||
@@ -70,6 +79,7 @@ class AgentSpeakGenerator:
|
||||
self._add_reply_with_goal_plan()
|
||||
self._add_say_plan()
|
||||
self._add_reply_plan()
|
||||
self._add_notify_cycle_plan()
|
||||
|
||||
def _add_reply_with_goal_plan(self):
|
||||
self._asp.plans.append(
|
||||
@@ -132,6 +142,29 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
)
|
||||
|
||||
def _add_notify_cycle_plan(self):
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("notify_cycle"),
|
||||
[],
|
||||
[
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral(
|
||||
"findall",
|
||||
[AstVar("Norm"), AstLiteral("norm", [AstVar("Norm")]), AstVar("Norms")],
|
||||
),
|
||||
),
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION, AstLiteral("notify_norms", [AstVar("Norms")])
|
||||
),
|
||||
AstStatement(StatementType.DO_ACTION, AstLiteral("wait", [AstNumber(100)])),
|
||||
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("notify_cycle")),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
def _process_phases(self, phases: list[Phase]) -> None:
|
||||
for curr_phase, next_phase in zip([None] + phases, phases + [None], strict=True):
|
||||
if curr_phase:
|
||||
@@ -145,7 +178,12 @@ class AgentSpeakGenerator:
|
||||
type=TriggerType.ADDED_BELIEF,
|
||||
trigger_literal=AstLiteral("user_said", [AstVar("Message")]),
|
||||
context=[AstLiteral("phase", [AstString("end")])],
|
||||
body=[AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("reply"))],
|
||||
body=[
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION, AstLiteral("notify_user_said", [AstVar("Message")])
|
||||
),
|
||||
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("reply")),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
@@ -157,7 +195,7 @@ class AgentSpeakGenerator:
|
||||
|
||||
previous_goal = None
|
||||
for goal in phase.goals:
|
||||
self._process_goal(goal, phase, previous_goal)
|
||||
self._process_goal(goal, phase, previous_goal, main_goal=True)
|
||||
previous_goal = goal
|
||||
|
||||
for trigger in phase.triggers:
|
||||
@@ -171,29 +209,57 @@ class AgentSpeakGenerator:
|
||||
self._astify(to_phase) if to_phase else AstLiteral("phase", [AstString("end")])
|
||||
)
|
||||
|
||||
context = [from_phase_ast, ~AstLiteral("responded_this_turn")]
|
||||
if from_phase and from_phase.goals:
|
||||
context.append(self._astify(from_phase.goals[-1], achieved=True))
|
||||
check_context = [from_phase_ast]
|
||||
if from_phase:
|
||||
for goal in from_phase.goals:
|
||||
check_context.append(self._astify(goal, achieved=True))
|
||||
|
||||
force_context = [from_phase_ast]
|
||||
|
||||
body = [
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral(
|
||||
"notify_transition_phase",
|
||||
[
|
||||
AstString(str(from_phase.id)),
|
||||
AstString(str(to_phase.id) if to_phase else "end"),
|
||||
],
|
||||
),
|
||||
),
|
||||
AstStatement(StatementType.REMOVE_BELIEF, from_phase_ast),
|
||||
AstStatement(StatementType.ADD_BELIEF, to_phase_ast),
|
||||
]
|
||||
|
||||
if from_phase:
|
||||
body.extend(
|
||||
[
|
||||
AstStatement(
|
||||
StatementType.TEST_GOAL, AstLiteral("user_said", [AstVar("Message")])
|
||||
),
|
||||
AstStatement(
|
||||
StatementType.REPLACE_BELIEF, AstLiteral("user_said", [AstVar("Message")])
|
||||
),
|
||||
]
|
||||
)
|
||||
# if from_phase:
|
||||
# body.extend(
|
||||
# [
|
||||
# AstStatement(
|
||||
# StatementType.TEST_GOAL, AstLiteral("user_said", [AstVar("Message")])
|
||||
# ),
|
||||
# AstStatement(
|
||||
# StatementType.REPLACE_BELIEF, AstLiteral("user_said", [AstVar("Message")])
|
||||
# ),
|
||||
# ]
|
||||
# )
|
||||
|
||||
# Check
|
||||
self._asp.plans.append(
|
||||
AstPlan(TriggerType.ADDED_GOAL, AstLiteral("transition_phase"), context, body)
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("transition_phase"),
|
||||
check_context,
|
||||
[
|
||||
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("force_transition_phase")),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
# Force
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL, AstLiteral("force_transition_phase"), force_context, body
|
||||
)
|
||||
)
|
||||
|
||||
def _process_norm(self, norm: Norm, phase: Phase) -> None:
|
||||
@@ -201,7 +267,11 @@ class AgentSpeakGenerator:
|
||||
|
||||
match norm:
|
||||
case ConditionalNorm(condition=cond):
|
||||
rule = AstRule(self._astify(norm), self._astify(phase) & self._astify(cond))
|
||||
rule = AstRule(
|
||||
self._astify(norm),
|
||||
self._astify(phase) & self._astify(cond)
|
||||
| AstAtom(f"force_{self.slugify(norm)}"),
|
||||
)
|
||||
case BasicNorm():
|
||||
rule = AstRule(self._astify(norm), self._astify(phase))
|
||||
|
||||
@@ -213,6 +283,11 @@ class AgentSpeakGenerator:
|
||||
def _add_default_loop(self, phase: Phase) -> None:
|
||||
actions = []
|
||||
|
||||
actions.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION, AstLiteral("notify_user_said", [AstVar("Message")])
|
||||
)
|
||||
)
|
||||
actions.append(AstStatement(StatementType.REMOVE_BELIEF, AstLiteral("responded_this_turn")))
|
||||
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("check_triggers")))
|
||||
|
||||
@@ -236,6 +311,7 @@ class AgentSpeakGenerator:
|
||||
phase: Phase,
|
||||
previous_goal: Goal | None = None,
|
||||
continues_response: bool = False,
|
||||
main_goal: bool = False,
|
||||
) -> None:
|
||||
context: list[AstExpression] = [self._astify(phase)]
|
||||
context.append(~self._astify(goal, achieved=True))
|
||||
@@ -245,6 +321,13 @@ class AgentSpeakGenerator:
|
||||
context.append(~AstLiteral("responded_this_turn"))
|
||||
|
||||
body = []
|
||||
if main_goal: # UI only needs to know about the main goals
|
||||
body.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral("notify_goal_start", [AstString(self.slugify(goal))]),
|
||||
)
|
||||
)
|
||||
|
||||
subgoals = []
|
||||
for step in goal.plan.steps:
|
||||
@@ -283,12 +366,28 @@ class AgentSpeakGenerator:
|
||||
body = []
|
||||
subgoals = []
|
||||
|
||||
body.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral("notify_trigger_start", [AstString(self.slugify(trigger))]),
|
||||
)
|
||||
)
|
||||
for step in trigger.plan.steps:
|
||||
body.append(self._step_to_statement(step))
|
||||
if isinstance(step, Goal):
|
||||
step.can_fail = False # triggers are continuous sequence
|
||||
subgoals.append(step)
|
||||
|
||||
# Arbitrary wait for UI to display nicely
|
||||
body.append(AstStatement(StatementType.DO_ACTION, AstLiteral("wait", [AstNumber(2000)])))
|
||||
|
||||
body.append(
|
||||
AstStatement(
|
||||
StatementType.DO_ACTION,
|
||||
AstLiteral("notify_trigger_end", [AstString(self.slugify(trigger))]),
|
||||
)
|
||||
)
|
||||
|
||||
self._asp.plans.append(
|
||||
AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
@@ -298,6 +397,9 @@ class AgentSpeakGenerator:
|
||||
)
|
||||
)
|
||||
|
||||
# Force trigger (from UI)
|
||||
self._asp.plans.append(AstPlan(TriggerType.ADDED_GOAL, self._astify(trigger), [], body))
|
||||
|
||||
for subgoal in subgoals:
|
||||
self._process_goal(subgoal, phase, continues_response=True)
|
||||
|
||||
@@ -332,13 +434,7 @@ class AgentSpeakGenerator:
|
||||
|
||||
@_astify.register
|
||||
def _(self, sb: SemanticBelief) -> AstExpression:
|
||||
return AstLiteral(self.get_semantic_belief_slug(sb))
|
||||
|
||||
@staticmethod
|
||||
def get_semantic_belief_slug(sb: SemanticBelief) -> str:
|
||||
# If you need a method like this for other types, make a public slugify singledispatch for
|
||||
# all types.
|
||||
return f"semantic_{AgentSpeakGenerator._slugify_str(sb.name)}"
|
||||
return AstLiteral(self.slugify(sb))
|
||||
|
||||
@_astify.register
|
||||
def _(self, ib: InferredBelief) -> AstExpression:
|
||||
@@ -383,6 +479,11 @@ class AgentSpeakGenerator:
|
||||
def slugify(element: ProgramElement) -> str:
|
||||
raise NotImplementedError(f"Cannot convert element {element} to a slug.")
|
||||
|
||||
@slugify.register
|
||||
@staticmethod
|
||||
def _(n: Norm) -> str:
|
||||
return f"norm_{AgentSpeakGenerator._slugify_str(n.norm)}"
|
||||
|
||||
@slugify.register
|
||||
@staticmethod
|
||||
def _(sb: SemanticBelief) -> str:
|
||||
@@ -390,7 +491,7 @@ class AgentSpeakGenerator:
|
||||
|
||||
@slugify.register
|
||||
@staticmethod
|
||||
def _(g: Goal) -> str:
|
||||
def _(g: BaseGoal) -> str:
|
||||
return AgentSpeakGenerator._slugify_str(g.name)
|
||||
|
||||
@slugify.register
|
||||
|
||||
@@ -1,203 +0,0 @@
|
||||
import typing
|
||||
from dataclasses import dataclass, field
|
||||
|
||||
# --- Types ---
|
||||
|
||||
|
||||
@dataclass
|
||||
class BeliefLiteral:
|
||||
"""
|
||||
Represents a literal or atom.
|
||||
Example: phase(1), user_said("hello"), ~started
|
||||
"""
|
||||
|
||||
functor: str
|
||||
args: list[str] = field(default_factory=list)
|
||||
negated: bool = False
|
||||
|
||||
def __str__(self):
|
||||
# In ASL, 'not' is usually for closed-world assumption (prolog style),
|
||||
# '~' is for explicit negation in beliefs.
|
||||
# For simplicity in behavior trees, we often use 'not' for conditions.
|
||||
prefix = "not " if self.negated else ""
|
||||
if not self.args:
|
||||
return f"{prefix}{self.functor}"
|
||||
|
||||
# Clean args to ensure strings are quoted if they look like strings,
|
||||
# but usually the converter handles the quoting of string literals.
|
||||
args_str = ", ".join(self.args)
|
||||
return f"{prefix}{self.functor}({args_str})"
|
||||
|
||||
|
||||
@dataclass
|
||||
class GoalLiteral:
|
||||
name: str
|
||||
|
||||
def __str__(self):
|
||||
return f"!{self.name}"
|
||||
|
||||
|
||||
@dataclass
|
||||
class ActionLiteral:
|
||||
"""
|
||||
Represents a step in a plan body.
|
||||
Example: .say("Hello") or !achieve_goal
|
||||
"""
|
||||
|
||||
code: str
|
||||
|
||||
def __str__(self):
|
||||
return self.code
|
||||
|
||||
|
||||
@dataclass
|
||||
class BinaryOp:
|
||||
"""
|
||||
Represents logical operations.
|
||||
Example: (A & B) | C
|
||||
"""
|
||||
|
||||
left: "Expression | str"
|
||||
operator: typing.Literal["&", "|"]
|
||||
right: "Expression | str"
|
||||
|
||||
def __str__(self):
|
||||
l_str = str(self.left)
|
||||
r_str = str(self.right)
|
||||
|
||||
if isinstance(self.left, BinaryOp):
|
||||
l_str = f"({l_str})"
|
||||
if isinstance(self.right, BinaryOp):
|
||||
r_str = f"({r_str})"
|
||||
|
||||
return f"{l_str} {self.operator} {r_str}"
|
||||
|
||||
|
||||
Literal = BeliefLiteral | GoalLiteral | ActionLiteral
|
||||
Expression = Literal | BinaryOp | str
|
||||
|
||||
|
||||
@dataclass
|
||||
class Rule:
|
||||
"""
|
||||
Represents an inference rule.
|
||||
Example: head :- body.
|
||||
"""
|
||||
|
||||
head: Expression
|
||||
body: Expression | None = None
|
||||
|
||||
def __str__(self):
|
||||
if not self.body:
|
||||
return f"{self.head}."
|
||||
return f"{self.head} :- {self.body}."
|
||||
|
||||
|
||||
@dataclass
|
||||
class PersistentRule:
|
||||
"""
|
||||
Represents an inference rule, where the inferred belief is persistent when formed.
|
||||
"""
|
||||
|
||||
head: Expression
|
||||
body: Expression
|
||||
|
||||
def __str__(self):
|
||||
if not self.body:
|
||||
raise Exception("Rule without body should not be persistent.")
|
||||
|
||||
lines = []
|
||||
|
||||
if isinstance(self.body, BinaryOp):
|
||||
lines.append(f"+{self.body.left}")
|
||||
if self.body.operator == "&":
|
||||
lines.append(f" : {self.body.right}")
|
||||
lines.append(f" <- +{self.head}.")
|
||||
if self.body.operator == "|":
|
||||
lines.append(f"+{self.body.right}")
|
||||
lines.append(f" <- +{self.head}.")
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
@dataclass
|
||||
class Plan:
|
||||
"""
|
||||
Represents a plan.
|
||||
Syntax: +trigger : context <- body.
|
||||
"""
|
||||
|
||||
trigger: BeliefLiteral | GoalLiteral
|
||||
context: list[Expression] = field(default_factory=list)
|
||||
body: list[ActionLiteral] = field(default_factory=list)
|
||||
|
||||
def __str__(self):
|
||||
# Indentation settings
|
||||
INDENT = " "
|
||||
ARROW = "\n <- "
|
||||
COLON = "\n : "
|
||||
|
||||
# Build Header
|
||||
header = f"+{self.trigger}"
|
||||
if self.context:
|
||||
ctx_str = f" &\n{INDENT}".join(str(c) for c in self.context)
|
||||
header += f"{COLON}{ctx_str}"
|
||||
|
||||
# Case 1: Empty body
|
||||
if not self.body:
|
||||
return f"{header}."
|
||||
|
||||
# Case 2: Short body (optional optimization, keeping it uniform usually better)
|
||||
header += ARROW
|
||||
|
||||
lines = []
|
||||
# We start the first action on the same line or next line.
|
||||
# Let's put it on the next line for readability if there are multiple.
|
||||
|
||||
if len(self.body) == 1:
|
||||
return f"{header}{self.body[0]}."
|
||||
|
||||
# First item
|
||||
lines.append(f"{header}{self.body[0]};")
|
||||
# Middle items
|
||||
for item in self.body[1:-1]:
|
||||
lines.append(f"{INDENT}{item};")
|
||||
# Last item
|
||||
lines.append(f"{INDENT}{self.body[-1]}.")
|
||||
|
||||
return "\n".join(lines)
|
||||
|
||||
|
||||
@dataclass
|
||||
class AgentSpeakFile:
|
||||
"""
|
||||
Root element representing the entire generated file.
|
||||
"""
|
||||
|
||||
initial_beliefs: list[Rule] = field(default_factory=list)
|
||||
inference_rules: list[Rule | PersistentRule] = field(default_factory=list)
|
||||
plans: list[Plan] = field(default_factory=list)
|
||||
|
||||
def __str__(self):
|
||||
sections = []
|
||||
|
||||
if self.initial_beliefs:
|
||||
sections.append("// --- Initial Beliefs & Facts ---")
|
||||
sections.extend(str(rule) for rule in self.initial_beliefs)
|
||||
sections.append("")
|
||||
|
||||
if self.inference_rules:
|
||||
sections.append("// --- Inference Rules ---")
|
||||
sections.extend(str(rule) for rule in self.inference_rules if isinstance(rule, Rule))
|
||||
sections.append("")
|
||||
sections.extend(
|
||||
str(rule) for rule in self.inference_rules if isinstance(rule, PersistentRule)
|
||||
)
|
||||
sections.append("")
|
||||
|
||||
if self.plans:
|
||||
sections.append("// --- Plans ---")
|
||||
# Separate plans by a newline for readability
|
||||
sections.extend(str(plan) + "\n" for plan in self.plans)
|
||||
|
||||
return "\n".join(sections)
|
||||
@@ -1,425 +0,0 @@
|
||||
import asyncio
|
||||
import time
|
||||
from functools import singledispatchmethod
|
||||
|
||||
from slugify import slugify
|
||||
|
||||
from control_backend.agents.bdi import BDICoreAgent
|
||||
from control_backend.agents.bdi.asl_ast import (
|
||||
ActionLiteral,
|
||||
AgentSpeakFile,
|
||||
BeliefLiteral,
|
||||
BinaryOp,
|
||||
Expression,
|
||||
GoalLiteral,
|
||||
PersistentRule,
|
||||
Plan,
|
||||
Rule,
|
||||
)
|
||||
from control_backend.agents.bdi.bdi_program_manager import test_program
|
||||
from control_backend.schemas.program import (
|
||||
BasicBelief,
|
||||
Belief,
|
||||
ConditionalNorm,
|
||||
GestureAction,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
KeywordBelief,
|
||||
LLMAction,
|
||||
LogicalOperator,
|
||||
Phase,
|
||||
Program,
|
||||
ProgramElement,
|
||||
SemanticBelief,
|
||||
SpeechAction,
|
||||
)
|
||||
|
||||
|
||||
async def do_things():
|
||||
res = input("Wanna generate")
|
||||
if res == "y":
|
||||
program = AgentSpeakGenerator().generate(test_program)
|
||||
filename = f"{int(time.time())}.asl"
|
||||
with open(filename, "w") as f:
|
||||
f.write(program)
|
||||
else:
|
||||
# filename = "0test.asl"
|
||||
filename = "1766062491.asl"
|
||||
bdi_agent = BDICoreAgent("BDICoreAgent", filename)
|
||||
flag = asyncio.Event()
|
||||
await bdi_agent.start()
|
||||
await flag.wait()
|
||||
|
||||
|
||||
def do_other_things():
|
||||
print(AgentSpeakGenerator().generate(test_program))
|
||||
|
||||
|
||||
class AgentSpeakGenerator:
|
||||
"""
|
||||
Converts a Pydantic Program behavior model into an AgentSpeak(L) AST,
|
||||
then renders it to a string.
|
||||
"""
|
||||
|
||||
def generate(self, program: Program) -> str:
|
||||
asl = AgentSpeakFile()
|
||||
|
||||
self._generate_startup(program, asl)
|
||||
|
||||
for i, phase in enumerate(program.phases):
|
||||
next_phase = program.phases[i + 1] if i < len(program.phases) - 1 else None
|
||||
|
||||
self._generate_phase_flow(phase, next_phase, asl)
|
||||
|
||||
self._generate_norms(phase, asl)
|
||||
|
||||
self._generate_goals(phase, asl)
|
||||
|
||||
self._generate_triggers(phase, asl)
|
||||
|
||||
self._generate_fallbacks(program, asl)
|
||||
|
||||
return str(asl)
|
||||
|
||||
# --- Section: Startup & Phase Management ---
|
||||
|
||||
def _generate_startup(self, program: Program, asl: AgentSpeakFile):
|
||||
if not program.phases:
|
||||
return
|
||||
|
||||
# Initial belief: phase(start).
|
||||
asl.initial_beliefs.append(Rule(head=BeliefLiteral("phase", ['"start"'])))
|
||||
|
||||
# Startup plan: +started : phase(start) <- -phase(start); +phase(first_id).
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=BeliefLiteral("started"),
|
||||
context=[BeliefLiteral("phase", ['"start"'])],
|
||||
body=[
|
||||
ActionLiteral('-phase("start")'),
|
||||
ActionLiteral(f'+phase("{program.phases[0].id}")'),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
# Initial plans:
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=GoalLiteral("generate_response_with_goal(Goal)"),
|
||||
context=[BeliefLiteral("user_said", ["Message"])],
|
||||
body=[
|
||||
ActionLiteral("+responded_this_turn"),
|
||||
ActionLiteral(".findall(Norm, norm(Norm), Norms)"),
|
||||
ActionLiteral(".reply_with_goal(Message, Norms, Goal)"),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
def _generate_phase_flow(self, phase: Phase, next_phase: Phase | None, asl: AgentSpeakFile):
|
||||
"""Generates the main loop listener and the transition logic for this phase."""
|
||||
|
||||
# +user_said(Message) : phase(ID) <- !goal1; !goal2; !transition_phase.
|
||||
goal_actions = [ActionLiteral("-responded_this_turn")]
|
||||
goal_actions += [
|
||||
ActionLiteral(f"!check_{self._slugify_str(keyword)}")
|
||||
for keyword in self._get_keyword_conditionals(phase)
|
||||
]
|
||||
goal_actions += [ActionLiteral(f"!{self._slugify(g)}") for g in phase.goals]
|
||||
goal_actions.append(ActionLiteral("!transition_phase"))
|
||||
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=BeliefLiteral("user_said", ["Message"]),
|
||||
context=[BeliefLiteral("phase", [f'"{phase.id}"'])],
|
||||
body=goal_actions,
|
||||
)
|
||||
)
|
||||
|
||||
# +!transition_phase : phase(ID) <- -phase(ID); +(NEXT_ID).
|
||||
next_id = str(next_phase.id) if next_phase else "end"
|
||||
|
||||
transition_context = [BeliefLiteral("phase", [f'"{phase.id}"'])]
|
||||
if phase.goals:
|
||||
transition_context.append(BeliefLiteral(f"achieved_{self._slugify(phase.goals[-1])}"))
|
||||
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=GoalLiteral("transition_phase"),
|
||||
context=transition_context,
|
||||
body=[
|
||||
ActionLiteral(f'-phase("{phase.id}")'),
|
||||
ActionLiteral(f'+phase("{next_id}")'),
|
||||
ActionLiteral("user_said(Anything)"),
|
||||
ActionLiteral("-+user_said(Anything)"),
|
||||
],
|
||||
)
|
||||
)
|
||||
|
||||
def _get_keyword_conditionals(self, phase: Phase) -> list[str]:
|
||||
res = []
|
||||
for belief in self._extract_basic_beliefs_from_phase(phase):
|
||||
if isinstance(belief, KeywordBelief):
|
||||
res.append(belief.keyword)
|
||||
|
||||
return res
|
||||
|
||||
# --- Section: Norms & Beliefs ---
|
||||
|
||||
def _generate_norms(self, phase: Phase, asl: AgentSpeakFile):
|
||||
for norm in phase.norms:
|
||||
norm_slug = f'"{norm.norm}"'
|
||||
head = BeliefLiteral("norm", [norm_slug])
|
||||
|
||||
# Base context is the phase
|
||||
phase_lit = BeliefLiteral("phase", [f'"{phase.id}"'])
|
||||
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
self._ensure_belief_inference(norm.condition, asl)
|
||||
|
||||
condition_expr = self._belief_to_expr(norm.condition)
|
||||
body = BinaryOp(phase_lit, "&", condition_expr)
|
||||
else:
|
||||
body = phase_lit
|
||||
|
||||
asl.inference_rules.append(Rule(head=head, body=body))
|
||||
|
||||
def _ensure_belief_inference(self, belief: Belief, asl: AgentSpeakFile):
|
||||
"""
|
||||
Recursively adds rules to infer beliefs.
|
||||
Checks strictly to avoid duplicates if necessary,
|
||||
though ASL engines often handle redefinition or we can use a set to track processed IDs.
|
||||
"""
|
||||
if isinstance(belief, KeywordBelief):
|
||||
pass
|
||||
# # Rule: keyword_said("word") :- user_said(M) & .substring("word", M, P) & P >= 0.
|
||||
# kwd_slug = f'"{belief.keyword}"'
|
||||
# head = BeliefLiteral("keyword_said", [kwd_slug])
|
||||
#
|
||||
# # Avoid duplicates
|
||||
# if any(str(r.head) == str(head) for r in asl.inference_rules):
|
||||
# return
|
||||
#
|
||||
# body = BinaryOp(
|
||||
# BeliefLiteral("user_said", ["Message"]),
|
||||
# "&",
|
||||
# BinaryOp(f".substring({kwd_slug}, Message, Pos)", "&", "Pos >= 0"),
|
||||
# )
|
||||
#
|
||||
# asl.inference_rules.append(Rule(head=head, body=body))
|
||||
|
||||
elif isinstance(belief, InferredBelief):
|
||||
self._ensure_belief_inference(belief.left, asl)
|
||||
self._ensure_belief_inference(belief.right, asl)
|
||||
|
||||
slug = self._slugify(belief)
|
||||
head = BeliefLiteral(slug)
|
||||
|
||||
if any(str(r.head) == str(head) for r in asl.inference_rules):
|
||||
return
|
||||
|
||||
op_char = "&" if belief.operator == LogicalOperator.AND else "|"
|
||||
body = BinaryOp(
|
||||
self._belief_to_expr(belief.left), op_char, self._belief_to_expr(belief.right)
|
||||
)
|
||||
asl.inference_rules.append(PersistentRule(head=head, body=body))
|
||||
|
||||
def _belief_to_expr(self, belief: Belief) -> Expression:
|
||||
if isinstance(belief, KeywordBelief):
|
||||
return BeliefLiteral("keyword_said", [f'"{belief.keyword}"'])
|
||||
else:
|
||||
return BeliefLiteral(self._slugify(belief))
|
||||
|
||||
# --- Section: Goals ---
|
||||
|
||||
def _generate_goals(self, phase: Phase, asl: AgentSpeakFile):
|
||||
previous_goal: Goal | None = None
|
||||
for goal in phase.goals:
|
||||
self._generate_goal_plan_recursive(goal, str(phase.id), previous_goal, asl)
|
||||
previous_goal = goal
|
||||
|
||||
def _generate_goal_plan_recursive(
|
||||
self,
|
||||
goal: Goal,
|
||||
phase_id: str,
|
||||
previous_goal: Goal | None,
|
||||
asl: AgentSpeakFile,
|
||||
responded_needed: bool = True,
|
||||
can_fail: bool = True,
|
||||
):
|
||||
goal_slug = self._slugify(goal)
|
||||
|
||||
# phase(ID) & not responded_this_turn & not achieved_goal
|
||||
context = [
|
||||
BeliefLiteral("phase", [f'"{phase_id}"']),
|
||||
]
|
||||
|
||||
if responded_needed:
|
||||
context.append(BeliefLiteral("responded_this_turn", negated=True))
|
||||
if can_fail:
|
||||
context.append(BeliefLiteral(f"achieved_{goal_slug}", negated=True))
|
||||
|
||||
if previous_goal:
|
||||
prev_slug = self._slugify(previous_goal)
|
||||
context.append(BeliefLiteral(f"achieved_{prev_slug}"))
|
||||
|
||||
body_actions = []
|
||||
sub_goals_to_process = []
|
||||
|
||||
for step in goal.plan.steps:
|
||||
if isinstance(step, Goal):
|
||||
sub_slug = self._slugify(step)
|
||||
body_actions.append(ActionLiteral(f"!{sub_slug}"))
|
||||
sub_goals_to_process.append(step)
|
||||
elif isinstance(step, SpeechAction):
|
||||
body_actions.append(ActionLiteral(f'.say("{step.text}")'))
|
||||
elif isinstance(step, GestureAction):
|
||||
body_actions.append(ActionLiteral(f'.gesture("{step.gesture}")'))
|
||||
elif isinstance(step, LLMAction):
|
||||
body_actions.append(ActionLiteral(f'!generate_response_with_goal("{step.goal}")'))
|
||||
|
||||
# Mark achievement
|
||||
if not goal.can_fail:
|
||||
body_actions.append(ActionLiteral(f"+achieved_{goal_slug}"))
|
||||
|
||||
asl.plans.append(Plan(trigger=GoalLiteral(goal_slug), context=context, body=body_actions))
|
||||
asl.plans.append(
|
||||
Plan(trigger=GoalLiteral(goal_slug), context=[], body=[ActionLiteral("true")])
|
||||
)
|
||||
|
||||
prev_sub = None
|
||||
for sub_goal in sub_goals_to_process:
|
||||
self._generate_goal_plan_recursive(sub_goal, phase_id, prev_sub, asl)
|
||||
prev_sub = sub_goal
|
||||
|
||||
# --- Section: Triggers ---
|
||||
|
||||
def _generate_triggers(self, phase: Phase, asl: AgentSpeakFile):
|
||||
for keyword in self._get_keyword_conditionals(phase):
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=GoalLiteral(f"check_{self._slugify_str(keyword)}"),
|
||||
context=[
|
||||
ActionLiteral(
|
||||
f'user_said(Message) & .substring("{keyword}", Message, Pos) & Pos >= 0'
|
||||
)
|
||||
],
|
||||
body=[
|
||||
ActionLiteral(f'+keyword_said("{keyword}")'),
|
||||
ActionLiteral(f'-keyword_said("{keyword}")'),
|
||||
],
|
||||
)
|
||||
)
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=GoalLiteral(f"check_{self._slugify_str(keyword)}"),
|
||||
body=[ActionLiteral("true")],
|
||||
)
|
||||
)
|
||||
|
||||
for trigger in phase.triggers:
|
||||
self._ensure_belief_inference(trigger.condition, asl)
|
||||
|
||||
trigger_belief_slug = self._belief_to_expr(trigger.condition)
|
||||
|
||||
body_actions = []
|
||||
sub_goals = []
|
||||
|
||||
for step in trigger.plan.steps:
|
||||
if isinstance(step, Goal):
|
||||
sub_slug = self._slugify(step)
|
||||
body_actions.append(ActionLiteral(f"!{sub_slug}"))
|
||||
sub_goals.append(step)
|
||||
elif isinstance(step, SpeechAction):
|
||||
body_actions.append(ActionLiteral(f'.say("{step.text}")'))
|
||||
elif isinstance(step, GestureAction):
|
||||
body_actions.append(
|
||||
ActionLiteral(f'.gesture("{step.gesture.type}", "{step.gesture.name}")')
|
||||
)
|
||||
elif isinstance(step, LLMAction):
|
||||
body_actions.append(
|
||||
ActionLiteral(f'!generate_response_with_goal("{step.goal}")')
|
||||
)
|
||||
|
||||
asl.plans.append(
|
||||
Plan(
|
||||
trigger=BeliefLiteral(trigger_belief_slug),
|
||||
context=[BeliefLiteral("phase", [f'"{phase.id}"'])],
|
||||
body=body_actions,
|
||||
)
|
||||
)
|
||||
|
||||
# Recurse for triggered goals
|
||||
prev_sub = None
|
||||
for sub_goal in sub_goals:
|
||||
self._generate_goal_plan_recursive(
|
||||
sub_goal, str(phase.id), prev_sub, asl, False, False
|
||||
)
|
||||
prev_sub = sub_goal
|
||||
|
||||
# --- Section: Fallbacks ---
|
||||
|
||||
def _generate_fallbacks(self, program: Program, asl: AgentSpeakFile):
|
||||
asl.plans.append(
|
||||
Plan(trigger=GoalLiteral("transition_phase"), context=[], body=[ActionLiteral("true")])
|
||||
)
|
||||
|
||||
# --- Helpers ---
|
||||
|
||||
@singledispatchmethod
|
||||
def _slugify(self, element: ProgramElement) -> str:
|
||||
if element.name:
|
||||
raise NotImplementedError("Cannot slugify this element.")
|
||||
return self._slugify_str(element.name)
|
||||
|
||||
@_slugify.register
|
||||
def _(self, goal: Goal) -> str:
|
||||
if goal.name:
|
||||
return self._slugify_str(goal.name)
|
||||
return f"goal_{goal.id.hex}"
|
||||
|
||||
@_slugify.register
|
||||
def _(self, kwb: KeywordBelief) -> str:
|
||||
return f"keyword_said({kwb.keyword})"
|
||||
|
||||
@_slugify.register
|
||||
def _(self, sb: SemanticBelief) -> str:
|
||||
return self._slugify_str(sb.description)
|
||||
|
||||
@_slugify.register
|
||||
def _(self, ib: InferredBelief) -> str:
|
||||
return self._slugify_str(ib.name)
|
||||
|
||||
def _slugify_str(self, text: str) -> str:
|
||||
return slugify(text, separator="_", stopwords=["a", "an", "the", "we", "you", "I"])
|
||||
|
||||
def _extract_basic_beliefs_from_program(self, program: Program) -> list[BasicBelief]:
|
||||
beliefs = []
|
||||
|
||||
for phase in program.phases:
|
||||
beliefs.extend(self._extract_basic_beliefs_from_phase(phase))
|
||||
|
||||
return beliefs
|
||||
|
||||
def _extract_basic_beliefs_from_phase(self, phase: Phase) -> list[BasicBelief]:
|
||||
beliefs = []
|
||||
|
||||
for norm in phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
beliefs += self._extract_basic_beliefs_from_belief(norm.condition)
|
||||
|
||||
for trigger in phase.triggers:
|
||||
beliefs += self._extract_basic_beliefs_from_belief(trigger.condition)
|
||||
|
||||
return beliefs
|
||||
|
||||
def _extract_basic_beliefs_from_belief(self, belief: Belief) -> list[BasicBelief]:
|
||||
if isinstance(belief, InferredBelief):
|
||||
return self._extract_basic_beliefs_from_belief(
|
||||
belief.left
|
||||
) + self._extract_basic_beliefs_from_belief(belief.right)
|
||||
return [belief]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
asyncio.run(do_things())
|
||||
# do_other_things()y
|
||||
@@ -1,5 +1,6 @@
|
||||
import asyncio
|
||||
import copy
|
||||
import json
|
||||
import time
|
||||
from collections.abc import Iterable
|
||||
|
||||
@@ -13,7 +14,7 @@ from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.llm_prompt_message import LLMPromptMessage
|
||||
from control_backend.schemas.ri_message import SpeechCommand
|
||||
from control_backend.schemas.ri_message import GestureCommand, RIEndpoint, SpeechCommand
|
||||
|
||||
DELIMITER = ";\n" # TODO: temporary until we support lists in AgentSpeak
|
||||
|
||||
@@ -100,14 +101,12 @@ class BDICoreAgent(BaseAgent):
|
||||
maybe_more_work = True
|
||||
while maybe_more_work:
|
||||
maybe_more_work = False
|
||||
self.logger.debug("Stepping BDI.")
|
||||
if self.bdi_agent.step():
|
||||
maybe_more_work = True
|
||||
|
||||
if not maybe_more_work:
|
||||
deadline = self.bdi_agent.shortest_deadline()
|
||||
if deadline:
|
||||
self.logger.debug("Sleeping until %s", deadline)
|
||||
await asyncio.sleep(deadline - time.time())
|
||||
maybe_more_work = True
|
||||
else:
|
||||
@@ -155,6 +154,20 @@ class BDICoreAgent(BaseAgent):
|
||||
body=cmd.model_dump_json(),
|
||||
)
|
||||
await self.send(out_msg)
|
||||
case settings.agent_settings.user_interrupt_name:
|
||||
self.logger.debug("Received user interruption: %s", msg)
|
||||
|
||||
match msg.thread:
|
||||
case "force_phase_transition":
|
||||
self._set_goal("transition_phase")
|
||||
case "force_trigger":
|
||||
self._force_trigger(msg.body)
|
||||
case "force_norm":
|
||||
self._force_norm(msg.body)
|
||||
case "force_next_phase":
|
||||
self._force_next_phase()
|
||||
case _:
|
||||
self.logger.warning("Received unknown user interruption: %s", msg)
|
||||
|
||||
def _apply_belief_changes(self, belief_changes: BeliefMessage):
|
||||
"""
|
||||
@@ -201,16 +214,35 @@ class BDICoreAgent(BaseAgent):
|
||||
agentspeak.runtime.Intention(),
|
||||
)
|
||||
|
||||
# Check for transitions
|
||||
self.bdi_agent.call(
|
||||
agentspeak.Trigger.addition,
|
||||
agentspeak.GoalType.achievement,
|
||||
agentspeak.Literal("transition_phase"),
|
||||
agentspeak.runtime.Intention(),
|
||||
)
|
||||
|
||||
# Check triggers
|
||||
self.bdi_agent.call(
|
||||
agentspeak.Trigger.addition,
|
||||
agentspeak.GoalType.achievement,
|
||||
agentspeak.Literal("check_triggers"),
|
||||
agentspeak.runtime.Intention(),
|
||||
)
|
||||
|
||||
self._wake_bdi_loop.set()
|
||||
|
||||
self.logger.debug(f"Added belief {self.format_belief_string(name, args)}")
|
||||
|
||||
def _remove_belief(self, name: str, args: Iterable[str]):
|
||||
def _remove_belief(self, name: str, args: Iterable[str] | None):
|
||||
"""
|
||||
Removes a specific belief (with arguments), if it exists.
|
||||
"""
|
||||
new_args = (agentspeak.Literal(arg) for arg in args)
|
||||
term = agentspeak.Literal(name, new_args)
|
||||
if args is None:
|
||||
term = agentspeak.Literal(name)
|
||||
else:
|
||||
new_args = (agentspeak.Literal(arg) for arg in args)
|
||||
term = agentspeak.Literal(name, new_args)
|
||||
|
||||
result = self.bdi_agent.call(
|
||||
agentspeak.Trigger.removal,
|
||||
@@ -250,6 +282,43 @@ class BDICoreAgent(BaseAgent):
|
||||
|
||||
self.logger.debug(f"Removed {removed_count} beliefs.")
|
||||
|
||||
def _set_goal(self, name: str, args: Iterable[str] | None = None):
|
||||
args = args or []
|
||||
|
||||
if args:
|
||||
merged_args = DELIMITER.join(arg for arg in args)
|
||||
new_args = (agentspeak.Literal(merged_args),)
|
||||
term = agentspeak.Literal(name, new_args)
|
||||
else:
|
||||
term = agentspeak.Literal(name)
|
||||
|
||||
self.bdi_agent.call(
|
||||
agentspeak.Trigger.addition,
|
||||
agentspeak.GoalType.achievement,
|
||||
term,
|
||||
agentspeak.runtime.Intention(),
|
||||
)
|
||||
|
||||
self._wake_bdi_loop.set()
|
||||
|
||||
self.logger.debug(f"Set goal !{self.format_belief_string(name, args)}.")
|
||||
|
||||
def _force_trigger(self, name: str):
|
||||
self._set_goal(name)
|
||||
|
||||
self.logger.info("Manually forced trigger %s.", name)
|
||||
|
||||
# TODO: make this compatible for critical norms
|
||||
def _force_norm(self, name: str):
|
||||
self._add_belief(f"force_{name}")
|
||||
|
||||
self.logger.info("Manually forced norm %s.", name)
|
||||
|
||||
def _force_next_phase(self):
|
||||
self._set_goal("force_transition_phase")
|
||||
|
||||
self.logger.info("Manually forced phase transition.")
|
||||
|
||||
def _add_custom_actions(self) -> None:
|
||||
"""
|
||||
Add any custom actions here. Inside `@self.actions.add()`, the first argument is
|
||||
@@ -258,16 +327,13 @@ class BDICoreAgent(BaseAgent):
|
||||
"""
|
||||
|
||||
@self.actions.add(".reply", 2)
|
||||
def _reply(agent: "BDICoreAgent", term, intention):
|
||||
def _reply(agent, term, intention):
|
||||
"""
|
||||
Let the LLM generate a response to a user's utterance with the current norms and goals.
|
||||
"""
|
||||
message_text = agentspeak.grounded(term.args[0], intention.scope)
|
||||
norms = agentspeak.grounded(term.args[1], intention.scope)
|
||||
|
||||
self.logger.debug("Norms: %s", norms)
|
||||
self.logger.debug("User text: %s", message_text)
|
||||
|
||||
self.add_behavior(self._send_to_llm(str(message_text), str(norms), ""))
|
||||
yield
|
||||
|
||||
@@ -280,18 +346,24 @@ class BDICoreAgent(BaseAgent):
|
||||
message_text = agentspeak.grounded(term.args[0], intention.scope)
|
||||
norms = agentspeak.grounded(term.args[1], intention.scope)
|
||||
goal = agentspeak.grounded(term.args[2], intention.scope)
|
||||
|
||||
self.logger.debug(
|
||||
'"reply_with_goal" action called with message=%s, norms=%s, goal=%s',
|
||||
message_text,
|
||||
norms,
|
||||
goal,
|
||||
)
|
||||
self.add_behavior(self._send_to_llm(str(message_text), str(norms), str(goal)))
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_norms", 1)
|
||||
def _notify_norms(agent, term, intention):
|
||||
norms = agentspeak.grounded(term.args[0], intention.scope)
|
||||
|
||||
norm_update_message = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
thread="active_norms_update",
|
||||
body=str(norms),
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(norm_update_message, should_log=False))
|
||||
yield
|
||||
|
||||
@self.actions.add(".say", 1)
|
||||
def _say(agent: "BDICoreAgent", term, intention):
|
||||
def _say(agent, term, intention):
|
||||
"""
|
||||
Make the robot say the given text instantly.
|
||||
"""
|
||||
@@ -305,12 +377,21 @@ class BDICoreAgent(BaseAgent):
|
||||
sender=settings.agent_settings.bdi_core_name,
|
||||
body=speech_command.model_dump_json(),
|
||||
)
|
||||
# TODO: add to conversation history
|
||||
|
||||
self.add_behavior(self.send(speech_message))
|
||||
|
||||
chat_history_message = InternalMessage(
|
||||
to=settings.agent_settings.llm_name,
|
||||
thread="assistant_message",
|
||||
body=str(message_text),
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(chat_history_message))
|
||||
|
||||
yield
|
||||
|
||||
@self.actions.add(".gesture", 2)
|
||||
def _gesture(agent: "BDICoreAgent", term, intention):
|
||||
def _gesture(agent, term, intention):
|
||||
"""
|
||||
Make the robot perform the given gesture instantly.
|
||||
"""
|
||||
@@ -323,15 +404,118 @@ class BDICoreAgent(BaseAgent):
|
||||
gesture_name,
|
||||
)
|
||||
|
||||
# gesture = Gesture(type=gesture_type, name=gesture_name)
|
||||
# gesture_message = InternalMessage(
|
||||
# to=settings.agent_settings.robot_gesture_name,
|
||||
# sender=settings.agent_settings.bdi_core_name,
|
||||
# body=gesture.model_dump_json(),
|
||||
# )
|
||||
# asyncio.create_task(agent.send(gesture_message))
|
||||
if str(gesture_type) == "single":
|
||||
endpoint = RIEndpoint.GESTURE_SINGLE
|
||||
elif str(gesture_type) == "tag":
|
||||
endpoint = RIEndpoint.GESTURE_TAG
|
||||
else:
|
||||
self.logger.warning("Gesture type %s could not be resolved.", gesture_type)
|
||||
endpoint = RIEndpoint.GESTURE_SINGLE
|
||||
|
||||
gesture_command = GestureCommand(endpoint=endpoint, data=gesture_name)
|
||||
gesture_message = InternalMessage(
|
||||
to=settings.agent_settings.robot_gesture_name,
|
||||
sender=settings.agent_settings.bdi_core_name,
|
||||
body=gesture_command.model_dump_json(),
|
||||
)
|
||||
self.add_behavior(self.send(gesture_message))
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_user_said", 1)
|
||||
def _notify_user_said(agent, term, intention):
|
||||
user_said = agentspeak.grounded(term.args[0], intention.scope)
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.llm_name, thread="user_message", body=str(user_said)
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_trigger_start", 1)
|
||||
def _notify_trigger_start(agent, term, intention):
|
||||
"""
|
||||
Notify the UI about the trigger we just started doing.
|
||||
"""
|
||||
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
|
||||
|
||||
self.logger.debug("Started trigger %s", trigger_name)
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
sender=self.name,
|
||||
thread="trigger_start",
|
||||
body=str(trigger_name),
|
||||
)
|
||||
|
||||
# TODO: check with Pim
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_trigger_end", 1)
|
||||
def _notify_trigger_end(agent, term, intention):
|
||||
"""
|
||||
Notify the UI about the trigger we just started doing.
|
||||
"""
|
||||
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
|
||||
|
||||
self.logger.debug("Finished trigger %s", trigger_name)
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
sender=self.name,
|
||||
thread="trigger_end",
|
||||
body=str(trigger_name),
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_goal_start", 1)
|
||||
def _notify_goal_start(agent, term, intention):
|
||||
"""
|
||||
Notify the UI about the goal we just started chasing.
|
||||
"""
|
||||
goal_name = agentspeak.grounded(term.args[0], intention.scope)
|
||||
|
||||
self.logger.debug("Started chasing goal %s", goal_name)
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
sender=self.name,
|
||||
thread="goal_start",
|
||||
body=str(goal_name),
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_transition_phase", 2)
|
||||
def _notify_transition_phase(agent, term, intention):
|
||||
"""
|
||||
Notify the BDI program manager about a phase transition.
|
||||
"""
|
||||
old = agentspeak.grounded(term.args[0], intention.scope)
|
||||
new = agentspeak.grounded(term.args[1], intention.scope)
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_program_manager_name,
|
||||
thread="transition_phase",
|
||||
body=json.dumps({"old": str(old), "new": str(new)}),
|
||||
)
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
yield
|
||||
|
||||
@self.actions.add(".notify_ui", 0)
|
||||
def _notify_ui(agent, term, intention):
|
||||
pass
|
||||
|
||||
async def _send_to_llm(self, text: str, norms: str, goals: str):
|
||||
"""
|
||||
Sends a text query to the LLM agent asynchronously.
|
||||
@@ -341,13 +525,14 @@ class BDICoreAgent(BaseAgent):
|
||||
to=settings.agent_settings.llm_name,
|
||||
sender=self.name,
|
||||
body=prompt.model_dump_json(),
|
||||
thread="prompt_message",
|
||||
)
|
||||
await self.send(msg)
|
||||
self.logger.info("Message sent to LLM agent: %s", text)
|
||||
|
||||
@staticmethod
|
||||
def format_belief_string(name: str, args: Iterable[str] = []):
|
||||
def format_belief_string(name: str, args: Iterable[str] | None = []):
|
||||
"""
|
||||
Given a belief's name and its args, return a string of the form "name(*args)"
|
||||
"""
|
||||
return f"{name}{'(' if args else ''}{','.join(args)}{')' if args else ''}"
|
||||
return f"{name}{'(' if args else ''}{','.join(args or [])}{')' if args else ''}"
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import asyncio
|
||||
import json
|
||||
|
||||
import zmq
|
||||
from pydantic import ValidationError
|
||||
@@ -7,9 +8,16 @@ from zmq.asyncio import Context
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_list import BeliefList
|
||||
from control_backend.schemas.belief_list import BeliefList, GoalList
|
||||
from control_backend.schemas.internal_message import InternalMessage
|
||||
from control_backend.schemas.program import Belief, ConditionalNorm, InferredBelief, Program
|
||||
from control_backend.schemas.program import (
|
||||
Belief,
|
||||
ConditionalNorm,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
Phase,
|
||||
Program,
|
||||
)
|
||||
|
||||
|
||||
class BDIProgramManager(BaseAgent):
|
||||
@@ -24,20 +32,30 @@ class BDIProgramManager(BaseAgent):
|
||||
:ivar sub_socket: The ZMQ SUB socket used to receive program updates.
|
||||
"""
|
||||
|
||||
_program: Program
|
||||
_phase: Phase | None
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.sub_socket = None
|
||||
|
||||
def _initialize_internal_state(self, program: Program):
|
||||
self._program = program
|
||||
self._phase = program.phases[0] # start in first phase
|
||||
self._goal_mapping: dict[str, Goal] = {}
|
||||
for phase in program.phases:
|
||||
for goal in phase.goals:
|
||||
self._populate_goal_mapping_with_goal(goal)
|
||||
|
||||
def _populate_goal_mapping_with_goal(self, goal: Goal):
|
||||
self._goal_mapping[str(goal.id)] = goal
|
||||
for step in goal.plan.steps:
|
||||
if isinstance(step, Goal):
|
||||
self._populate_goal_mapping_with_goal(step)
|
||||
|
||||
async def _create_agentspeak_and_send_to_bdi(self, program: Program):
|
||||
"""
|
||||
Convert a received program into BDI beliefs and send them to the BDI Core Agent.
|
||||
|
||||
Currently, it takes the **first phase** of the program and extracts:
|
||||
- **Norms**: Constraints or rules the agent must follow.
|
||||
- **Goals**: Objectives the agent must achieve.
|
||||
|
||||
These are sent as a ``BeliefMessage`` with ``replace=True``, meaning they will
|
||||
overwrite any existing norms/goals of the same name in the BDI agent.
|
||||
Convert a received program into an AgentSpeak file and send it to the BDI Core Agent.
|
||||
|
||||
:param program: The program object received from the API.
|
||||
"""
|
||||
@@ -59,17 +77,63 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
await self.send(msg)
|
||||
|
||||
@staticmethod
|
||||
def _extract_beliefs_from_program(program: Program) -> list[Belief]:
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
match msg.thread:
|
||||
case "transition_phase":
|
||||
phases = json.loads(msg.body)
|
||||
|
||||
await self._transition_phase(phases["old"], phases["new"])
|
||||
case "achieve_goal":
|
||||
goal_id = msg.body
|
||||
await self._send_achieved_goal_to_semantic_belief_extractor(goal_id)
|
||||
|
||||
async def _transition_phase(self, old: str, new: str):
|
||||
if old != str(self._phase.id):
|
||||
self.logger.warning(
|
||||
f"Phase transition desync detected! ASL requested move from '{old}', "
|
||||
f"but Python is currently in '{self._phase.id}'. Request ignored."
|
||||
)
|
||||
return
|
||||
|
||||
if new == "end":
|
||||
self._phase = None
|
||||
# Notify user interaction agent
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
thread="transition_phase",
|
||||
body="end",
|
||||
)
|
||||
self.logger.info("Transitioned to end phase, notifying UserInterruptAgent.")
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
return
|
||||
|
||||
for phase in self._program.phases:
|
||||
if str(phase.id) == new:
|
||||
self._phase = phase
|
||||
|
||||
await self._send_beliefs_to_semantic_belief_extractor()
|
||||
await self._send_goals_to_semantic_belief_extractor()
|
||||
|
||||
# Notify user interaction agent
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
thread="transition_phase",
|
||||
body=str(self._phase.id),
|
||||
)
|
||||
self.logger.info(f"Transitioned to phase {new}, notifying UserInterruptAgent.")
|
||||
|
||||
self.add_behavior(self.send(msg))
|
||||
|
||||
def _extract_current_beliefs(self) -> list[Belief]:
|
||||
beliefs: list[Belief] = []
|
||||
|
||||
for phase in program.phases:
|
||||
for norm in phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
beliefs += BDIProgramManager._extract_beliefs_from_belief(norm.condition)
|
||||
for norm in self._phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
beliefs += self._extract_beliefs_from_belief(norm.condition)
|
||||
|
||||
for trigger in phase.triggers:
|
||||
beliefs += BDIProgramManager._extract_beliefs_from_belief(trigger.condition)
|
||||
for trigger in self._phase.triggers:
|
||||
beliefs += self._extract_beliefs_from_belief(trigger.condition)
|
||||
|
||||
return beliefs
|
||||
|
||||
@@ -81,13 +145,11 @@ class BDIProgramManager(BaseAgent):
|
||||
) + BDIProgramManager._extract_beliefs_from_belief(belief.right)
|
||||
return [belief]
|
||||
|
||||
async def _send_beliefs_to_semantic_belief_extractor(self, program: Program):
|
||||
async def _send_beliefs_to_semantic_belief_extractor(self):
|
||||
"""
|
||||
Extract beliefs from the program and send them to the Semantic Belief Extractor Agent.
|
||||
|
||||
:param program: The program received from the API.
|
||||
"""
|
||||
beliefs = BeliefList(beliefs=self._extract_beliefs_from_program(program))
|
||||
beliefs = BeliefList(beliefs=self._extract_current_beliefs())
|
||||
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
@@ -98,12 +160,94 @@ class BDIProgramManager(BaseAgent):
|
||||
|
||||
await self.send(message)
|
||||
|
||||
@staticmethod
|
||||
def _extract_goals_from_goal(goal: Goal) -> list[Goal]:
|
||||
"""
|
||||
Extract all goals from a given goal, that is: the goal itself and any subgoals.
|
||||
|
||||
:return: All goals within and including the given goal.
|
||||
"""
|
||||
goals: list[Goal] = [goal]
|
||||
for plan in goal.plan:
|
||||
if isinstance(plan, Goal):
|
||||
goals.extend(BDIProgramManager._extract_goals_from_goal(plan))
|
||||
return goals
|
||||
|
||||
def _extract_current_goals(self) -> list[Goal]:
|
||||
"""
|
||||
Extract all goals from the program, including subgoals.
|
||||
|
||||
:return: A list of Goal objects.
|
||||
"""
|
||||
goals: list[Goal] = []
|
||||
|
||||
for goal in self._phase.goals:
|
||||
goals.extend(self._extract_goals_from_goal(goal))
|
||||
|
||||
return goals
|
||||
|
||||
async def _send_goals_to_semantic_belief_extractor(self):
|
||||
"""
|
||||
Extract goals for the current phase and send them to the Semantic Belief Extractor Agent.
|
||||
"""
|
||||
goals = GoalList(goals=self._extract_current_goals())
|
||||
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=self.name,
|
||||
body=goals.model_dump_json(),
|
||||
thread="goals",
|
||||
)
|
||||
|
||||
await self.send(message)
|
||||
|
||||
async def _send_achieved_goal_to_semantic_belief_extractor(self, achieved_goal_id: str):
|
||||
"""
|
||||
Inform the semantic belief extractor when a goal is marked achieved.
|
||||
|
||||
:param achieved_goal_id: The id of the achieved goal.
|
||||
"""
|
||||
goal = self._goal_mapping.get(achieved_goal_id)
|
||||
if goal is None:
|
||||
self.logger.debug(f"Goal with ID {achieved_goal_id} marked achieved but was not found.")
|
||||
return
|
||||
|
||||
goals = self._extract_goals_from_goal(goal)
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
body=GoalList(goals=goals).model_dump_json(),
|
||||
thread="achieved_goals",
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
async def _send_clear_llm_history(self):
|
||||
"""
|
||||
Clear the LLM Agent's conversation history.
|
||||
|
||||
Sends an empty history to the LLM Agent to reset its state.
|
||||
"""
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.llm_name,
|
||||
body="clear_history",
|
||||
)
|
||||
await self.send(message)
|
||||
self.logger.debug("Sent message to LLM agent to clear history.")
|
||||
|
||||
extractor_msg = InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
thread="conversation_history",
|
||||
body="reset",
|
||||
)
|
||||
await self.send(extractor_msg)
|
||||
self.logger.debug("Sent message to extractor agent to clear history.")
|
||||
|
||||
async def _receive_programs(self):
|
||||
"""
|
||||
Continuous loop that receives program updates from the HTTP endpoint.
|
||||
|
||||
It listens to the ``program`` topic on the internal ZMQ SUB socket.
|
||||
When a program is received, it is validated and forwarded to BDI via :meth:`_send_to_bdi`.
|
||||
Additionally, the LLM history is cleared via :meth:`_send_clear_llm_history`.
|
||||
"""
|
||||
while True:
|
||||
topic, body = await self.sub_socket.recv_multipart()
|
||||
@@ -111,21 +255,43 @@ class BDIProgramManager(BaseAgent):
|
||||
try:
|
||||
program = Program.model_validate_json(body)
|
||||
except ValidationError:
|
||||
self.logger.exception("Received an invalid program.")
|
||||
self.logger.warning("Received an invalid program.")
|
||||
continue
|
||||
|
||||
self._initialize_internal_state(program)
|
||||
await self._send_program_to_user_interrupt(program)
|
||||
await self._send_clear_llm_history()
|
||||
|
||||
await asyncio.gather(
|
||||
self._create_agentspeak_and_send_to_bdi(program),
|
||||
self._send_beliefs_to_semantic_belief_extractor(program),
|
||||
self._send_beliefs_to_semantic_belief_extractor(),
|
||||
self._send_goals_to_semantic_belief_extractor(),
|
||||
)
|
||||
|
||||
async def _send_program_to_user_interrupt(self, program: Program):
|
||||
"""
|
||||
Send the received program to the User Interrupt Agent.
|
||||
|
||||
:param program: The program object received from the API.
|
||||
"""
|
||||
msg = InternalMessage(
|
||||
sender=self.name,
|
||||
to=settings.agent_settings.user_interrupt_name,
|
||||
body=program.model_dump_json(),
|
||||
thread="new_program",
|
||||
)
|
||||
|
||||
await self.send(msg)
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent.
|
||||
|
||||
Connects the internal ZMQ SUB socket and subscribes to the 'program' topic.
|
||||
Starts the background behavior to receive programs.
|
||||
Starts the background behavior to receive programs. Initializes a default program.
|
||||
"""
|
||||
await self._create_agentspeak_and_send_to_bdi(Program(phases=[]))
|
||||
|
||||
context = Context.instance()
|
||||
|
||||
self.sub_socket = context.socket(zmq.SUB)
|
||||
|
||||
@@ -1,152 +0,0 @@
|
||||
import json
|
||||
|
||||
from pydantic import ValidationError
|
||||
|
||||
from control_backend.agents.base import BaseAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
|
||||
|
||||
class BDIBeliefCollectorAgent(BaseAgent):
|
||||
"""
|
||||
BDI Belief Collector Agent.
|
||||
|
||||
This agent acts as a central aggregator for beliefs derived from various sources (e.g., text,
|
||||
emotion, vision). It receives raw extracted data from other agents,
|
||||
normalizes them into valid :class:`Belief` objects, and forwards them as a unified packet to the
|
||||
BDI Core Agent.
|
||||
|
||||
It serves as a funnel to ensure the BDI agent receives a consistent stream of beliefs.
|
||||
"""
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent.
|
||||
"""
|
||||
self.logger.info("Setting up %s", self.name)
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle incoming messages from other extractor agents.
|
||||
|
||||
Routes the message to specific handlers based on the 'type' field in the JSON body.
|
||||
Supported types:
|
||||
- ``belief_extraction_text``: Handled by :meth:`_handle_belief_text`
|
||||
- ``emotion_extraction_text``: Handled by :meth:`_handle_emo_text`
|
||||
|
||||
:param msg: The received internal message.
|
||||
"""
|
||||
sender_node = msg.sender
|
||||
|
||||
# Parse JSON payload
|
||||
try:
|
||||
payload = json.loads(msg.body)
|
||||
except Exception as e:
|
||||
self.logger.warning(
|
||||
"BeliefCollector: failed to parse JSON from %s. Body=%r Error=%s",
|
||||
sender_node,
|
||||
msg.body,
|
||||
e,
|
||||
)
|
||||
return
|
||||
|
||||
msg_type = payload.get("type")
|
||||
|
||||
# Prefer explicit 'type' field
|
||||
if msg_type == "belief_extraction_text":
|
||||
self.logger.debug("Message routed to _handle_belief_text (sender=%s)", sender_node)
|
||||
await self._handle_belief_text(payload, sender_node)
|
||||
# This is not implemented yet, but we keep the structure for future use
|
||||
elif msg_type == "emotion_extraction_text":
|
||||
self.logger.debug("Message routed to _handle_emo_text (sender=%s)", sender_node)
|
||||
await self._handle_emo_text(payload, sender_node)
|
||||
else:
|
||||
self.logger.warning(
|
||||
"Unrecognized message (sender=%s, type=%r). Ignoring.", sender_node, msg_type
|
||||
)
|
||||
|
||||
async def _handle_belief_text(self, payload: dict, origin: str):
|
||||
"""
|
||||
Process text-based belief extraction payloads.
|
||||
|
||||
Expected payload format::
|
||||
|
||||
{
|
||||
"type": "belief_extraction_text",
|
||||
"beliefs": {
|
||||
"user_said": ["Can you help me?"],
|
||||
"intention": ["ask_help"]
|
||||
}
|
||||
}
|
||||
|
||||
Validates and converts the dictionary items into :class:`Belief` objects.
|
||||
|
||||
:param payload: The dictionary payload containing belief data.
|
||||
:param origin: The name of the sender agent.
|
||||
"""
|
||||
beliefs = payload.get("beliefs", {})
|
||||
|
||||
if not beliefs:
|
||||
self.logger.debug("Received empty beliefs set.")
|
||||
return
|
||||
|
||||
def try_create_belief(name, arguments) -> Belief | None:
|
||||
"""
|
||||
Create a belief object from name and arguments, or return None silently if the input is
|
||||
not correct.
|
||||
|
||||
:param name: The name of the belief.
|
||||
:param arguments: The arguments of the belief.
|
||||
:return: A Belief object if the input is valid or None.
|
||||
"""
|
||||
try:
|
||||
return Belief(name=name, arguments=arguments, replace=name == "user_said")
|
||||
except ValidationError:
|
||||
return None
|
||||
|
||||
beliefs = [
|
||||
belief
|
||||
for name, arguments in beliefs.items()
|
||||
if (belief := try_create_belief(name, arguments)) is not None
|
||||
]
|
||||
|
||||
self.logger.debug("Forwarding %d beliefs.", len(beliefs))
|
||||
for belief in beliefs:
|
||||
for argument in belief.arguments:
|
||||
self.logger.debug(" - %s %s", belief.name, argument)
|
||||
|
||||
await self._send_beliefs_to_bdi(beliefs, origin=origin)
|
||||
|
||||
async def _handle_emo_text(self, payload: dict, origin: str):
|
||||
"""
|
||||
Process emotion extraction payloads.
|
||||
|
||||
**TODO**: Implement this method once emotion recognition is integrated.
|
||||
|
||||
:param payload: The dictionary payload containing emotion data.
|
||||
:param origin: The name of the sender agent.
|
||||
"""
|
||||
pass
|
||||
|
||||
async def _send_beliefs_to_bdi(self, beliefs: list[Belief], origin: str | None = None):
|
||||
"""
|
||||
Send a list of aggregated beliefs to the BDI Core Agent.
|
||||
|
||||
Wraps the beliefs in a :class:`BeliefMessage` and sends it via the 'beliefs' thread.
|
||||
|
||||
:param beliefs: The list of Belief objects to send.
|
||||
:param origin: (Optional) The original source of the beliefs (unused currently).
|
||||
"""
|
||||
if not beliefs:
|
||||
return
|
||||
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=BeliefMessage(create=beliefs).model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
|
||||
await self.send(msg)
|
||||
self.logger.info("Sent %d belief(s) to BDI core.", len(beliefs))
|
||||
@@ -1,5 +1,34 @@
|
||||
norms("").
|
||||
phase("end").
|
||||
keyword_said(Keyword) :- (user_said(Message) & .substring(Keyword, Message, Pos)) & (Pos >= 0).
|
||||
|
||||
+user_said(Message) : norms(Norms) <-
|
||||
-user_said(Message);
|
||||
.reply(Message, Norms).
|
||||
|
||||
+!reply_with_goal(Goal)
|
||||
: user_said(Message)
|
||||
<- +responded_this_turn;
|
||||
.findall(Norm, norm(Norm), Norms);
|
||||
.reply_with_goal(Message, Norms, Goal).
|
||||
|
||||
+!say(Text)
|
||||
<- +responded_this_turn;
|
||||
.say(Text).
|
||||
|
||||
+!reply
|
||||
: user_said(Message)
|
||||
<- +responded_this_turn;
|
||||
.findall(Norm, norm(Norm), Norms);
|
||||
.reply(Message, Norms).
|
||||
|
||||
+!notify_cycle
|
||||
<- .notify_ui;
|
||||
.wait(1).
|
||||
|
||||
+user_said(Message)
|
||||
: phase("end")
|
||||
<- .notify_user_said(Message);
|
||||
!reply.
|
||||
|
||||
+!check_triggers
|
||||
<- true.
|
||||
|
||||
+!transition_phase
|
||||
<- true.
|
||||
|
||||
@@ -2,17 +2,45 @@ import asyncio
|
||||
import json
|
||||
|
||||
import httpx
|
||||
from pydantic import ValidationError
|
||||
from pydantic import BaseModel, ValidationError
|
||||
|
||||
from control_backend.agents.base import BaseAgent
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_list import BeliefList
|
||||
from control_backend.schemas.belief_list import BeliefList, GoalList
|
||||
from control_backend.schemas.belief_message import Belief as InternalBelief
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
|
||||
from control_backend.schemas.program import SemanticBelief
|
||||
from control_backend.schemas.program import BaseGoal, SemanticBelief
|
||||
|
||||
type JSONLike = None | bool | int | float | str | list["JSONLike"] | dict[str, "JSONLike"]
|
||||
|
||||
|
||||
class BeliefState(BaseModel):
|
||||
true: set[InternalBelief] = set()
|
||||
false: set[InternalBelief] = set()
|
||||
|
||||
def difference(self, other: "BeliefState") -> "BeliefState":
|
||||
return BeliefState(
|
||||
true=self.true - other.true,
|
||||
false=self.false - other.false,
|
||||
)
|
||||
|
||||
def union(self, other: "BeliefState") -> "BeliefState":
|
||||
return BeliefState(
|
||||
true=self.true | other.true,
|
||||
false=self.false | other.false,
|
||||
)
|
||||
|
||||
def __sub__(self, other):
|
||||
return self.difference(other)
|
||||
|
||||
def __or__(self, other):
|
||||
return self.union(other)
|
||||
|
||||
def __bool__(self):
|
||||
return bool(self.true) or bool(self.false)
|
||||
|
||||
|
||||
class TextBeliefExtractorAgent(BaseAgent):
|
||||
@@ -27,12 +55,15 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
the message itself.
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, temperature: float = settings.llm_settings.code_temperature):
|
||||
def __init__(self, name: str):
|
||||
super().__init__(name)
|
||||
self.beliefs: dict[str, bool] = {}
|
||||
self.available_beliefs: list[SemanticBelief] = []
|
||||
self._llm = self.LLM(self, settings.llm_settings.n_parallel)
|
||||
self.belief_inferrer = SemanticBeliefInferrer(self._llm)
|
||||
self.goal_inferrer = GoalAchievementInferrer(self._llm)
|
||||
self._current_beliefs = BeliefState()
|
||||
self._current_goal_completions: dict[str, bool] = {}
|
||||
self._force_completed_goals: set[BaseGoal] = set()
|
||||
self.conversation = ChatHistory(messages=[])
|
||||
self.temperature = temperature
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
@@ -53,13 +84,14 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
case settings.agent_settings.transcription_name:
|
||||
self.logger.debug("Received text from transcriber: %s", msg.body)
|
||||
self._apply_conversation_message(ChatMessage(role="user", content=msg.body))
|
||||
await self._infer_new_beliefs()
|
||||
await self._user_said(msg.body)
|
||||
await self._infer_new_beliefs()
|
||||
await self._infer_goal_completions()
|
||||
case settings.agent_settings.llm_name:
|
||||
self.logger.debug("Received text from LLM: %s", msg.body)
|
||||
self._apply_conversation_message(ChatMessage(role="assistant", content=msg.body))
|
||||
case settings.agent_settings.bdi_program_manager_name:
|
||||
self._handle_program_manager_message(msg)
|
||||
await self._handle_program_manager_message(msg)
|
||||
case _:
|
||||
self.logger.info("Discarding message from %s", sender)
|
||||
return
|
||||
@@ -74,12 +106,35 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
length_limit = settings.behaviour_settings.conversation_history_length_limit
|
||||
self.conversation.messages = (self.conversation.messages + [message])[-length_limit:]
|
||||
|
||||
def _handle_program_manager_message(self, msg: InternalMessage):
|
||||
async def _handle_program_manager_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle a message from the program manager: extract available beliefs from it.
|
||||
Handle a message from the program manager: extract available beliefs and goals from it.
|
||||
|
||||
:param msg: The received message from the program manager.
|
||||
"""
|
||||
match msg.thread:
|
||||
case "beliefs":
|
||||
self._handle_beliefs_message(msg)
|
||||
await self._infer_new_beliefs()
|
||||
case "goals":
|
||||
self._handle_goals_message(msg)
|
||||
await self._infer_goal_completions()
|
||||
case "achieved_goals":
|
||||
self._handle_goal_achieved_message(msg)
|
||||
case "conversation_history":
|
||||
if msg.body == "reset":
|
||||
self._reset_phase()
|
||||
case _:
|
||||
self.logger.warning("Received unexpected message from %s", msg.sender)
|
||||
|
||||
def _reset_phase(self):
|
||||
self.conversation = ChatHistory(messages=[])
|
||||
self.belief_inferrer.available_beliefs.clear()
|
||||
self._current_beliefs = BeliefState()
|
||||
self.goal_inferrer.goals.clear()
|
||||
self._current_goal_completions = {}
|
||||
|
||||
def _handle_beliefs_message(self, msg: InternalMessage):
|
||||
try:
|
||||
belief_list = BeliefList.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
@@ -88,133 +143,262 @@ class TextBeliefExtractorAgent(BaseAgent):
|
||||
)
|
||||
return
|
||||
|
||||
self.available_beliefs = [b for b in belief_list.beliefs if isinstance(b, SemanticBelief)]
|
||||
available_beliefs = [b for b in belief_list.beliefs if isinstance(b, SemanticBelief)]
|
||||
self.belief_inferrer.available_beliefs = available_beliefs
|
||||
self.logger.debug(
|
||||
"Received %d beliefs from the program manager.",
|
||||
len(self.available_beliefs),
|
||||
"Received %d semantic beliefs from the program manager: %s",
|
||||
len(available_beliefs),
|
||||
", ".join(b.name for b in available_beliefs),
|
||||
)
|
||||
|
||||
def _handle_goals_message(self, msg: InternalMessage):
|
||||
try:
|
||||
goals_list = GoalList.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
self.logger.warning(
|
||||
"Received message from program manager but it is not a valid list of goals."
|
||||
)
|
||||
return
|
||||
|
||||
# Use only goals that can fail, as the others are always assumed to be completed
|
||||
available_goals = {g for g in goals_list.goals if g.can_fail}
|
||||
available_goals -= self._force_completed_goals
|
||||
self.goal_inferrer.goals = available_goals
|
||||
self.logger.debug(
|
||||
"Received %d failable goals from the program manager: %s",
|
||||
len(available_goals),
|
||||
", ".join(g.name for g in available_goals),
|
||||
)
|
||||
|
||||
def _handle_goal_achieved_message(self, msg: InternalMessage):
|
||||
# NOTE: When goals can be marked unachieved, remember to re-add them to the goal_inferrer
|
||||
try:
|
||||
goals_list = GoalList.model_validate_json(msg.body)
|
||||
except ValidationError:
|
||||
self.logger.warning(
|
||||
"Received goal achieved message from the program manager, "
|
||||
"but it is not a valid list of goals."
|
||||
)
|
||||
return
|
||||
|
||||
for goal in goals_list.goals:
|
||||
self._force_completed_goals.add(goal)
|
||||
self._current_goal_completions[f"achieved_{AgentSpeakGenerator.slugify(goal)}"] = True
|
||||
|
||||
self.goal_inferrer.goals -= self._force_completed_goals
|
||||
|
||||
async def _user_said(self, text: str):
|
||||
"""
|
||||
Create a belief for the user's full speech.
|
||||
|
||||
:param text: User's transcribed text.
|
||||
"""
|
||||
belief = {"beliefs": {"user_said": [text]}, "type": "belief_extraction_text"}
|
||||
payload = json.dumps(belief)
|
||||
|
||||
belief_msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_belief_collector_name,
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=payload,
|
||||
body=BeliefMessage(
|
||||
replace=[InternalBelief(name="user_said", arguments=[text])],
|
||||
).model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
await self.send(belief_msg)
|
||||
|
||||
async def _infer_new_beliefs(self):
|
||||
"""
|
||||
Process conversation history to extract beliefs, semantically. Any changed beliefs are sent
|
||||
to the BDI core.
|
||||
"""
|
||||
# Return instantly if there are no beliefs to infer
|
||||
if not self.available_beliefs:
|
||||
conversation_beliefs = await self.belief_inferrer.infer_from_conversation(self.conversation)
|
||||
|
||||
new_beliefs = conversation_beliefs - self._current_beliefs
|
||||
if not new_beliefs:
|
||||
self.logger.debug("No new beliefs detected.")
|
||||
return
|
||||
|
||||
candidate_beliefs = await self._infer_turn()
|
||||
belief_changes = BeliefMessage()
|
||||
for belief_key, belief_value in candidate_beliefs.items():
|
||||
if belief_value is None:
|
||||
continue
|
||||
old_belief_value = self.beliefs.get(belief_key)
|
||||
if belief_value == old_belief_value:
|
||||
continue
|
||||
self._current_beliefs |= new_beliefs
|
||||
|
||||
self.beliefs[belief_key] = belief_value
|
||||
belief_changes = BeliefMessage(
|
||||
create=list(new_beliefs.true),
|
||||
delete=list(new_beliefs.false),
|
||||
)
|
||||
|
||||
belief = InternalBelief(name=belief_key, arguments=None)
|
||||
if belief_value:
|
||||
belief_changes.create.append(belief)
|
||||
else:
|
||||
belief_changes.delete.append(belief)
|
||||
|
||||
# Return if there were no changes in beliefs
|
||||
if not belief_changes.has_values():
|
||||
return
|
||||
|
||||
beliefs_message = InternalMessage(
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=belief_changes.model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
await self.send(beliefs_message)
|
||||
await self.send(message)
|
||||
|
||||
@staticmethod
|
||||
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
|
||||
k, m = divmod(len(items), n)
|
||||
return [items[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)]
|
||||
async def _infer_goal_completions(self):
|
||||
goal_completions = await self.goal_inferrer.infer_from_conversation(self.conversation)
|
||||
|
||||
async def _infer_turn(self) -> dict:
|
||||
new_achieved = [
|
||||
InternalBelief(name=goal, arguments=None)
|
||||
for goal, achieved in goal_completions.items()
|
||||
if achieved and self._current_goal_completions.get(goal) != achieved
|
||||
]
|
||||
new_not_achieved = [
|
||||
InternalBelief(name=goal, arguments=None)
|
||||
for goal, achieved in goal_completions.items()
|
||||
if not achieved and self._current_goal_completions.get(goal) != achieved
|
||||
]
|
||||
for goal, achieved in goal_completions.items():
|
||||
self._current_goal_completions[goal] = achieved
|
||||
|
||||
if not new_achieved and not new_not_achieved:
|
||||
self.logger.debug("No goal achievement changes detected.")
|
||||
return
|
||||
|
||||
belief_changes = BeliefMessage(
|
||||
create=new_achieved,
|
||||
delete=new_not_achieved,
|
||||
)
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=belief_changes.model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
await self.send(message)
|
||||
|
||||
class LLM:
|
||||
"""
|
||||
Process the stored conversation history to extract semantic beliefs. Returns a list of
|
||||
beliefs that have been set to ``True``, ``False`` or ``None``.
|
||||
|
||||
:return: A dict mapping belief names to a value ``True``, ``False`` or ``None``.
|
||||
Class that handles sending structured generation requests to an LLM.
|
||||
"""
|
||||
|
||||
def __init__(self, agent: "TextBeliefExtractorAgent", n_parallel: int):
|
||||
self._agent = agent
|
||||
self._semaphore = asyncio.Semaphore(n_parallel)
|
||||
|
||||
async def query(self, prompt: str, schema: dict, tries: int = 3) -> JSONLike | None:
|
||||
"""
|
||||
Query the LLM with the given prompt and schema, return an instance of a dict conforming
|
||||
to this schema. Try ``tries`` times, or return None.
|
||||
|
||||
:param prompt: Prompt to be queried.
|
||||
:param schema: Schema to be queried.
|
||||
:param tries: Number of times to try to query the LLM.
|
||||
:return: An instance of a dict conforming to this schema, or None if failed.
|
||||
"""
|
||||
try_count = 0
|
||||
while try_count < tries:
|
||||
try_count += 1
|
||||
|
||||
try:
|
||||
return await self._query_llm(prompt, schema)
|
||||
except (httpx.HTTPError, json.JSONDecodeError, KeyError) as e:
|
||||
if try_count < tries:
|
||||
continue
|
||||
self._agent.logger.exception(
|
||||
"Failed to get LLM response after %d tries.",
|
||||
try_count,
|
||||
exc_info=e,
|
||||
)
|
||||
|
||||
return None
|
||||
|
||||
async def _query_llm(self, prompt: str, schema: dict) -> JSONLike:
|
||||
"""
|
||||
Query an LLM with the given prompt and schema, return an instance of a dict conforming
|
||||
to that schema.
|
||||
|
||||
:param prompt: The prompt to be queried.
|
||||
:param schema: Schema to use during response.
|
||||
:return: A dict conforming to this schema.
|
||||
:raises httpx.HTTPStatusError: If the LLM server responded with an error.
|
||||
:raises json.JSONDecodeError: If the LLM response was not valid JSON. May happen if the
|
||||
response was cut off early due to length limitations.
|
||||
:raises KeyError: If the LLM server responded with no error, but the response was
|
||||
invalid.
|
||||
"""
|
||||
async with self._semaphore:
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
settings.llm_settings.local_llm_url,
|
||||
json={
|
||||
"model": settings.llm_settings.local_llm_model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"response_format": {
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": "Beliefs",
|
||||
"strict": True,
|
||||
"schema": schema,
|
||||
},
|
||||
},
|
||||
"reasoning_effort": "low",
|
||||
"temperature": settings.llm_settings.code_temperature,
|
||||
"stream": False,
|
||||
},
|
||||
timeout=30.0,
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
response_json = response.json()
|
||||
json_message = response_json["choices"][0]["message"]["content"]
|
||||
return json.loads(json_message)
|
||||
|
||||
|
||||
class SemanticBeliefInferrer:
|
||||
"""
|
||||
Class that handles only prompting an LLM for semantic beliefs.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm: "TextBeliefExtractorAgent.LLM",
|
||||
available_beliefs: list[SemanticBelief] | None = None,
|
||||
):
|
||||
self._llm = llm
|
||||
self.available_beliefs: list[SemanticBelief] = available_beliefs or []
|
||||
|
||||
async def infer_from_conversation(self, conversation: ChatHistory) -> BeliefState:
|
||||
"""
|
||||
Process conversation history to extract beliefs, semantically. The result is an object that
|
||||
describes all beliefs that hold or don't hold based on the full conversation.
|
||||
|
||||
:param conversation: The conversation history to be processed.
|
||||
:return: An object that describes beliefs.
|
||||
"""
|
||||
# Return instantly if there are no beliefs to infer
|
||||
if not self.available_beliefs:
|
||||
return BeliefState()
|
||||
|
||||
n_parallel = max(1, min(settings.llm_settings.n_parallel - 1, len(self.available_beliefs)))
|
||||
all_beliefs = await asyncio.gather(
|
||||
all_beliefs: list[dict[str, bool | None] | None] = await asyncio.gather(
|
||||
*[
|
||||
self._infer_beliefs(self.conversation, beliefs)
|
||||
self._infer_beliefs(conversation, beliefs)
|
||||
for beliefs in self._split_into_chunks(self.available_beliefs, n_parallel)
|
||||
]
|
||||
)
|
||||
retval = {}
|
||||
retval = BeliefState()
|
||||
for beliefs in all_beliefs:
|
||||
if beliefs is None:
|
||||
continue
|
||||
retval.update(beliefs)
|
||||
for belief_name, belief_holds in beliefs.items():
|
||||
if belief_holds is None:
|
||||
continue
|
||||
belief = InternalBelief(name=belief_name, arguments=None)
|
||||
if belief_holds:
|
||||
retval.true.add(belief)
|
||||
else:
|
||||
retval.false.add(belief)
|
||||
return retval
|
||||
|
||||
@staticmethod
|
||||
def _create_belief_schema(belief: SemanticBelief) -> tuple[str, dict]:
|
||||
return AgentSpeakGenerator.slugify(belief), {
|
||||
"type": ["boolean", "null"],
|
||||
"description": belief.description,
|
||||
}
|
||||
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
|
||||
"""
|
||||
Split a list into ``n`` chunks, making each chunk approximately ``len(items) / n`` long.
|
||||
|
||||
@staticmethod
|
||||
def _create_beliefs_schema(beliefs: list[SemanticBelief]) -> dict:
|
||||
belief_schemas = [
|
||||
TextBeliefExtractorAgent._create_belief_schema(belief) for belief in beliefs
|
||||
]
|
||||
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": dict(belief_schemas),
|
||||
"required": [name for name, _ in belief_schemas],
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _format_message(message: ChatMessage):
|
||||
return f"{message.role.upper()}:\n{message.content}"
|
||||
|
||||
@staticmethod
|
||||
def _format_conversation(conversation: ChatHistory):
|
||||
return "\n\n".join(
|
||||
[TextBeliefExtractorAgent._format_message(message) for message in conversation.messages]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _format_beliefs(beliefs: list[SemanticBelief]):
|
||||
return "\n".join(
|
||||
[f"- {AgentSpeakGenerator.slugify(belief)}: {belief.description}" for belief in beliefs]
|
||||
)
|
||||
:param items: The list of items to split.
|
||||
:param n: The number of desired chunks.
|
||||
:return: A list of chunks each approximately ``len(items) / n`` long.
|
||||
"""
|
||||
k, m = divmod(len(items), n)
|
||||
return [items[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)]
|
||||
|
||||
async def _infer_beliefs(
|
||||
self,
|
||||
conversation: ChatHistory,
|
||||
beliefs: list[SemanticBelief],
|
||||
) -> dict | None:
|
||||
) -> dict[str, bool | None] | None:
|
||||
"""
|
||||
Infer given beliefs based on the given conversation.
|
||||
:param conversation: The conversation to infer beliefs from.
|
||||
@@ -241,70 +425,79 @@ Respond with a JSON similar to the following, but with the property names as giv
|
||||
|
||||
schema = self._create_beliefs_schema(beliefs)
|
||||
|
||||
return await self._retry_query_llm(prompt, schema)
|
||||
return await self._llm.query(prompt, schema)
|
||||
|
||||
async def _retry_query_llm(self, prompt: str, schema: dict, tries: int = 3) -> dict | None:
|
||||
@staticmethod
|
||||
def _create_belief_schema(belief: SemanticBelief) -> tuple[str, dict]:
|
||||
return AgentSpeakGenerator.slugify(belief), {
|
||||
"type": ["boolean", "null"],
|
||||
"description": belief.description,
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _create_beliefs_schema(beliefs: list[SemanticBelief]) -> dict:
|
||||
belief_schemas = [
|
||||
SemanticBeliefInferrer._create_belief_schema(belief) for belief in beliefs
|
||||
]
|
||||
|
||||
return {
|
||||
"type": "object",
|
||||
"properties": dict(belief_schemas),
|
||||
"required": [name for name, _ in belief_schemas],
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _format_message(message: ChatMessage):
|
||||
return f"{message.role.upper()}:\n{message.content}"
|
||||
|
||||
@staticmethod
|
||||
def _format_conversation(conversation: ChatHistory):
|
||||
return "\n\n".join(
|
||||
[SemanticBeliefInferrer._format_message(message) for message in conversation.messages]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _format_beliefs(beliefs: list[SemanticBelief]):
|
||||
return "\n".join(
|
||||
[f"- {AgentSpeakGenerator.slugify(belief)}: {belief.description}" for belief in beliefs]
|
||||
)
|
||||
|
||||
|
||||
class GoalAchievementInferrer(SemanticBeliefInferrer):
|
||||
def __init__(self, llm: TextBeliefExtractorAgent.LLM):
|
||||
super().__init__(llm)
|
||||
self.goals: set[BaseGoal] = set()
|
||||
|
||||
async def infer_from_conversation(self, conversation: ChatHistory) -> dict[str, bool]:
|
||||
"""
|
||||
Query the LLM with the given prompt and schema, return an instance of a dict conforming
|
||||
to this schema. Try ``tries`` times, or return None.
|
||||
Determine which goals have been achieved based on the given conversation.
|
||||
|
||||
:param prompt: Prompt to be queried.
|
||||
:param schema: Schema to be queried.
|
||||
:return: An instance of a dict conforming to this schema, or None if failed.
|
||||
:param conversation: The conversation to infer goal completion from.
|
||||
:return: A mapping of goals and a boolean whether they have been achieved.
|
||||
"""
|
||||
try_count = 0
|
||||
while try_count < tries:
|
||||
try_count += 1
|
||||
if not self.goals:
|
||||
return {}
|
||||
|
||||
try:
|
||||
return await self._query_llm(prompt, schema)
|
||||
except (httpx.HTTPError, json.JSONDecodeError, KeyError) as e:
|
||||
if try_count < tries:
|
||||
continue
|
||||
self.logger.exception(
|
||||
"Failed to get LLM response after %d tries.",
|
||||
try_count,
|
||||
exc_info=e,
|
||||
)
|
||||
goals_achieved = await asyncio.gather(
|
||||
*[self._infer_goal(conversation, g) for g in self.goals]
|
||||
)
|
||||
return {
|
||||
f"achieved_{AgentSpeakGenerator.slugify(goal)}": achieved
|
||||
for goal, achieved in zip(self.goals, goals_achieved, strict=True)
|
||||
}
|
||||
|
||||
return None
|
||||
async def _infer_goal(self, conversation: ChatHistory, goal: BaseGoal) -> bool:
|
||||
prompt = f"""{self._format_conversation(conversation)}
|
||||
|
||||
async def _query_llm(self, prompt: str, schema: dict) -> dict:
|
||||
"""
|
||||
Query an LLM with the given prompt and schema, return an instance of a dict conforming to
|
||||
that schema.
|
||||
Given the above conversation, what has the following goal been achieved?
|
||||
|
||||
:param prompt: The prompt to be queried.
|
||||
:param schema: Schema to use during response.
|
||||
:return: A dict conforming to this schema.
|
||||
:raises httpx.HTTPStatusError: If the LLM server responded with an error.
|
||||
:raises json.JSONDecodeError: If the LLM response was not valid JSON. May happen if the
|
||||
response was cut off early due to length limitations.
|
||||
:raises KeyError: If the LLM server responded with no error, but the response was invalid.
|
||||
"""
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.post(
|
||||
settings.llm_settings.local_llm_url,
|
||||
json={
|
||||
"model": settings.llm_settings.local_llm_model,
|
||||
"messages": [{"role": "user", "content": prompt}],
|
||||
"response_format": {
|
||||
"type": "json_schema",
|
||||
"json_schema": {
|
||||
"name": "Beliefs",
|
||||
"strict": True,
|
||||
"schema": schema,
|
||||
},
|
||||
},
|
||||
"reasoning_effort": "low",
|
||||
"temperature": self.temperature,
|
||||
"stream": False,
|
||||
},
|
||||
timeout=None,
|
||||
)
|
||||
response.raise_for_status()
|
||||
The name of the goal: {goal.name}
|
||||
Description of the goal: {goal.description}
|
||||
|
||||
response_json = response.json()
|
||||
json_message = response_json["choices"][0]["message"]["content"]
|
||||
beliefs = json.loads(json_message)
|
||||
return beliefs
|
||||
Answer with literally only `true` or `false` (without backticks)."""
|
||||
|
||||
schema = {
|
||||
"type": "boolean",
|
||||
}
|
||||
|
||||
return await self._llm.query(prompt, schema)
|
||||
|
||||
@@ -3,12 +3,14 @@ import json
|
||||
|
||||
import zmq
|
||||
import zmq.asyncio as azmq
|
||||
from pydantic import ValidationError
|
||||
from zmq.asyncio import Context
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.actuation.robot_gesture_agent import RobotGestureAgent
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.internal_message import InternalMessage
|
||||
from control_backend.schemas.ri_message import PauseCommand
|
||||
|
||||
from ..actuation.robot_speech_agent import RobotSpeechAgent
|
||||
from ..perception import VADAgent
|
||||
@@ -39,7 +41,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
def __init__(
|
||||
self,
|
||||
name: str,
|
||||
address=settings.zmq_settings.ri_command_address,
|
||||
address=settings.zmq_settings.ri_communication_address,
|
||||
bind=False,
|
||||
):
|
||||
super().__init__(name)
|
||||
@@ -172,7 +174,7 @@ class RICommunicationAgent(BaseAgent):
|
||||
bind = port_data["bind"]
|
||||
|
||||
if not bind:
|
||||
addr = f"tcp://localhost:{port}"
|
||||
addr = f"tcp://{settings.ri_host}:{port}"
|
||||
else:
|
||||
addr = f"tcp://*:{port}"
|
||||
|
||||
@@ -255,7 +257,8 @@ class RICommunicationAgent(BaseAgent):
|
||||
self._req_socket.recv_json(), timeout=seconds_to_wait_total / 2
|
||||
)
|
||||
|
||||
self.logger.debug(f'Received message "{message}" from RI.')
|
||||
if "endpoint" in message and message["endpoint"] != "ping":
|
||||
self.logger.debug(f'Received message "{message}" from RI.')
|
||||
if "endpoint" not in message:
|
||||
self.logger.warning("No received endpoint in message, expected ping endpoint.")
|
||||
continue
|
||||
@@ -319,12 +322,9 @@ class RICommunicationAgent(BaseAgent):
|
||||
self.connected = True
|
||||
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
Handle an incoming message.
|
||||
|
||||
Currently not implemented for this agent.
|
||||
|
||||
:param msg: The received message.
|
||||
:raises NotImplementedError: Always, since this method is not implemented.
|
||||
"""
|
||||
self.logger.warning("custom warning for handle msg in ri coms %s", self.name)
|
||||
try:
|
||||
pause_command = PauseCommand.model_validate_json(msg.body)
|
||||
await self._req_socket.send_json(pause_command.model_dump())
|
||||
self.logger.debug(await self._req_socket.recv_json())
|
||||
except ValidationError:
|
||||
self.logger.warning("Incorrect message format for PauseCommand.")
|
||||
|
||||
@@ -46,14 +46,23 @@ class LLMAgent(BaseAgent):
|
||||
:param msg: The received internal message.
|
||||
"""
|
||||
if msg.sender == settings.agent_settings.bdi_core_name:
|
||||
self.logger.debug("Processing message from BDI core.")
|
||||
try:
|
||||
prompt_message = LLMPromptMessage.model_validate_json(msg.body)
|
||||
await self._process_bdi_message(prompt_message)
|
||||
except ValidationError:
|
||||
self.logger.debug("Prompt message from BDI core is invalid.")
|
||||
match msg.thread:
|
||||
case "prompt_message":
|
||||
try:
|
||||
prompt_message = LLMPromptMessage.model_validate_json(msg.body)
|
||||
await self._process_bdi_message(prompt_message)
|
||||
except ValidationError:
|
||||
self.logger.debug("Prompt message from BDI core is invalid.")
|
||||
case "assistant_message":
|
||||
self.history.append({"role": "assistant", "content": msg.body})
|
||||
case "user_message":
|
||||
self.history.append({"role": "user", "content": msg.body})
|
||||
elif msg.sender == settings.agent_settings.bdi_program_manager_name:
|
||||
if msg.body == "clear_history":
|
||||
self.logger.debug("Clearing conversation history.")
|
||||
self.history.clear()
|
||||
else:
|
||||
self.logger.debug("Message ignored (not from BDI core.")
|
||||
self.logger.debug("Message ignored.")
|
||||
|
||||
async def _process_bdi_message(self, message: LLMPromptMessage):
|
||||
"""
|
||||
@@ -114,13 +123,6 @@ class LLMAgent(BaseAgent):
|
||||
:param goals: Goals the LLM should achieve.
|
||||
:yield: Fragments of the LLM-generated content (e.g., sentences/phrases).
|
||||
"""
|
||||
self.history.append(
|
||||
{
|
||||
"role": "user",
|
||||
"content": prompt,
|
||||
}
|
||||
)
|
||||
|
||||
instructions = LLMInstructions(norms if norms else None, goals if goals else None)
|
||||
messages = [
|
||||
{
|
||||
|
||||
@@ -110,12 +110,11 @@ class VADAgent(BaseAgent):
|
||||
|
||||
self._connect_audio_in_socket()
|
||||
|
||||
audio_out_port = self._connect_audio_out_socket()
|
||||
if audio_out_port is None:
|
||||
audio_out_address = self._connect_audio_out_socket()
|
||||
if audio_out_address is None:
|
||||
self.logger.error("Could not bind output socket, stopping.")
|
||||
await self.stop()
|
||||
return
|
||||
audio_out_address = f"tcp://localhost:{audio_out_port}"
|
||||
|
||||
# Connect to internal communication socket
|
||||
self.program_sub_socket = azmq.Context.instance().socket(zmq.SUB)
|
||||
@@ -168,13 +167,14 @@ class VADAgent(BaseAgent):
|
||||
self.audio_in_socket.connect(self.audio_in_address)
|
||||
self.audio_in_poller = SocketPoller[bytes](self.audio_in_socket)
|
||||
|
||||
def _connect_audio_out_socket(self) -> int | None:
|
||||
def _connect_audio_out_socket(self) -> str | None:
|
||||
"""
|
||||
Returns the port bound, or None if binding failed.
|
||||
Returns the address that was bound to, or None if binding failed.
|
||||
"""
|
||||
try:
|
||||
self.audio_out_socket = azmq.Context.instance().socket(zmq.PUB)
|
||||
return self.audio_out_socket.bind_to_random_port("tcp://localhost", max_tries=100)
|
||||
self.audio_out_socket.bind(settings.zmq_settings.vad_pub_address)
|
||||
return settings.zmq_settings.vad_pub_address
|
||||
except zmq.ZMQBindError:
|
||||
self.logger.error("Failed to bind an audio output socket after 100 tries.")
|
||||
self.audio_out_socket = None
|
||||
@@ -246,10 +246,11 @@ class VADAgent(BaseAgent):
|
||||
assert self.model is not None
|
||||
prob = self.model(torch.from_numpy(chunk), settings.vad_settings.sample_rate_hz).item()
|
||||
non_speech_patience = settings.behaviour_settings.vad_non_speech_patience_chunks
|
||||
begin_silence_length = settings.behaviour_settings.vad_begin_silence_chunks
|
||||
prob_threshold = settings.behaviour_settings.vad_prob_threshold
|
||||
|
||||
if prob > prob_threshold:
|
||||
if self.i_since_speech > non_speech_patience:
|
||||
if self.i_since_speech > non_speech_patience + begin_silence_length:
|
||||
self.logger.debug("Speech started.")
|
||||
self.audio_buffer = np.append(self.audio_buffer, chunk)
|
||||
self.i_since_speech = 0
|
||||
@@ -263,7 +264,7 @@ class VADAgent(BaseAgent):
|
||||
continue
|
||||
|
||||
# Speech probably ended. Make sure we have a usable amount of data.
|
||||
if len(self.audio_buffer) >= 3 * len(chunk):
|
||||
if len(self.audio_buffer) > begin_silence_length * len(chunk):
|
||||
self.logger.debug("Speech ended.")
|
||||
assert self.audio_out_socket is not None
|
||||
await self.audio_out_socket.send(self.audio_buffer[: -2 * len(chunk)].tobytes())
|
||||
|
||||
@@ -4,8 +4,11 @@ import zmq
|
||||
from zmq.asyncio import Context
|
||||
|
||||
from control_backend.agents import BaseAgent
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief, BeliefMessage
|
||||
from control_backend.schemas.program import ConditionalNorm, Program
|
||||
from control_backend.schemas.ri_message import (
|
||||
GestureCommand,
|
||||
PauseCommand,
|
||||
@@ -29,12 +32,39 @@ class UserInterruptAgent(BaseAgent):
|
||||
Prioritized actions clear the current RI queue before inserting the new item,
|
||||
ensuring they are executed immediately after Pepper's current action has been fulfilled.
|
||||
|
||||
:ivar sub_socket: The ZMQ SUB socket used to receive user intterupts.
|
||||
:ivar sub_socket: The ZMQ SUB socket used to receive user interrupts.
|
||||
"""
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.sub_socket = None
|
||||
self.pub_socket = None
|
||||
self._trigger_map = {}
|
||||
self._trigger_reverse_map = {}
|
||||
|
||||
self._goal_map = {} # id -> sluggified goal
|
||||
self._goal_reverse_map = {} # sluggified goal -> id
|
||||
|
||||
self._cond_norm_map = {} # id -> sluggified cond norm
|
||||
self._cond_norm_reverse_map = {} # sluggified cond norm -> id
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent.
|
||||
|
||||
Connects the internal ZMQ SUB socket and subscribes to the 'button_pressed' topic.
|
||||
Starts the background behavior to receive the user interrupts.
|
||||
"""
|
||||
context = Context.instance()
|
||||
|
||||
self.sub_socket = context.socket(zmq.SUB)
|
||||
self.sub_socket.connect(settings.zmq_settings.internal_sub_address)
|
||||
self.sub_socket.subscribe("button_pressed")
|
||||
|
||||
self.pub_socket = context.socket(zmq.PUB)
|
||||
self.pub_socket.connect(settings.zmq_settings.internal_pub_address)
|
||||
|
||||
self.add_behavior(self._receive_button_event())
|
||||
|
||||
async def _receive_button_event(self):
|
||||
"""
|
||||
@@ -46,6 +76,9 @@ class UserInterruptAgent(BaseAgent):
|
||||
- type: "speech", context: string that the robot has to say.
|
||||
- type: "gesture", context: single gesture name that the robot has to perform.
|
||||
- type: "override", context: belief_id that overrides the goal/trigger/conditional norm.
|
||||
- type: "pause", context: boolean indicating whether to pause
|
||||
- type: "reset_phase", context: None, indicates to the BDI Core to
|
||||
- type: "reset_experiment", context: None, indicates to the BDI Core to
|
||||
"""
|
||||
while True:
|
||||
topic, body = await self.sub_socket.recv_multipart()
|
||||
@@ -58,6 +91,8 @@ class UserInterruptAgent(BaseAgent):
|
||||
self.logger.error("Received invalid JSON payload on topic %s", topic)
|
||||
continue
|
||||
|
||||
self.logger.debug("Received event type %s", event_type)
|
||||
|
||||
if event_type == "speech":
|
||||
await self._send_to_speech_agent(event_context)
|
||||
self.logger.info(
|
||||
@@ -71,11 +106,36 @@ class UserInterruptAgent(BaseAgent):
|
||||
event_context,
|
||||
)
|
||||
elif event_type == "override":
|
||||
await self._send_to_program_manager(event_context)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDIProgramManager.",
|
||||
event_context,
|
||||
)
|
||||
ui_id = str(event_context)
|
||||
if asl_trigger := self._trigger_map.get(ui_id):
|
||||
await self._send_to_bdi("force_trigger", asl_trigger)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDI Core.",
|
||||
event_context,
|
||||
)
|
||||
elif asl_cond_norm := self._cond_norm_map.get(ui_id):
|
||||
await self._send_to_bdi("force_norm", asl_cond_norm)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDIProgramManager.",
|
||||
event_context,
|
||||
)
|
||||
elif asl_goal := self._goal_map.get(ui_id):
|
||||
await self._send_to_bdi_belief(asl_goal)
|
||||
self.logger.info(
|
||||
"Forwarded button press (override) with context '%s' to BDI Core.",
|
||||
event_context,
|
||||
)
|
||||
|
||||
goal_achieve_msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_program_manager_name,
|
||||
thread="achieve_goal",
|
||||
body=ui_id,
|
||||
)
|
||||
|
||||
await self.send(goal_achieve_msg)
|
||||
else:
|
||||
self.logger.warning("Could not determine which element to override.")
|
||||
|
||||
elif event_type == "pause":
|
||||
self.logger.debug(
|
||||
"Received pause/resume button press with context '%s'.", event_context
|
||||
@@ -88,7 +148,6 @@ class UserInterruptAgent(BaseAgent):
|
||||
|
||||
elif event_type in ["next_phase", "reset_phase", "reset_experiment"]:
|
||||
await self._send_experiment_control_to_bdi_core(event_type)
|
||||
|
||||
else:
|
||||
self.logger.warning(
|
||||
"Received button press with unknown type '%s' (context: '%s').",
|
||||
@@ -96,35 +155,121 @@ class UserInterruptAgent(BaseAgent):
|
||||
event_context,
|
||||
)
|
||||
|
||||
async def _send_experiment_control_to_bdi_core(self, type):
|
||||
async def handle_message(self, msg: InternalMessage):
|
||||
"""
|
||||
method to send experiment control buttons to bdi core.
|
||||
Handle commands received from other internal Python agents.
|
||||
"""
|
||||
match msg.thread:
|
||||
case "new_program":
|
||||
self._create_mapping(msg.body)
|
||||
case "trigger_start":
|
||||
# msg.body is the sluggified trigger
|
||||
asl_slug = msg.body
|
||||
ui_id = self._trigger_reverse_map.get(asl_slug)
|
||||
|
||||
:param type: the type of control button we should send to the bdi core.
|
||||
"""
|
||||
# Switch which thread we should send to bdi core
|
||||
thread = ""
|
||||
match type:
|
||||
case "next_phase":
|
||||
thread = "force_next_phase"
|
||||
case "reset_phase":
|
||||
thread = "reset_current_phase"
|
||||
case "reset_experiment":
|
||||
thread = "reset_experiment"
|
||||
if ui_id:
|
||||
payload = {"type": "trigger_update", "id": ui_id, "achieved": True}
|
||||
await self._send_experiment_update(payload)
|
||||
self.logger.info(f"UI Update: Trigger {asl_slug} started (ID: {ui_id})")
|
||||
|
||||
case "trigger_end":
|
||||
asl_slug = msg.body
|
||||
ui_id = self._trigger_reverse_map.get(asl_slug)
|
||||
|
||||
if ui_id:
|
||||
payload = {"type": "trigger_update", "id": ui_id, "achieved": False}
|
||||
await self._send_experiment_update(payload)
|
||||
self.logger.info(f"UI Update: Trigger {asl_slug} ended (ID: {ui_id})")
|
||||
case "transition_phase":
|
||||
new_phase_id = msg.body
|
||||
self.logger.info(f"Phase transition detected: {new_phase_id}")
|
||||
|
||||
payload = {"type": "phase_update", "id": new_phase_id}
|
||||
|
||||
await self._send_experiment_update(payload)
|
||||
case "goal_start":
|
||||
goal_name = msg.body
|
||||
ui_id = self._goal_reverse_map.get(goal_name)
|
||||
if ui_id:
|
||||
payload = {"type": "goal_update", "id": ui_id, "active": True}
|
||||
await self._send_experiment_update(payload)
|
||||
self.logger.info(f"UI Update: Goal {goal_name} started (ID: {ui_id})")
|
||||
case "active_norms_update":
|
||||
norm_list = [s.strip("() '\",") for s in msg.body.split(",") if s.strip("() '\",")]
|
||||
|
||||
await self._broadcast_cond_norms(norm_list)
|
||||
case _:
|
||||
self.logger.warning(
|
||||
"Received unknown experiment control type '%s' to send to BDI Core.",
|
||||
type,
|
||||
)
|
||||
self.logger.debug(f"Received internal message on unhandled thread: {msg.thread}")
|
||||
|
||||
out_msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
thread=thread,
|
||||
body="",
|
||||
)
|
||||
self.logger.debug("Sending experiment control '%s' to BDI Core.", thread)
|
||||
await self.send(out_msg)
|
||||
async def _broadcast_cond_norms(self, active_slugs: list[str]):
|
||||
"""
|
||||
Sends the current state of all conditional norms to the UI.
|
||||
:param active_slugs: A list of slugs (strings) currently active in the BDI core.
|
||||
"""
|
||||
updates = []
|
||||
|
||||
for asl_slug, ui_id in self._cond_norm_reverse_map.items():
|
||||
is_active = asl_slug in active_slugs
|
||||
updates.append({"id": ui_id, "name": asl_slug, "active": is_active})
|
||||
|
||||
payload = {"type": "cond_norms_state_update", "norms": updates}
|
||||
|
||||
await self._send_experiment_update(payload, should_log=False)
|
||||
# self.logger.debug(f"Broadcasted state for {len(updates)} conditional norms.")
|
||||
|
||||
def _create_mapping(self, program_json: str):
|
||||
"""
|
||||
Create mappings between UI IDs and ASL slugs for triggers, goals, and conditional norms
|
||||
"""
|
||||
try:
|
||||
program = Program.model_validate_json(program_json)
|
||||
self._trigger_map = {}
|
||||
self._trigger_reverse_map = {}
|
||||
self._goal_map = {}
|
||||
self._cond_norm_map = {}
|
||||
self._cond_norm_reverse_map = {}
|
||||
|
||||
for phase in program.phases:
|
||||
for trigger in phase.triggers:
|
||||
slug = AgentSpeakGenerator.slugify(trigger)
|
||||
self._trigger_map[str(trigger.id)] = slug
|
||||
self._trigger_reverse_map[slug] = str(trigger.id)
|
||||
|
||||
for goal in phase.goals:
|
||||
self._goal_map[str(goal.id)] = AgentSpeakGenerator.slugify(goal)
|
||||
self._goal_reverse_map[AgentSpeakGenerator.slugify(goal)] = str(goal.id)
|
||||
|
||||
for goal, id in self._goal_reverse_map.items():
|
||||
self.logger.debug(f"Goal mapping: UI ID {goal} -> {id}")
|
||||
|
||||
for norm in phase.norms:
|
||||
if isinstance(norm, ConditionalNorm):
|
||||
asl_slug = AgentSpeakGenerator.slugify(norm)
|
||||
|
||||
norm_id = str(norm.id)
|
||||
|
||||
self._cond_norm_map[norm_id] = asl_slug
|
||||
self._cond_norm_reverse_map[norm.norm] = norm_id
|
||||
self.logger.debug("Added conditional norm %s", asl_slug)
|
||||
|
||||
self.logger.info(
|
||||
f"Mapped {len(self._trigger_map)} triggers and {len(self._goal_map)} goals "
|
||||
f"and {len(self._cond_norm_map)} conditional norms for UserInterruptAgent."
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Mapping failed: {e}")
|
||||
|
||||
async def _send_experiment_update(self, data, should_log: bool = True):
|
||||
"""
|
||||
Sends an update to the 'experiment' topic.
|
||||
The SSE endpoint will pick this up and push it to the UI.
|
||||
"""
|
||||
if self.pub_socket:
|
||||
topic = b"experiment"
|
||||
body = json.dumps(data).encode("utf-8")
|
||||
await self.pub_socket.send_multipart([topic, body])
|
||||
if should_log:
|
||||
self.logger.debug(f"Sent experiment update: {data}")
|
||||
|
||||
async def _send_to_speech_agent(self, text_to_say: str):
|
||||
"""
|
||||
@@ -157,26 +302,54 @@ class UserInterruptAgent(BaseAgent):
|
||||
)
|
||||
await self.send(out_msg)
|
||||
|
||||
async def _send_to_program_manager(self, belief_id: str):
|
||||
"""
|
||||
Send a button_override belief to the BDIProgramManager.
|
||||
async def _send_to_bdi(self, thread: str, body: str):
|
||||
"""Send slug of trigger to BDI"""
|
||||
msg = InternalMessage(to=settings.agent_settings.bdi_core_name, thread=thread, body=body)
|
||||
await self.send(msg)
|
||||
self.logger.info(f"Directly forced {thread} in BDI: {body}")
|
||||
|
||||
:param belief_id: The belief_id that overrides the goal/trigger/conditional norm.
|
||||
this id can belong to a basic belief or an inferred belief.
|
||||
See also: https://utrechtuniversity.youtrack.cloud/articles/N25B-A-27/UI-components
|
||||
async def _send_to_bdi_belief(self, asl_goal: str):
|
||||
"""Send belief to BDI Core"""
|
||||
belief_name = f"achieved_{asl_goal}"
|
||||
belief = Belief(name=belief_name, arguments=None)
|
||||
self.logger.debug(f"Sending belief to BDI Core: {belief_name}")
|
||||
belief_message = BeliefMessage(create=[belief])
|
||||
msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
thread="beliefs",
|
||||
body=belief_message.model_dump_json(),
|
||||
)
|
||||
await self.send(msg)
|
||||
|
||||
async def _send_experiment_control_to_bdi_core(self, type):
|
||||
"""
|
||||
data = {"belief": belief_id}
|
||||
message = InternalMessage(
|
||||
to=settings.agent_settings.bdi_program_manager_name,
|
||||
method to send experiment control buttons to bdi core.
|
||||
|
||||
:param type: the type of control button we should send to the bdi core.
|
||||
"""
|
||||
# Switch which thread we should send to bdi core
|
||||
thread = ""
|
||||
match type:
|
||||
case "next_phase":
|
||||
thread = "force_next_phase"
|
||||
case "reset_phase":
|
||||
thread = "reset_current_phase"
|
||||
case "reset_experiment":
|
||||
thread = "reset_experiment"
|
||||
case _:
|
||||
self.logger.warning(
|
||||
"Received unknown experiment control type '%s' to send to BDI Core.",
|
||||
type,
|
||||
)
|
||||
|
||||
out_msg = InternalMessage(
|
||||
to=settings.agent_settings.bdi_core_name,
|
||||
sender=self.name,
|
||||
body=json.dumps(data),
|
||||
thread="belief_override_id",
|
||||
)
|
||||
await self.send(message)
|
||||
self.logger.info(
|
||||
"Sent button_override belief with id '%s' to Program manager.",
|
||||
belief_id,
|
||||
thread=thread,
|
||||
body="",
|
||||
)
|
||||
self.logger.debug("Sending experiment control '%s' to BDI Core.", thread)
|
||||
await self.send(out_msg)
|
||||
|
||||
async def _send_pause_command(self, pause):
|
||||
"""
|
||||
@@ -209,18 +382,3 @@ class UserInterruptAgent(BaseAgent):
|
||||
)
|
||||
await self.send(vad_message)
|
||||
self.logger.info("Sent resume command to VAD Agent and RI Communication Agent.")
|
||||
|
||||
async def setup(self):
|
||||
"""
|
||||
Initialize the agent.
|
||||
|
||||
Connects the internal ZMQ SUB socket and subscribes to the 'button_pressed' topic.
|
||||
Starts the background behavior to receive the user interrupts.
|
||||
"""
|
||||
context = Context.instance()
|
||||
|
||||
self.sub_socket = context.socket(zmq.SUB)
|
||||
self.sub_socket.connect(settings.zmq_settings.internal_sub_address)
|
||||
self.sub_socket.subscribe("button_pressed")
|
||||
|
||||
self.add_behavior(self._receive_button_event())
|
||||
|
||||
@@ -1,31 +0,0 @@
|
||||
import logging
|
||||
|
||||
from fastapi import APIRouter, Request
|
||||
|
||||
from control_backend.schemas.events import ButtonPressedEvent
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.post("/button_pressed", status_code=202)
|
||||
async def receive_button_event(event: ButtonPressedEvent, request: Request):
|
||||
"""
|
||||
Endpoint to handle external button press events.
|
||||
|
||||
Validates the event payload and publishes it to the internal 'button_pressed' topic.
|
||||
Subscribers (in this case user_interrupt_agent) will pick this up to trigger
|
||||
specific behaviors or state changes.
|
||||
|
||||
:param event: The parsed ButtonPressedEvent object.
|
||||
:param request: The FastAPI request object.
|
||||
"""
|
||||
logger.debug("Received button event: %s | %s", event.type, event.context)
|
||||
|
||||
topic = b"button_pressed"
|
||||
body = event.model_dump_json().encode()
|
||||
|
||||
pub_socket = request.app.state.endpoints_pub_socket
|
||||
await pub_socket.send_multipart([topic, body])
|
||||
|
||||
return {"status": "Event received"}
|
||||
@@ -137,7 +137,6 @@ async def ping_stream(request: Request):
|
||||
logger.info("Client disconnected from SSE")
|
||||
break
|
||||
|
||||
logger.debug(f"Yielded new connection event in robot ping router: {str(connected)}")
|
||||
connectedJson = json.dumps(connected)
|
||||
yield (f"data: {connectedJson}\n\n")
|
||||
|
||||
|
||||
67
src/control_backend/api/v1/endpoints/user_interact.py
Normal file
67
src/control_backend/api/v1/endpoints/user_interact.py
Normal file
@@ -0,0 +1,67 @@
|
||||
import asyncio
|
||||
import logging
|
||||
|
||||
import zmq
|
||||
import zmq.asyncio
|
||||
from fastapi import APIRouter, Request
|
||||
from fastapi.responses import StreamingResponse
|
||||
from zmq.asyncio import Context
|
||||
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.events import ButtonPressedEvent
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
router = APIRouter()
|
||||
|
||||
|
||||
@router.post("/button_pressed", status_code=202)
|
||||
async def receive_button_event(event: ButtonPressedEvent, request: Request):
|
||||
"""
|
||||
Endpoint to handle external button press events.
|
||||
|
||||
Validates the event payload and publishes it to the internal 'button_pressed' topic.
|
||||
Subscribers (in this case user_interrupt_agent) will pick this up to trigger
|
||||
specific behaviors or state changes.
|
||||
|
||||
:param event: The parsed ButtonPressedEvent object.
|
||||
:param request: The FastAPI request object.
|
||||
"""
|
||||
logger.debug("Received button event: %s | %s", event.type, event.context)
|
||||
|
||||
topic = b"button_pressed"
|
||||
body = event.model_dump_json().encode()
|
||||
|
||||
pub_socket = request.app.state.endpoints_pub_socket
|
||||
await pub_socket.send_multipart([topic, body])
|
||||
|
||||
return {"status": "Event received"}
|
||||
|
||||
|
||||
@router.get("/experiment_stream")
|
||||
async def experiment_stream(request: Request):
|
||||
# Use the asyncio-compatible context
|
||||
context = Context.instance()
|
||||
socket = context.socket(zmq.SUB)
|
||||
|
||||
# Connect and subscribe
|
||||
socket.connect(settings.zmq_settings.internal_sub_address)
|
||||
socket.subscribe(b"experiment")
|
||||
|
||||
async def gen():
|
||||
try:
|
||||
while True:
|
||||
# Check if client closed the tab
|
||||
if await request.is_disconnected():
|
||||
logger.info("Client disconnected from experiment stream.")
|
||||
break
|
||||
|
||||
try:
|
||||
parts = await asyncio.wait_for(socket.recv_multipart(), timeout=1.0)
|
||||
_, message = parts
|
||||
yield f"data: {message.decode().strip()}\n\n"
|
||||
except TimeoutError:
|
||||
continue
|
||||
finally:
|
||||
socket.close()
|
||||
|
||||
return StreamingResponse(gen(), media_type="text/event-stream")
|
||||
@@ -1,6 +1,6 @@
|
||||
from fastapi.routing import APIRouter
|
||||
|
||||
from control_backend.api.v1.endpoints import button_pressed, logs, message, program, robot, sse
|
||||
from control_backend.api.v1.endpoints import logs, message, program, robot, sse, user_interact
|
||||
|
||||
api_router = APIRouter()
|
||||
|
||||
@@ -14,4 +14,4 @@ api_router.include_router(logs.router, tags=["Logs"])
|
||||
|
||||
api_router.include_router(program.router, tags=["Program"])
|
||||
|
||||
api_router.include_router(button_pressed.router, tags=["Button Pressed Events"])
|
||||
api_router.include_router(user_interact.router, tags=["Button Pressed Events"])
|
||||
|
||||
@@ -60,6 +60,9 @@ class BaseAgent(ABC):
|
||||
self._tasks: set[asyncio.Task] = set()
|
||||
self._running = False
|
||||
|
||||
self._internal_pub_socket: None | azmq.Socket = None
|
||||
self._internal_sub_socket: None | azmq.Socket = None
|
||||
|
||||
# Register immediately
|
||||
AgentDirectory.register(name, self)
|
||||
|
||||
@@ -117,7 +120,7 @@ class BaseAgent(ABC):
|
||||
task.cancel()
|
||||
self.logger.info(f"Agent {self.name} stopped")
|
||||
|
||||
async def send(self, message: InternalMessage):
|
||||
async def send(self, message: InternalMessage, should_log: bool = True):
|
||||
"""
|
||||
Send a message to another agent.
|
||||
|
||||
@@ -130,16 +133,26 @@ class BaseAgent(ABC):
|
||||
|
||||
:param message: The message to send.
|
||||
"""
|
||||
target = AgentDirectory.get(message.to)
|
||||
if target:
|
||||
await target.inbox.put(message)
|
||||
self.logger.debug(f"Sent message {message.body} to {message.to} via regular inbox.")
|
||||
else:
|
||||
# Apparently target agent is on a different process, send via ZMQ
|
||||
topic = f"internal/{message.to}".encode()
|
||||
body = message.model_dump_json().encode()
|
||||
await self._internal_pub_socket.send_multipart([topic, body])
|
||||
self.logger.debug(f"Sent message {message.body} to {message.to} via ZMQ.")
|
||||
message.sender = self.name
|
||||
to = message.to
|
||||
receivers = [to] if isinstance(to, str) else to
|
||||
|
||||
for receiver in receivers:
|
||||
target = AgentDirectory.get(receiver)
|
||||
|
||||
if target:
|
||||
await target.inbox.put(message)
|
||||
if should_log:
|
||||
self.logger.debug(
|
||||
f"Sent message {message.body} to {message.to} via regular inbox."
|
||||
)
|
||||
else:
|
||||
# Apparently target agent is on a different process, send via ZMQ
|
||||
topic = f"internal/{receiver}".encode()
|
||||
body = message.model_dump_json().encode()
|
||||
await self._internal_pub_socket.send_multipart([topic, body])
|
||||
if should_log:
|
||||
self.logger.debug(f"Sent message {message.body} to {message.to} via ZMQ.")
|
||||
|
||||
async def _process_inbox(self):
|
||||
"""
|
||||
@@ -149,7 +162,6 @@ class BaseAgent(ABC):
|
||||
"""
|
||||
while self._running:
|
||||
msg = await self.inbox.get()
|
||||
self.logger.debug(f"Received message from {msg.sender}.")
|
||||
await self.handle_message(msg)
|
||||
|
||||
async def _receive_internal_zmq_loop(self):
|
||||
@@ -192,7 +204,16 @@ class BaseAgent(ABC):
|
||||
|
||||
:param coro: The coroutine to execute as a task.
|
||||
"""
|
||||
task = asyncio.create_task(coro)
|
||||
|
||||
async def try_coro(coro_: Coroutine):
|
||||
try:
|
||||
await coro_
|
||||
except asyncio.CancelledError:
|
||||
self.logger.debug("A behavior was canceled successfully: %s", coro_)
|
||||
except Exception:
|
||||
self.logger.warning("An exception occurred in a behavior.", exc_info=True)
|
||||
|
||||
task = asyncio.create_task(try_coro(coro))
|
||||
self._tasks.add(task)
|
||||
task.add_done_callback(self._tasks.discard)
|
||||
return task
|
||||
|
||||
@@ -1,3 +1,12 @@
|
||||
"""
|
||||
An exhaustive overview of configurable options. All of these can be set using environment variables
|
||||
by nesting with double underscores (__). Start from the ``Settings`` class.
|
||||
|
||||
For example, ``settings.ri_host`` becomes ``RI_HOST``, and
|
||||
``settings.zmq_settings.ri_communication_address`` becomes
|
||||
``ZMQ_SETTINGS__RI_COMMUNICATION_ADDRESS``.
|
||||
"""
|
||||
|
||||
from pydantic import BaseModel
|
||||
from pydantic_settings import BaseSettings, SettingsConfigDict
|
||||
|
||||
@@ -8,16 +17,17 @@ class ZMQSettings(BaseModel):
|
||||
|
||||
:ivar internal_pub_address: Address for the internal PUB socket.
|
||||
:ivar internal_sub_address: Address for the internal SUB socket.
|
||||
:ivar ri_command_address: Address for sending commands to the Robot Interface.
|
||||
:ivar ri_communication_address: Address for receiving communication from the Robot Interface.
|
||||
:ivar vad_agent_address: Address for the Voice Activity Detection (VAD) agent.
|
||||
:ivar ri_communication_address: Address for the endpoint that the Robot Interface connects to.
|
||||
:ivar vad_pub_address: Address that the VAD agent binds to and publishes audio segments to.
|
||||
"""
|
||||
|
||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||
|
||||
internal_pub_address: str = "tcp://localhost:5560"
|
||||
internal_sub_address: str = "tcp://localhost:5561"
|
||||
ri_command_address: str = "tcp://localhost:0000"
|
||||
ri_communication_address: str = "tcp://*:5555"
|
||||
internal_gesture_rep_adress: str = "tcp://localhost:7788"
|
||||
vad_pub_address: str = "inproc://vad_stream"
|
||||
|
||||
|
||||
class AgentSettings(BaseModel):
|
||||
@@ -25,7 +35,6 @@ class AgentSettings(BaseModel):
|
||||
Names of the various agents in the system. These names are used for routing messages.
|
||||
|
||||
:ivar bdi_core_name: Name of the BDI Core Agent.
|
||||
:ivar bdi_belief_collector_name: Name of the Belief Collector Agent.
|
||||
:ivar bdi_program_manager_name: Name of the BDI Program Manager Agent.
|
||||
:ivar text_belief_extractor_name: Name of the Text Belief Extractor Agent.
|
||||
:ivar vad_name: Name of the Voice Activity Detection (VAD) Agent.
|
||||
@@ -36,9 +45,10 @@ class AgentSettings(BaseModel):
|
||||
:ivar robot_speech_name: Name of the Robot Speech Agent.
|
||||
"""
|
||||
|
||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||
|
||||
# agent names
|
||||
bdi_core_name: str = "bdi_core_agent"
|
||||
bdi_belief_collector_name: str = "belief_collector_agent"
|
||||
bdi_program_manager_name: str = "bdi_program_manager_agent"
|
||||
text_belief_extractor_name: str = "text_belief_extractor_agent"
|
||||
vad_name: str = "vad_agent"
|
||||
@@ -61,6 +71,7 @@ class BehaviourSettings(BaseModel):
|
||||
:ivar vad_prob_threshold: Probability threshold for Voice Activity Detection.
|
||||
:ivar vad_initial_since_speech: Initial value for 'since speech' counter in VAD.
|
||||
:ivar vad_non_speech_patience_chunks: Number of non-speech chunks to wait before speech ended.
|
||||
:ivar vad_begin_silence_chunks: The number of chunks of silence to prepend to speech chunks.
|
||||
:ivar transcription_max_concurrent_tasks: Maximum number of concurrent transcription tasks.
|
||||
:ivar transcription_words_per_minute: Estimated words per minute for transcription timing.
|
||||
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
|
||||
@@ -68,6 +79,8 @@ class BehaviourSettings(BaseModel):
|
||||
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
|
||||
"""
|
||||
|
||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||
|
||||
sleep_s: float = 1.0
|
||||
comm_setup_max_retries: int = 5
|
||||
socket_poller_timeout_ms: int = 100
|
||||
@@ -75,7 +88,8 @@ class BehaviourSettings(BaseModel):
|
||||
# VAD settings
|
||||
vad_prob_threshold: float = 0.5
|
||||
vad_initial_since_speech: int = 100
|
||||
vad_non_speech_patience_chunks: int = 3
|
||||
vad_non_speech_patience_chunks: int = 15
|
||||
vad_begin_silence_chunks: int = 6
|
||||
|
||||
# transcription behaviour
|
||||
transcription_max_concurrent_tasks: int = 3
|
||||
@@ -99,6 +113,8 @@ class LLMSettings(BaseModel):
|
||||
:ivar n_parallel: The number of parallel calls allowed to be made to the LLM.
|
||||
"""
|
||||
|
||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||
|
||||
local_llm_url: str = "http://localhost:1234/v1/chat/completions"
|
||||
local_llm_model: str = "gpt-oss"
|
||||
chat_temperature: float = 1.0
|
||||
@@ -115,6 +131,8 @@ class VADSettings(BaseModel):
|
||||
:ivar sample_rate_hz: Sample rate in Hz for the VAD model.
|
||||
"""
|
||||
|
||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||
|
||||
repo_or_dir: str = "snakers4/silero-vad"
|
||||
model_name: str = "silero_vad"
|
||||
sample_rate_hz: int = 16000
|
||||
@@ -128,6 +146,8 @@ class SpeechModelSettings(BaseModel):
|
||||
:ivar openai_model_name: Model name for OpenAI-based speech recognition.
|
||||
"""
|
||||
|
||||
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
|
||||
|
||||
# model identifiers for speech recognition
|
||||
mlx_model_name: str = "mlx-community/whisper-small.en-mlx"
|
||||
openai_model_name: str = "small.en"
|
||||
@@ -139,6 +159,7 @@ class Settings(BaseSettings):
|
||||
|
||||
:ivar app_title: Title of the application.
|
||||
:ivar ui_url: URL of the frontend UI.
|
||||
:ivar ri_host: The hostname of the Robot Interface.
|
||||
:ivar zmq_settings: ZMQ configuration.
|
||||
:ivar agent_settings: Agent name configuration.
|
||||
:ivar behaviour_settings: Behavior configuration.
|
||||
@@ -151,6 +172,8 @@ class Settings(BaseSettings):
|
||||
|
||||
ui_url: str = "http://localhost:5173"
|
||||
|
||||
ri_host: str = "localhost"
|
||||
|
||||
zmq_settings: ZMQSettings = ZMQSettings()
|
||||
|
||||
agent_settings: AgentSettings = AgentSettings()
|
||||
|
||||
@@ -26,7 +26,6 @@ from zmq.asyncio import Context
|
||||
|
||||
# BDI agents
|
||||
from control_backend.agents.bdi import (
|
||||
BDIBeliefCollectorAgent,
|
||||
BDICoreAgent,
|
||||
TextBeliefExtractorAgent,
|
||||
)
|
||||
@@ -122,12 +121,6 @@ async def lifespan(app: FastAPI):
|
||||
"name": settings.agent_settings.bdi_core_name,
|
||||
},
|
||||
),
|
||||
"BeliefCollectorAgent": (
|
||||
BDIBeliefCollectorAgent,
|
||||
{
|
||||
"name": settings.agent_settings.bdi_belief_collector_name,
|
||||
},
|
||||
),
|
||||
"TextBeliefExtractorAgent": (
|
||||
TextBeliefExtractorAgent,
|
||||
{
|
||||
@@ -172,6 +165,8 @@ async def lifespan(app: FastAPI):
|
||||
|
||||
await endpoints_pub_socket.send_multipart([PROGRAM_STATUS, ProgramStatus.STOPPING.value])
|
||||
# Additional shutdown logic goes here
|
||||
for agent in agents:
|
||||
await agent.stop()
|
||||
|
||||
logger.info("Application shutdown complete.")
|
||||
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from pydantic import BaseModel
|
||||
|
||||
from control_backend.schemas.program import BaseGoal
|
||||
from control_backend.schemas.program import Belief as ProgramBelief
|
||||
|
||||
|
||||
@@ -12,3 +13,7 @@ class BeliefList(BaseModel):
|
||||
"""
|
||||
|
||||
beliefs: list[ProgramBelief]
|
||||
|
||||
|
||||
class GoalList(BaseModel):
|
||||
goals: list[BaseGoal]
|
||||
|
||||
@@ -11,7 +11,10 @@ class Belief(BaseModel):
|
||||
"""
|
||||
|
||||
name: str
|
||||
arguments: list[str] | None
|
||||
arguments: list[str] | None = None
|
||||
|
||||
# To make it hashable
|
||||
model_config = {"frozen": True}
|
||||
|
||||
|
||||
class BeliefMessage(BaseModel):
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
from collections.abc import Iterable
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
@@ -11,7 +13,7 @@ class InternalMessage(BaseModel):
|
||||
:ivar thread: An optional thread identifier/topic to categorize the message (e.g., 'beliefs').
|
||||
"""
|
||||
|
||||
to: str
|
||||
sender: str
|
||||
to: str | Iterable[str]
|
||||
sender: str | None = None
|
||||
body: str
|
||||
thread: str | None = None
|
||||
|
||||
@@ -15,6 +15,9 @@ class ProgramElement(BaseModel):
|
||||
name: str
|
||||
id: UUID4
|
||||
|
||||
# To make program elements hashable
|
||||
model_config = {"frozen": True}
|
||||
|
||||
|
||||
class LogicalOperator(Enum):
|
||||
AND = "AND"
|
||||
@@ -105,23 +108,33 @@ class Plan(ProgramElement):
|
||||
steps: list[PlanElement]
|
||||
|
||||
|
||||
class Goal(ProgramElement):
|
||||
class BaseGoal(ProgramElement):
|
||||
"""
|
||||
Represents an objective to be achieved. To reach the goal, we should execute
|
||||
the corresponding plan. If we can fail to achieve a goal after executing the plan,
|
||||
for example when the achieving of the goal is dependent on the user's reply, this means
|
||||
that the achieved status will be set from somewhere else in the program.
|
||||
Represents an objective to be achieved. This base version does not include a plan to achieve
|
||||
this goal, and is used in semantic belief extraction.
|
||||
|
||||
:ivar description: A description of the goal, used to determine if it has been achieved.
|
||||
:ivar plan: The plan to execute.
|
||||
:ivar can_fail: Whether we can fail to achieve the goal after executing the plan.
|
||||
"""
|
||||
|
||||
description: str
|
||||
plan: Plan
|
||||
description: str = ""
|
||||
can_fail: bool = True
|
||||
|
||||
|
||||
class Goal(BaseGoal):
|
||||
"""
|
||||
Represents an objective to be achieved. To reach the goal, we should execute the corresponding
|
||||
plan. It inherits from the BaseGoal a variable `can_fail`, which if true will cause the
|
||||
completion to be determined based on the conversation.
|
||||
|
||||
Instances of this goal are not hashable because a plan is not hashable.
|
||||
|
||||
:ivar plan: The plan to execute.
|
||||
"""
|
||||
|
||||
plan: Plan
|
||||
|
||||
|
||||
type Action = SpeechAction | GestureAction | LLMAction
|
||||
|
||||
|
||||
@@ -180,7 +193,6 @@ class Trigger(ProgramElement):
|
||||
:ivar plan: The plan to execute.
|
||||
"""
|
||||
|
||||
name: str = ""
|
||||
condition: Belief
|
||||
plan: Plan
|
||||
|
||||
|
||||
@@ -91,7 +91,7 @@ def test_out_socket_creation(zmq_context):
|
||||
assert per_vad_agent.audio_out_socket is not None
|
||||
|
||||
zmq_context.return_value.socket.assert_called_once_with(zmq.PUB)
|
||||
zmq_context.return_value.socket.return_value.bind_to_random_port.assert_called_once()
|
||||
zmq_context.return_value.socket.return_value.bind.assert_called_once_with("inproc://vad_stream")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
||||
@@ -28,7 +28,11 @@ async def test_setup_bind(zmq_context, mocker):
|
||||
settings = mocker.patch("control_backend.agents.actuation.robot_gesture_agent.settings")
|
||||
settings.zmq_settings.internal_sub_address = "tcp://internal:1234"
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -55,7 +59,11 @@ async def test_setup_connect(zmq_context, mocker):
|
||||
settings = mocker.patch("control_backend.agents.actuation.robot_gesture_agent.settings")
|
||||
settings.zmq_settings.internal_sub_address = "tcp://internal:1234"
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -73,7 +81,7 @@ async def test_setup_connect(zmq_context, mocker):
|
||||
async def test_handle_message_sends_valid_gesture_command():
|
||||
"""Internal message with valid gesture tag is forwarded to robot pub socket."""
|
||||
pubsocket = AsyncMock()
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.pubsocket = pubsocket
|
||||
|
||||
payload = {
|
||||
@@ -91,7 +99,7 @@ async def test_handle_message_sends_valid_gesture_command():
|
||||
async def test_handle_message_sends_non_gesture_command():
|
||||
"""Internal message with non-gesture endpoint is not forwarded by this agent."""
|
||||
pubsocket = AsyncMock()
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.pubsocket = pubsocket
|
||||
|
||||
payload = {"endpoint": "some_other_endpoint", "data": "invalid_tag_not_in_list"}
|
||||
@@ -107,7 +115,7 @@ async def test_handle_message_sends_non_gesture_command():
|
||||
async def test_handle_message_rejects_invalid_gesture_tag():
|
||||
"""Internal message with invalid gesture tag is not forwarded."""
|
||||
pubsocket = AsyncMock()
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.pubsocket = pubsocket
|
||||
|
||||
# Use a tag that's not in gesture_data
|
||||
@@ -119,11 +127,70 @@ async def test_handle_message_rejects_invalid_gesture_tag():
|
||||
pubsocket.send_json.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_sends_valid_single_gesture_command():
|
||||
"""Internal message with valid single gesture is forwarded."""
|
||||
pubsocket = AsyncMock()
|
||||
agent = RobotGestureAgent("robot_gesture", single_gesture_data=["wave", "point"], address="")
|
||||
agent.pubsocket = pubsocket
|
||||
|
||||
payload = {
|
||||
"endpoint": RIEndpoint.GESTURE_SINGLE,
|
||||
"data": "wave",
|
||||
}
|
||||
msg = InternalMessage(to="robot", sender="tester", body=json.dumps(payload))
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
pubsocket.send_json.assert_awaited_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_rejects_invalid_single_gesture():
|
||||
"""Internal message with invalid single gesture is not forwarded."""
|
||||
pubsocket = AsyncMock()
|
||||
agent = RobotGestureAgent("robot_gesture", single_gesture_data=["wave", "point"], address="")
|
||||
agent.pubsocket = pubsocket
|
||||
|
||||
payload = {
|
||||
"endpoint": RIEndpoint.GESTURE_SINGLE,
|
||||
"data": "dance",
|
||||
}
|
||||
msg = InternalMessage(to="robot", sender="tester", body=json.dumps(payload))
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
pubsocket.send_json.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_zmq_command_loop_valid_single_gesture_payload():
|
||||
"""UI command with valid single gesture is read from SUB and published."""
|
||||
command = {"endpoint": RIEndpoint.GESTURE_SINGLE, "data": "wave"}
|
||||
fake_socket = AsyncMock()
|
||||
|
||||
async def recv_once():
|
||||
agent._running = False
|
||||
return b"command", json.dumps(command).encode("utf-8")
|
||||
|
||||
fake_socket.recv_multipart = recv_once
|
||||
fake_socket.send_json = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", single_gesture_data=["wave", "point"], address="")
|
||||
agent.subsocket = fake_socket
|
||||
agent.pubsocket = fake_socket
|
||||
agent._running = True
|
||||
|
||||
await agent._zmq_command_loop()
|
||||
|
||||
fake_socket.send_json.assert_awaited_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_invalid_payload():
|
||||
"""Invalid payload is caught and does not send."""
|
||||
pubsocket = AsyncMock()
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.pubsocket = pubsocket
|
||||
|
||||
msg = InternalMessage(to="robot", sender="tester", body=json.dumps({"bad": "data"}))
|
||||
@@ -142,12 +209,12 @@ async def test_zmq_command_loop_valid_gesture_payload():
|
||||
async def recv_once():
|
||||
# stop after first iteration
|
||||
agent._running = False
|
||||
return (b"command", json.dumps(command).encode("utf-8"))
|
||||
return b"command", json.dumps(command).encode("utf-8")
|
||||
|
||||
fake_socket.recv_multipart = recv_once
|
||||
fake_socket.send_json = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.subsocket = fake_socket
|
||||
agent.pubsocket = fake_socket
|
||||
agent._running = True
|
||||
@@ -165,12 +232,12 @@ async def test_zmq_command_loop_valid_non_gesture_payload():
|
||||
|
||||
async def recv_once():
|
||||
agent._running = False
|
||||
return (b"command", json.dumps(command).encode("utf-8"))
|
||||
return b"command", json.dumps(command).encode("utf-8")
|
||||
|
||||
fake_socket.recv_multipart = recv_once
|
||||
fake_socket.send_json = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.subsocket = fake_socket
|
||||
agent.pubsocket = fake_socket
|
||||
agent._running = True
|
||||
@@ -188,12 +255,12 @@ async def test_zmq_command_loop_invalid_gesture_tag():
|
||||
|
||||
async def recv_once():
|
||||
agent._running = False
|
||||
return (b"command", json.dumps(command).encode("utf-8"))
|
||||
return b"command", json.dumps(command).encode("utf-8")
|
||||
|
||||
fake_socket.recv_multipart = recv_once
|
||||
fake_socket.send_json = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.subsocket = fake_socket
|
||||
agent.pubsocket = fake_socket
|
||||
agent._running = True
|
||||
@@ -210,12 +277,12 @@ async def test_zmq_command_loop_invalid_json():
|
||||
|
||||
async def recv_once():
|
||||
agent._running = False
|
||||
return (b"command", b"{not_json}")
|
||||
return b"command", b"{not_json}"
|
||||
|
||||
fake_socket.recv_multipart = recv_once
|
||||
fake_socket.send_json = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.subsocket = fake_socket
|
||||
agent.pubsocket = fake_socket
|
||||
agent._running = True
|
||||
@@ -232,12 +299,12 @@ async def test_zmq_command_loop_ignores_send_gestures_topic():
|
||||
|
||||
async def recv_once():
|
||||
agent._running = False
|
||||
return (b"send_gestures", b"{}")
|
||||
return b"send_gestures", b"{}"
|
||||
|
||||
fake_socket.recv_multipart = recv_once
|
||||
fake_socket.send_json = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.subsocket = fake_socket
|
||||
agent.pubsocket = fake_socket
|
||||
agent._running = True
|
||||
@@ -259,7 +326,9 @@ async def test_fetch_gestures_loop_without_amount():
|
||||
fake_repsocket.recv = recv_once
|
||||
fake_repsocket.send = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"])
|
||||
agent = RobotGestureAgent(
|
||||
"robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"], address=""
|
||||
)
|
||||
agent.repsocket = fake_repsocket
|
||||
agent._running = True
|
||||
|
||||
@@ -287,7 +356,9 @@ async def test_fetch_gestures_loop_with_amount():
|
||||
fake_repsocket.recv = recv_once
|
||||
fake_repsocket.send = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"])
|
||||
agent = RobotGestureAgent(
|
||||
"robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"], address=""
|
||||
)
|
||||
agent.repsocket = fake_repsocket
|
||||
agent._running = True
|
||||
|
||||
@@ -315,7 +386,7 @@ async def test_fetch_gestures_loop_with_integer_request():
|
||||
fake_repsocket.recv = recv_once
|
||||
fake_repsocket.send = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.repsocket = fake_repsocket
|
||||
agent._running = True
|
||||
|
||||
@@ -340,7 +411,7 @@ async def test_fetch_gestures_loop_with_invalid_json():
|
||||
fake_repsocket.recv = recv_once
|
||||
fake_repsocket.send = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.repsocket = fake_repsocket
|
||||
agent._running = True
|
||||
|
||||
@@ -365,7 +436,7 @@ async def test_fetch_gestures_loop_with_non_integer_json():
|
||||
fake_repsocket.recv = recv_once
|
||||
fake_repsocket.send = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.repsocket = fake_repsocket
|
||||
agent._running = True
|
||||
|
||||
@@ -381,7 +452,7 @@ async def test_fetch_gestures_loop_with_non_integer_json():
|
||||
def test_gesture_data_attribute():
|
||||
"""Test that gesture_data returns the expected list."""
|
||||
gesture_data = ["hello", "yes", "no", "wave"]
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=gesture_data)
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=gesture_data, address="")
|
||||
|
||||
assert agent.gesture_data == gesture_data
|
||||
assert isinstance(agent.gesture_data, list)
|
||||
@@ -398,7 +469,7 @@ async def test_stop_closes_sockets():
|
||||
pubsocket = MagicMock()
|
||||
subsocket = MagicMock()
|
||||
repsocket = MagicMock()
|
||||
agent = RobotGestureAgent("robot_gesture")
|
||||
agent = RobotGestureAgent("robot_gesture", address="")
|
||||
agent.pubsocket = pubsocket
|
||||
agent.subsocket = subsocket
|
||||
agent.repsocket = repsocket
|
||||
@@ -407,15 +478,14 @@ async def test_stop_closes_sockets():
|
||||
|
||||
pubsocket.close.assert_called_once()
|
||||
subsocket.close.assert_called_once()
|
||||
# Note: repsocket is not closed in stop() method, but you might want to add it
|
||||
# repsocket.close.assert_called_once()
|
||||
repsocket.close.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_initialization_with_custom_gesture_data():
|
||||
"""Agent can be initialized with custom gesture data."""
|
||||
custom_gestures = ["custom1", "custom2", "custom3"]
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=custom_gestures)
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=custom_gestures, address="")
|
||||
|
||||
assert agent.gesture_data == custom_gestures
|
||||
|
||||
@@ -432,7 +502,7 @@ async def test_fetch_gestures_loop_handles_exception():
|
||||
fake_repsocket.recv = recv_once
|
||||
fake_repsocket.send = AsyncMock()
|
||||
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
|
||||
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
|
||||
agent.repsocket = fake_repsocket
|
||||
agent.logger = MagicMock()
|
||||
agent._running = True
|
||||
|
||||
@@ -30,7 +30,11 @@ async def test_setup_bind(zmq_context, mocker):
|
||||
settings = mocker.patch("control_backend.agents.actuation.robot_speech_agent.settings")
|
||||
settings.zmq_settings.internal_sub_address = "tcp://internal:1234"
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -48,7 +52,11 @@ async def test_setup_connect(zmq_context, mocker):
|
||||
settings = mocker.patch("control_backend.agents.actuation.robot_speech_agent.settings")
|
||||
settings.zmq_settings.internal_sub_address = "tcp://internal:1234"
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
|
||||
186
test/unit/agents/bdi/test_agentspeak_ast.py
Normal file
186
test/unit/agents/bdi/test_agentspeak_ast.py
Normal file
@@ -0,0 +1,186 @@
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.bdi.agentspeak_ast import (
|
||||
AstAtom,
|
||||
AstBinaryOp,
|
||||
AstLiteral,
|
||||
AstLogicalExpression,
|
||||
AstNumber,
|
||||
AstPlan,
|
||||
AstProgram,
|
||||
AstRule,
|
||||
AstStatement,
|
||||
AstString,
|
||||
AstVar,
|
||||
BinaryOperatorType,
|
||||
StatementType,
|
||||
TriggerType,
|
||||
_coalesce_expr,
|
||||
)
|
||||
|
||||
|
||||
def test_ast_atom():
|
||||
atom = AstAtom("test")
|
||||
assert str(atom) == "test"
|
||||
assert atom._to_agentspeak() == "test"
|
||||
|
||||
|
||||
def test_ast_var():
|
||||
var = AstVar("Variable")
|
||||
assert str(var) == "Variable"
|
||||
assert var._to_agentspeak() == "Variable"
|
||||
|
||||
|
||||
def test_ast_number():
|
||||
num = AstNumber(42)
|
||||
assert str(num) == "42"
|
||||
num_float = AstNumber(3.14)
|
||||
assert str(num_float) == "3.14"
|
||||
|
||||
|
||||
def test_ast_string():
|
||||
s = AstString("hello")
|
||||
assert str(s) == '"hello"'
|
||||
|
||||
|
||||
def test_ast_literal():
|
||||
lit = AstLiteral("functor", [AstAtom("atom"), AstNumber(1)])
|
||||
assert str(lit) == "functor(atom, 1)"
|
||||
lit_empty = AstLiteral("functor")
|
||||
assert str(lit_empty) == "functor"
|
||||
|
||||
|
||||
def test_ast_binary_op():
|
||||
left = AstNumber(1)
|
||||
right = AstNumber(2)
|
||||
op = AstBinaryOp(left, BinaryOperatorType.GREATER_THAN, right)
|
||||
assert str(op) == "1 > 2"
|
||||
|
||||
# Test logical wrapper
|
||||
assert isinstance(op.left, AstLogicalExpression)
|
||||
assert isinstance(op.right, AstLogicalExpression)
|
||||
|
||||
|
||||
def test_ast_binary_op_parens():
|
||||
# 1 > 2
|
||||
inner = AstBinaryOp(AstNumber(1), BinaryOperatorType.GREATER_THAN, AstNumber(2))
|
||||
# (1 > 2) & 3
|
||||
outer = AstBinaryOp(inner, BinaryOperatorType.AND, AstNumber(3))
|
||||
assert str(outer) == "(1 > 2) & 3"
|
||||
|
||||
# 3 & (1 > 2)
|
||||
outer_right = AstBinaryOp(AstNumber(3), BinaryOperatorType.AND, inner)
|
||||
assert str(outer_right) == "3 & (1 > 2)"
|
||||
|
||||
|
||||
def test_ast_binary_op_parens_negated():
|
||||
inner = AstLogicalExpression(AstAtom("foo"), negated=True)
|
||||
outer = AstBinaryOp(inner, BinaryOperatorType.AND, AstAtom("bar"))
|
||||
# The current implementation checks `if self.left.negated: l_str = f"({l_str})"`
|
||||
# str(inner) is "not foo"
|
||||
# so we expect "(not foo) & bar"
|
||||
assert str(outer) == "(not foo) & bar"
|
||||
|
||||
outer_right = AstBinaryOp(AstAtom("bar"), BinaryOperatorType.AND, inner)
|
||||
assert str(outer_right) == "bar & (not foo)"
|
||||
|
||||
|
||||
def test_ast_logical_expression_negation():
|
||||
expr = AstLogicalExpression(AstAtom("true"), negated=True)
|
||||
assert str(expr) == "not true"
|
||||
|
||||
expr_neg_neg = ~expr
|
||||
assert str(expr_neg_neg) == "true"
|
||||
assert not expr_neg_neg.negated
|
||||
|
||||
# Invert a non-logical expression (wraps it)
|
||||
term = AstAtom("true")
|
||||
inverted = ~term
|
||||
assert isinstance(inverted, AstLogicalExpression)
|
||||
assert inverted.negated
|
||||
assert str(inverted) == "not true"
|
||||
|
||||
|
||||
def test_ast_logical_expression_no_negation():
|
||||
# _as_logical on already logical expression
|
||||
expr = AstLogicalExpression(AstAtom("x"))
|
||||
# Doing binary op will call _as_logical
|
||||
op = AstBinaryOp(expr, BinaryOperatorType.AND, AstAtom("y"))
|
||||
assert isinstance(op.left, AstLogicalExpression)
|
||||
assert op.left is expr # Should reuse instance
|
||||
|
||||
|
||||
def test_ast_operators():
|
||||
t1 = AstAtom("a")
|
||||
t2 = AstAtom("b")
|
||||
|
||||
assert str(t1 & t2) == "a & b"
|
||||
assert str(t1 | t2) == "a | b"
|
||||
assert str(t1 >= t2) == "a >= b"
|
||||
assert str(t1 > t2) == "a > b"
|
||||
assert str(t1 <= t2) == "a <= b"
|
||||
assert str(t1 < t2) == "a < b"
|
||||
assert str(t1 == t2) == "a == b"
|
||||
assert str(t1 != t2) == r"a \== b"
|
||||
|
||||
|
||||
def test_coalesce_expr():
|
||||
t = AstAtom("a")
|
||||
assert str(t & "b") == 'a & "b"'
|
||||
assert str(t & 1) == "a & 1"
|
||||
assert str(t & 1.5) == "a & 1.5"
|
||||
|
||||
with pytest.raises(TypeError):
|
||||
_coalesce_expr(None)
|
||||
|
||||
|
||||
def test_ast_statement():
|
||||
stmt = AstStatement(StatementType.DO_ACTION, AstLiteral("action"))
|
||||
assert str(stmt) == ".action"
|
||||
|
||||
|
||||
def test_ast_rule():
|
||||
# Rule with condition
|
||||
rule = AstRule(AstLiteral("head"), AstLiteral("body"))
|
||||
assert str(rule) == "head :- body."
|
||||
|
||||
# Rule without condition
|
||||
rule_simple = AstRule(AstLiteral("fact"))
|
||||
assert str(rule_simple) == "fact."
|
||||
|
||||
|
||||
def test_ast_plan():
|
||||
plan = AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("goal"),
|
||||
[AstLiteral("context")],
|
||||
[AstStatement(StatementType.DO_ACTION, AstLiteral("action"))],
|
||||
)
|
||||
output = str(plan)
|
||||
# verify parts exist
|
||||
assert "+!goal" in output
|
||||
assert ": context" in output
|
||||
assert "<- .action." in output
|
||||
|
||||
|
||||
def test_ast_plan_no_context():
|
||||
plan = AstPlan(
|
||||
TriggerType.ADDED_GOAL,
|
||||
AstLiteral("goal"),
|
||||
[],
|
||||
[AstStatement(StatementType.DO_ACTION, AstLiteral("action"))],
|
||||
)
|
||||
output = str(plan)
|
||||
assert "+!goal" in output
|
||||
assert ": " not in output
|
||||
assert "<- .action." in output
|
||||
|
||||
|
||||
def test_ast_program():
|
||||
prog = AstProgram(
|
||||
rules=[AstRule(AstLiteral("fact"))],
|
||||
plans=[AstPlan(TriggerType.ADDED_BELIEF, AstLiteral("b"), [], [])],
|
||||
)
|
||||
output = str(prog)
|
||||
assert "fact." in output
|
||||
assert "+b" in output
|
||||
187
test/unit/agents/bdi/test_agentspeak_generator.py
Normal file
187
test/unit/agents/bdi/test_agentspeak_generator.py
Normal file
@@ -0,0 +1,187 @@
|
||||
import uuid
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.bdi.agentspeak_ast import AstProgram
|
||||
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
|
||||
from control_backend.schemas.program import (
|
||||
BasicNorm,
|
||||
ConditionalNorm,
|
||||
Gesture,
|
||||
GestureAction,
|
||||
Goal,
|
||||
InferredBelief,
|
||||
KeywordBelief,
|
||||
LLMAction,
|
||||
LogicalOperator,
|
||||
Phase,
|
||||
Plan,
|
||||
Program,
|
||||
SemanticBelief,
|
||||
SpeechAction,
|
||||
Trigger,
|
||||
)
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def generator():
|
||||
return AgentSpeakGenerator()
|
||||
|
||||
|
||||
def test_generate_empty_program(generator):
|
||||
prog = Program(phases=[])
|
||||
code = generator.generate(prog)
|
||||
assert 'phase("end").' in code
|
||||
assert "!notify_cycle" in code
|
||||
|
||||
|
||||
def test_generate_basic_norm(generator):
|
||||
norm = BasicNorm(id=uuid.uuid4(), name="n1", norm="be nice")
|
||||
phase = Phase(id=uuid.uuid4(), norms=[norm], goals=[], triggers=[])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
assert f'norm("be nice") :- phase("{phase.id}").' in code
|
||||
|
||||
|
||||
def test_generate_critical_norm(generator):
|
||||
norm = BasicNorm(id=uuid.uuid4(), name="n1", norm="safety", critical=True)
|
||||
phase = Phase(id=uuid.uuid4(), norms=[norm], goals=[], triggers=[])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
assert f'critical_norm("safety") :- phase("{phase.id}").' in code
|
||||
|
||||
|
||||
def test_generate_conditional_norm(generator):
|
||||
cond = KeywordBelief(id=uuid.uuid4(), name="k1", keyword="please")
|
||||
norm = ConditionalNorm(id=uuid.uuid4(), name="n1", norm="help", condition=cond)
|
||||
phase = Phase(id=uuid.uuid4(), norms=[norm], goals=[], triggers=[])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
assert 'norm("help")' in code
|
||||
assert 'keyword_said("please")' in code
|
||||
assert f"force_norm_{generator._slugify_str(norm.norm)}" in code
|
||||
|
||||
|
||||
def test_generate_goal_and_plan(generator):
|
||||
action = SpeechAction(id=uuid.uuid4(), name="s1", text="hello")
|
||||
plan = Plan(id=uuid.uuid4(), name="p1", steps=[action])
|
||||
# IMPORTANT: can_fail must be False for +achieved_ belief to be added
|
||||
goal = Goal(id=uuid.uuid4(), name="g1", description="desc", plan=plan, can_fail=False)
|
||||
phase = Phase(id=uuid.uuid4(), norms=[], goals=[goal], triggers=[])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
# Check trigger for goal
|
||||
goal_slug = generator._slugify_str(goal.name)
|
||||
assert f"+!{goal_slug}" in code
|
||||
assert f'phase("{phase.id}")' in code
|
||||
assert '!say("hello")' in code
|
||||
|
||||
# Check success belief addition
|
||||
assert f"+achieved_{goal_slug}" in code
|
||||
|
||||
|
||||
def test_generate_subgoal(generator):
|
||||
subplan = Plan(id=uuid.uuid4(), name="p2", steps=[])
|
||||
subgoal = Goal(id=uuid.uuid4(), name="sub1", description="sub", plan=subplan)
|
||||
|
||||
plan = Plan(id=uuid.uuid4(), name="p1", steps=[subgoal])
|
||||
goal = Goal(id=uuid.uuid4(), name="g1", description="main", plan=plan)
|
||||
phase = Phase(id=uuid.uuid4(), norms=[], goals=[goal], triggers=[])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
subgoal_slug = generator._slugify_str(subgoal.name)
|
||||
# Main goal calls subgoal
|
||||
assert f"!{subgoal_slug}" in code
|
||||
# Subgoal plan exists
|
||||
assert f"+!{subgoal_slug}" in code
|
||||
|
||||
|
||||
def test_generate_trigger(generator):
|
||||
cond = SemanticBelief(id=uuid.uuid4(), name="s1", description="desc")
|
||||
plan = Plan(id=uuid.uuid4(), name="p1", steps=[])
|
||||
trigger = Trigger(id=uuid.uuid4(), name="t1", condition=cond, plan=plan)
|
||||
phase = Phase(id=uuid.uuid4(), norms=[], goals=[], triggers=[trigger])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
code = generator.generate(prog)
|
||||
# Trigger logic is added to check_triggers
|
||||
assert f"{generator.slugify(cond)}" in code
|
||||
assert f'notify_trigger_start("{generator.slugify(trigger)}")' in code
|
||||
assert f'notify_trigger_end("{generator.slugify(trigger)}")' in code
|
||||
|
||||
|
||||
def test_phase_transition(generator):
|
||||
phase1 = Phase(id=uuid.uuid4(), name="p1", norms=[], goals=[], triggers=[])
|
||||
phase2 = Phase(id=uuid.uuid4(), name="p2", norms=[], goals=[], triggers=[])
|
||||
prog = Program(phases=[phase1, phase2])
|
||||
|
||||
code = generator.generate(prog)
|
||||
assert "transition_phase" in code
|
||||
assert f'phase("{phase1.id}")' in code
|
||||
assert f'phase("{phase2.id}")' in code
|
||||
assert "force_transition_phase" in code
|
||||
|
||||
|
||||
def test_astify_gesture(generator):
|
||||
gesture = Gesture(type="single", name="wave")
|
||||
action = GestureAction(id=uuid.uuid4(), name="g1", gesture=gesture)
|
||||
ast = generator._astify(action)
|
||||
assert str(ast) == 'gesture("single", "wave")'
|
||||
|
||||
|
||||
def test_astify_llm_action(generator):
|
||||
action = LLMAction(id=uuid.uuid4(), name="l1", goal="be funny")
|
||||
ast = generator._astify(action)
|
||||
assert str(ast) == 'reply_with_goal("be funny")'
|
||||
|
||||
|
||||
def test_astify_inferred_belief_and(generator):
|
||||
left = KeywordBelief(id=uuid.uuid4(), name="k1", keyword="a")
|
||||
right = KeywordBelief(id=uuid.uuid4(), name="k2", keyword="b")
|
||||
inf = InferredBelief(
|
||||
id=uuid.uuid4(), name="i1", operator=LogicalOperator.AND, left=left, right=right
|
||||
)
|
||||
|
||||
ast = generator._astify(inf)
|
||||
assert 'keyword_said("a") & keyword_said("b")' == str(ast)
|
||||
|
||||
|
||||
def test_astify_inferred_belief_or(generator):
|
||||
left = KeywordBelief(id=uuid.uuid4(), name="k1", keyword="a")
|
||||
right = KeywordBelief(id=uuid.uuid4(), name="k2", keyword="b")
|
||||
inf = InferredBelief(
|
||||
id=uuid.uuid4(), name="i1", operator=LogicalOperator.OR, left=left, right=right
|
||||
)
|
||||
|
||||
ast = generator._astify(inf)
|
||||
assert 'keyword_said("a") | keyword_said("b")' == str(ast)
|
||||
|
||||
|
||||
def test_astify_semantic_belief(generator):
|
||||
sb = SemanticBelief(id=uuid.uuid4(), name="s1", description="desc")
|
||||
ast = generator._astify(sb)
|
||||
assert str(ast) == f"semantic_{generator._slugify_str(sb.name)}"
|
||||
|
||||
|
||||
def test_slugify_not_implemented(generator):
|
||||
with pytest.raises(NotImplementedError):
|
||||
generator.slugify("not a program element")
|
||||
|
||||
|
||||
def test_astify_not_implemented(generator):
|
||||
with pytest.raises(NotImplementedError):
|
||||
generator._astify("not a program element")
|
||||
|
||||
|
||||
def test_process_phase_transition_from_none(generator):
|
||||
# Initialize AstProgram manually as we are bypassing generate()
|
||||
generator._asp = AstProgram()
|
||||
# Should safely return doing nothing
|
||||
generator._add_phase_transition(None, None)
|
||||
|
||||
assert len(generator._asp.plans) == 0
|
||||
@@ -45,23 +45,34 @@ async def test_setup_no_asl(mock_agentspeak_env, agent):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_belief_collector_message(agent, mock_settings):
|
||||
async def test_handle_belief_message(agent, mock_settings):
|
||||
"""Test that incoming beliefs are added to the BDI agent"""
|
||||
beliefs = [Belief(name="user_said", arguments=["Hello"])]
|
||||
msg = InternalMessage(
|
||||
to="bdi_agent",
|
||||
sender=mock_settings.agent_settings.bdi_belief_collector_name,
|
||||
sender=mock_settings.agent_settings.text_belief_extractor_name,
|
||||
body=BeliefMessage(create=beliefs).model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# Expect bdi_agent.call to be triggered to add belief
|
||||
args = agent.bdi_agent.call.call_args.args
|
||||
assert args[0] == agentspeak.Trigger.addition
|
||||
assert args[1] == agentspeak.GoalType.belief
|
||||
assert args[2] == agentspeak.Literal("user_said", (agentspeak.Literal("Hello"),))
|
||||
# Check for the specific call we expect among all calls
|
||||
# bdi_agent.call is called multiple times (for transition_phase, check_triggers)
|
||||
# We want to confirm the belief addition call exists
|
||||
found_call = False
|
||||
for call in agent.bdi_agent.call.call_args_list:
|
||||
args = call.args
|
||||
if (
|
||||
args[0] == agentspeak.Trigger.addition
|
||||
and args[1] == agentspeak.GoalType.belief
|
||||
and args[2].functor == "user_said"
|
||||
and args[2].args[0].functor == "Hello"
|
||||
):
|
||||
found_call = True
|
||||
break
|
||||
|
||||
assert found_call, "Expected belief addition call not found in bdi_agent.call history"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -71,25 +82,33 @@ async def test_handle_delete_belief_message(agent, mock_settings):
|
||||
|
||||
msg = InternalMessage(
|
||||
to="bdi_agent",
|
||||
sender=mock_settings.agent_settings.bdi_belief_collector_name,
|
||||
sender=mock_settings.agent_settings.text_belief_extractor_name,
|
||||
body=BeliefMessage(delete=beliefs).model_dump_json(),
|
||||
thread="beliefs",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# Expect bdi_agent.call to be triggered to remove belief
|
||||
args = agent.bdi_agent.call.call_args.args
|
||||
assert args[0] == agentspeak.Trigger.removal
|
||||
assert args[1] == agentspeak.GoalType.belief
|
||||
assert args[2] == agentspeak.Literal("user_said", (agentspeak.Literal("Hello"),))
|
||||
found_call = False
|
||||
for call in agent.bdi_agent.call.call_args_list:
|
||||
args = call.args
|
||||
if (
|
||||
args[0] == agentspeak.Trigger.removal
|
||||
and args[1] == agentspeak.GoalType.belief
|
||||
and args[2].functor == "user_said"
|
||||
and args[2].args[0].functor == "Hello"
|
||||
):
|
||||
found_call = True
|
||||
break
|
||||
|
||||
assert found_call
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_incorrect_belief_collector_message(agent, mock_settings):
|
||||
async def test_incorrect_belief_message(agent, mock_settings):
|
||||
"""Test that incorrect message format triggers an exception."""
|
||||
msg = InternalMessage(
|
||||
to="bdi_agent",
|
||||
sender=mock_settings.agent_settings.bdi_belief_collector_name,
|
||||
sender=mock_settings.agent_settings.text_belief_extractor_name,
|
||||
body=json.dumps({"bad_format": "bad_format"}),
|
||||
thread="beliefs",
|
||||
)
|
||||
@@ -171,7 +190,11 @@ def test_remove_belief_success_wakes_loop(agent):
|
||||
agent._remove_belief("remove_me", ["x"])
|
||||
|
||||
assert agent.bdi_agent.call.called
|
||||
trigger, goaltype, literal, *_ = agent.bdi_agent.call.call_args.args
|
||||
|
||||
call_args = agent.bdi_agent.call.call_args.args
|
||||
trigger = call_args[0]
|
||||
goaltype = call_args[1]
|
||||
literal = call_args[2]
|
||||
|
||||
assert trigger == agentspeak.Trigger.removal
|
||||
assert goaltype == agentspeak.GoalType.belief
|
||||
@@ -288,3 +311,216 @@ async def test_deadline_sleep_branch(agent):
|
||||
|
||||
duration = time.time() - start_time
|
||||
assert duration >= 0.004 # loop slept until deadline
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_new_program(agent):
|
||||
agent._load_asl = AsyncMock()
|
||||
agent.add_behavior = MagicMock()
|
||||
# Mock existing loop task so it can be cancelled
|
||||
mock_task = MagicMock()
|
||||
mock_task.cancel = MagicMock()
|
||||
agent._bdi_loop_task = mock_task
|
||||
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
msg = InternalMessage(to="bdi_agent", thread="new_program", body="path/to/asl.asl")
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
mock_task.cancel.assert_called_once()
|
||||
agent._load_asl.assert_awaited_once_with("path/to/asl.asl")
|
||||
agent.add_behavior.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_user_interrupts(agent, mock_settings):
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
# force_phase_transition
|
||||
agent._set_goal = MagicMock()
|
||||
msg = InternalMessage(
|
||||
to="bdi_agent",
|
||||
sender=mock_settings.agent_settings.user_interrupt_name,
|
||||
thread="force_phase_transition",
|
||||
body="",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
agent._set_goal.assert_called_with("transition_phase")
|
||||
|
||||
# force_trigger
|
||||
agent._force_trigger = MagicMock()
|
||||
msg.thread = "force_trigger"
|
||||
msg.body = "trigger_x"
|
||||
await agent.handle_message(msg)
|
||||
agent._force_trigger.assert_called_with("trigger_x")
|
||||
|
||||
# force_norm
|
||||
agent._force_norm = MagicMock()
|
||||
msg.thread = "force_norm"
|
||||
msg.body = "norm_y"
|
||||
await agent.handle_message(msg)
|
||||
agent._force_norm.assert_called_with("norm_y")
|
||||
|
||||
# force_next_phase
|
||||
agent._force_next_phase = MagicMock()
|
||||
msg.thread = "force_next_phase"
|
||||
msg.body = ""
|
||||
await agent.handle_message(msg)
|
||||
agent._force_next_phase.assert_called_once()
|
||||
|
||||
# unknown interrupt
|
||||
agent.logger = MagicMock()
|
||||
msg.thread = "unknown_thing"
|
||||
await agent.handle_message(msg)
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_reply_with_goal(agent):
|
||||
agent._send_to_llm = MagicMock(side_effect=agent.send)
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".reply_with_goal", 3)]
|
||||
|
||||
mock_term = MagicMock(args=["msg", "norms", "goal"])
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
agent._send_to_llm.assert_called_with("msg", "norms", "goal")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_notify_norms(agent):
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".notify_norms", 1)]
|
||||
|
||||
mock_term = MagicMock(args=["norms_list"])
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
|
||||
agent.send.assert_called()
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == "active_norms_update"
|
||||
assert msg.body == "norms_list"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_say(agent):
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".say", 1)]
|
||||
|
||||
mock_term = MagicMock(args=["hello"])
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
|
||||
assert agent.send.call_count == 2
|
||||
msgs = [c[0][0] for c in agent.send.call_args_list]
|
||||
assert any(m.to == settings.agent_settings.robot_speech_name for m in msgs)
|
||||
assert any(
|
||||
m.to == settings.agent_settings.llm_name and m.thread == "assistant_message" for m in msgs
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_gesture(agent):
|
||||
agent._add_custom_actions()
|
||||
# Test single
|
||||
action_fn = agent.actions.actions[(".gesture", 2)]
|
||||
mock_term = MagicMock(args=["single", "wave"])
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert "actuate/gesture/single" in msg.body
|
||||
|
||||
# Test tag
|
||||
mock_term.args = ["tag", "happy"]
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert "actuate/gesture/tag" in msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_notify_user_said(agent):
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".notify_user_said", 1)]
|
||||
mock_term = MagicMock(args=["hello"])
|
||||
gen = action_fn(agent, mock_term, MagicMock())
|
||||
next(gen)
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.to == settings.agent_settings.llm_name
|
||||
assert msg.thread == "user_message"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_notify_trigger_start_end(agent):
|
||||
agent._add_custom_actions()
|
||||
# Start
|
||||
action_fn = agent.actions.actions[(".notify_trigger_start", 1)]
|
||||
gen = action_fn(agent, MagicMock(args=["t1"]), MagicMock())
|
||||
next(gen)
|
||||
assert agent.send.call_args[0][0].thread == "trigger_start"
|
||||
|
||||
# End
|
||||
action_fn = agent.actions.actions[(".notify_trigger_end", 1)]
|
||||
gen = action_fn(agent, MagicMock(args=["t1"]), MagicMock())
|
||||
next(gen)
|
||||
assert agent.send.call_args[0][0].thread == "trigger_end"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_notify_goal_start(agent):
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".notify_goal_start", 1)]
|
||||
gen = action_fn(agent, MagicMock(args=["g1"]), MagicMock())
|
||||
next(gen)
|
||||
assert agent.send.call_args[0][0].thread == "goal_start"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_custom_action_notify_transition_phase(agent):
|
||||
agent._add_custom_actions()
|
||||
action_fn = agent.actions.actions[(".notify_transition_phase", 2)]
|
||||
gen = action_fn(agent, MagicMock(args=["old", "new"]), MagicMock())
|
||||
next(gen)
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == "transition_phase"
|
||||
assert "old" in msg.body and "new" in msg.body
|
||||
|
||||
|
||||
def test_remove_belief_no_args(agent):
|
||||
agent._wake_bdi_loop = MagicMock()
|
||||
agent.bdi_agent.call.return_value = True
|
||||
agent._remove_belief("fact", None)
|
||||
assert agent.bdi_agent.call.called
|
||||
|
||||
|
||||
def test_set_goal_with_args(agent):
|
||||
agent._wake_bdi_loop = MagicMock()
|
||||
agent._set_goal("goal", ["arg1", "arg2"])
|
||||
assert agent.bdi_agent.call.called
|
||||
|
||||
|
||||
def test_format_belief_string():
|
||||
assert BDICoreAgent.format_belief_string("b") == "b"
|
||||
assert BDICoreAgent.format_belief_string("b", ["a1", "a2"]) == "b(a1,a2)"
|
||||
|
||||
|
||||
def test_force_norm(agent):
|
||||
agent._add_belief = MagicMock()
|
||||
agent._force_norm("be_polite")
|
||||
agent._add_belief.assert_called_with("force_be_polite")
|
||||
|
||||
|
||||
def test_force_trigger(agent):
|
||||
agent._set_goal = MagicMock()
|
||||
agent._force_trigger("trig")
|
||||
agent._set_goal.assert_called_with("trig")
|
||||
|
||||
|
||||
def test_force_next_phase(agent):
|
||||
agent._set_goal = MagicMock()
|
||||
agent._force_next_phase()
|
||||
agent._set_goal.assert_called_with("force_transition_phase")
|
||||
|
||||
@@ -1,13 +1,13 @@
|
||||
import asyncio
|
||||
import json
|
||||
import sys
|
||||
import uuid
|
||||
from unittest.mock import AsyncMock
|
||||
from unittest.mock import AsyncMock, MagicMock, mock_open, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.bdi.bdi_program_manager import BDIProgramManager
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.program import BasicNorm, Goal, Phase, Plan, Program
|
||||
|
||||
# Fix Windows Proactor loop for zmq
|
||||
@@ -48,24 +48,26 @@ def make_valid_program_json(norm="N1", goal="G1") -> str:
|
||||
).model_dump_json()
|
||||
|
||||
|
||||
@pytest.mark.skip(reason="Functionality being rebuilt.")
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_bdi():
|
||||
async def test_create_agentspeak_and_send_to_bdi(mock_settings):
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
program = Program.model_validate_json(make_valid_program_json())
|
||||
await manager._create_agentspeak_and_send_to_bdi(program)
|
||||
|
||||
with patch("builtins.open", mock_open()) as mock_file:
|
||||
await manager._create_agentspeak_and_send_to_bdi(program)
|
||||
|
||||
# Check file writing
|
||||
mock_file.assert_called_with("src/control_backend/agents/bdi/agentspeak.asl", "w")
|
||||
handle = mock_file()
|
||||
handle.write.assert_called()
|
||||
|
||||
assert manager.send.await_count == 1
|
||||
msg: InternalMessage = manager.send.await_args[0][0]
|
||||
assert msg.thread == "beliefs"
|
||||
|
||||
beliefs = BeliefMessage.model_validate_json(msg.body)
|
||||
names = {b.name: b.arguments for b in beliefs.beliefs}
|
||||
|
||||
assert "norms" in names and names["norms"] == ["N1"]
|
||||
assert "goals" in names and names["goals"] == ["G1"]
|
||||
assert msg.thread == "new_program"
|
||||
assert msg.to == mock_settings.agent_settings.bdi_core_name
|
||||
assert msg.body == "src/control_backend/agents/bdi/agentspeak.asl"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -80,6 +82,10 @@ async def test_receive_programs_valid_and_invalid():
|
||||
manager._internal_pub_socket = AsyncMock()
|
||||
manager.sub_socket = sub
|
||||
manager._create_agentspeak_and_send_to_bdi = AsyncMock()
|
||||
manager._send_clear_llm_history = AsyncMock()
|
||||
manager._send_program_to_user_interrupt = AsyncMock()
|
||||
manager._send_beliefs_to_semantic_belief_extractor = AsyncMock()
|
||||
manager._send_goals_to_semantic_belief_extractor = AsyncMock()
|
||||
|
||||
try:
|
||||
# Will give StopAsyncIteration when the predefined `sub.recv_multipart` side-effects run out
|
||||
@@ -92,3 +98,200 @@ async def test_receive_programs_valid_and_invalid():
|
||||
forwarded: Program = manager._create_agentspeak_and_send_to_bdi.await_args[0][0]
|
||||
assert forwarded.phases[0].norms[0].name == "N1"
|
||||
assert forwarded.phases[0].goals[0].name == "G1"
|
||||
|
||||
# Verify history clear was triggered exactly once (for the valid program)
|
||||
# The invalid program loop `continue`s before calling _send_clear_llm_history
|
||||
assert manager._send_clear_llm_history.await_count == 1
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_clear_llm_history(mock_settings):
|
||||
# Ensure the mock returns a string for the agent name (just like in your LLM tests)
|
||||
mock_settings.agent_settings.llm_agent_name = "llm_agent"
|
||||
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
await manager._send_clear_llm_history()
|
||||
|
||||
assert manager.send.await_count == 2
|
||||
msg: InternalMessage = manager.send.await_args_list[0][0][0]
|
||||
|
||||
# Verify the content and recipient
|
||||
assert msg.body == "clear_history"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_transition_phase(mock_settings):
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
# Setup state
|
||||
prog = Program.model_validate_json(make_valid_program_json(norm="N1", goal="G1"))
|
||||
manager._initialize_internal_state(prog)
|
||||
|
||||
# Test valid transition (to same phase for simplicity, or we need 2 phases)
|
||||
# Let's create a program with 2 phases
|
||||
phase2_id = uuid.uuid4()
|
||||
phase2 = Phase(id=phase2_id, name="Phase 2", norms=[], goals=[], triggers=[])
|
||||
prog.phases.append(phase2)
|
||||
manager._initialize_internal_state(prog)
|
||||
|
||||
current_phase_id = str(prog.phases[0].id)
|
||||
next_phase_id = str(phase2_id)
|
||||
|
||||
payload = json.dumps({"old": current_phase_id, "new": next_phase_id})
|
||||
msg = InternalMessage(to="me", sender="bdi", body=payload, thread="transition_phase")
|
||||
|
||||
await manager.handle_message(msg)
|
||||
|
||||
assert str(manager._phase.id) == next_phase_id
|
||||
|
||||
# Allow background tasks to run (add_behavior)
|
||||
await asyncio.sleep(0)
|
||||
|
||||
# Check notifications sent
|
||||
# 1. beliefs to extractor
|
||||
# 2. goals to extractor
|
||||
# 3. notification to user interrupt
|
||||
|
||||
assert manager.send.await_count >= 3
|
||||
|
||||
# Verify user interrupt notification
|
||||
calls = manager.send.await_args_list
|
||||
ui_msgs = [
|
||||
c[0][0] for c in calls if c[0][0].to == mock_settings.agent_settings.user_interrupt_name
|
||||
]
|
||||
assert len(ui_msgs) > 0
|
||||
assert ui_msgs[-1].body == next_phase_id
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_transition_phase_desync():
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.logger = MagicMock()
|
||||
|
||||
prog = Program.model_validate_json(make_valid_program_json())
|
||||
manager._initialize_internal_state(prog)
|
||||
|
||||
current_phase_id = str(prog.phases[0].id)
|
||||
|
||||
# Request transition from WRONG old phase
|
||||
payload = json.dumps({"old": "wrong_id", "new": "some_new_id"})
|
||||
msg = InternalMessage(to="me", sender="bdi", body=payload, thread="transition_phase")
|
||||
|
||||
await manager.handle_message(msg)
|
||||
|
||||
# Should warn and do nothing
|
||||
manager.logger.warning.assert_called_once()
|
||||
assert "Phase transition desync detected" in manager.logger.warning.call_args[0][0]
|
||||
assert str(manager._phase.id) == current_phase_id
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_transition_phase_end(mock_settings):
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
prog = Program.model_validate_json(make_valid_program_json())
|
||||
manager._initialize_internal_state(prog)
|
||||
current_phase_id = str(prog.phases[0].id)
|
||||
|
||||
payload = json.dumps({"old": current_phase_id, "new": "end"})
|
||||
msg = InternalMessage(to="me", sender="bdi", body=payload, thread="transition_phase")
|
||||
|
||||
await manager.handle_message(msg)
|
||||
|
||||
assert manager._phase is None
|
||||
|
||||
# Allow background tasks to run (add_behavior)
|
||||
await asyncio.sleep(0)
|
||||
|
||||
# Verify notification to user interrupt
|
||||
assert manager.send.await_count == 1
|
||||
msg_sent = manager.send.await_args[0][0]
|
||||
assert msg_sent.to == mock_settings.agent_settings.user_interrupt_name
|
||||
assert msg_sent.body == "end"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_achieve_goal(mock_settings):
|
||||
mock_settings.agent_settings.text_belief_extractor_name = "text_belief_extractor_agent"
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
prog = Program.model_validate_json(make_valid_program_json(goal="TargetGoal"))
|
||||
manager._initialize_internal_state(prog)
|
||||
|
||||
goal_id = str(prog.phases[0].goals[0].id)
|
||||
|
||||
msg = InternalMessage(to="me", sender="ui", body=goal_id, thread="achieve_goal")
|
||||
|
||||
await manager.handle_message(msg)
|
||||
|
||||
# Should send achieved goals to text extractor
|
||||
assert manager.send.await_count == 1
|
||||
msg_sent = manager.send.await_args[0][0]
|
||||
assert msg_sent.to == mock_settings.agent_settings.text_belief_extractor_name
|
||||
assert msg_sent.thread == "achieved_goals"
|
||||
|
||||
# Verify body
|
||||
from control_backend.schemas.belief_list import GoalList
|
||||
|
||||
gl = GoalList.model_validate_json(msg_sent.body)
|
||||
assert len(gl.goals) == 1
|
||||
assert gl.goals[0].name == "TargetGoal"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_achieve_goal_not_found():
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
manager.logger = MagicMock()
|
||||
|
||||
prog = Program.model_validate_json(make_valid_program_json())
|
||||
manager._initialize_internal_state(prog)
|
||||
|
||||
msg = InternalMessage(to="me", sender="ui", body="non_existent_id", thread="achieve_goal")
|
||||
|
||||
await manager.handle_message(msg)
|
||||
|
||||
manager.send.assert_not_called()
|
||||
manager.logger.debug.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup(mock_settings):
|
||||
manager = BDIProgramManager(name="program_manager_test")
|
||||
manager.send = AsyncMock()
|
||||
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
manager.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
mock_context = MagicMock()
|
||||
mock_sub = MagicMock()
|
||||
mock_context.socket.return_value = mock_sub
|
||||
|
||||
with patch(
|
||||
"control_backend.agents.bdi.bdi_program_manager.Context.instance", return_value=mock_context
|
||||
):
|
||||
# We also need to mock file writing in _create_agentspeak_and_send_to_bdi
|
||||
with patch("builtins.open", new_callable=MagicMock):
|
||||
await manager.setup()
|
||||
|
||||
# Check logic
|
||||
# 1. Sends default empty program to BDI
|
||||
assert manager.send.await_count == 1
|
||||
assert manager.send.await_args[0][0].to == mock_settings.agent_settings.bdi_core_name
|
||||
|
||||
# 2. Connects SUB socket
|
||||
mock_sub.connect.assert_called_with(mock_settings.zmq_settings.internal_sub_address)
|
||||
mock_sub.subscribe.assert_called_with("program")
|
||||
|
||||
# 3. Adds behavior
|
||||
manager.add_behavior.assert_called()
|
||||
|
||||
@@ -1,135 +0,0 @@
|
||||
import json
|
||||
from unittest.mock import AsyncMock
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.bdi import (
|
||||
BDIBeliefCollectorAgent,
|
||||
)
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_message import Belief
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
agent = BDIBeliefCollectorAgent("belief_collector_agent")
|
||||
return agent
|
||||
|
||||
|
||||
def make_msg(body: dict, sender: str = "sender"):
|
||||
return InternalMessage(to="collector", sender=sender, body=json.dumps(body))
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_routes_belief_text(agent, mocker):
|
||||
"""
|
||||
Test that when a message is received, _handle_belief_text is called with that message.
|
||||
"""
|
||||
payload = {"type": "belief_extraction_text", "beliefs": {"user_said": [["hi"]]}}
|
||||
spy = mocker.patch.object(agent, "_handle_belief_text", new_callable=AsyncMock)
|
||||
|
||||
await agent.handle_message(make_msg(payload))
|
||||
|
||||
spy.assert_awaited_once_with(payload, "sender")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_routes_emotion(agent, mocker):
|
||||
payload = {"type": "emotion_extraction_text"}
|
||||
spy = mocker.patch.object(agent, "_handle_emo_text", new_callable=AsyncMock)
|
||||
|
||||
await agent.handle_message(make_msg(payload))
|
||||
|
||||
spy.assert_awaited_once_with(payload, "sender")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_bad_json(agent, mocker):
|
||||
agent._handle_belief_text = AsyncMock()
|
||||
bad_msg = InternalMessage(to="collector", sender="sender", body="not json")
|
||||
|
||||
await agent.handle_message(bad_msg)
|
||||
|
||||
agent._handle_belief_text.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_belief_text_sends_when_beliefs_exist(agent, mocker):
|
||||
payload = {"type": "belief_extraction_text", "beliefs": {"user_said": ["hello"]}}
|
||||
spy = mocker.patch.object(agent, "_send_beliefs_to_bdi", new_callable=AsyncMock)
|
||||
expected = [Belief(name="user_said", arguments=["hello"])]
|
||||
|
||||
await agent._handle_belief_text(payload, "origin")
|
||||
|
||||
spy.assert_awaited_once_with(expected, origin="origin")
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_belief_text_no_send_when_empty(agent, mocker):
|
||||
payload = {"type": "belief_extraction_text", "beliefs": {}}
|
||||
spy = mocker.patch.object(agent, "_send_beliefs_to_bdi", new_callable=AsyncMock)
|
||||
|
||||
await agent._handle_belief_text(payload, "origin")
|
||||
|
||||
spy.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_beliefs_to_bdi(agent):
|
||||
agent.send = AsyncMock()
|
||||
beliefs = [Belief(name="user_said", arguments=["hello", "world"])]
|
||||
|
||||
await agent._send_beliefs_to_bdi(beliefs, origin="origin")
|
||||
|
||||
agent.send.assert_awaited_once()
|
||||
sent: InternalMessage = agent.send.call_args.args[0]
|
||||
assert sent.to == settings.agent_settings.bdi_core_name
|
||||
assert sent.thread == "beliefs"
|
||||
assert json.loads(sent.body)["create"] == [belief.model_dump() for belief in beliefs]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup_executes(agent):
|
||||
"""Covers setup and asserts the agent has a name."""
|
||||
await agent.setup()
|
||||
assert agent.name == "belief_collector_agent" # simple property assertion
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_unrecognized_type_executes(agent):
|
||||
"""Covers the else branch for unrecognized message type."""
|
||||
payload = {"type": "unknown_type"}
|
||||
msg = make_msg(payload, sender="tester")
|
||||
# Wrap send to ensure nothing is sent
|
||||
agent.send = AsyncMock()
|
||||
await agent.handle_message(msg)
|
||||
# Assert no messages were sent
|
||||
agent.send.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_emo_text_executes(agent):
|
||||
"""Covers the _handle_emo_text method."""
|
||||
# The method does nothing, but we can assert it returns None
|
||||
result = await agent._handle_emo_text({}, "origin")
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_beliefs_to_bdi_empty_executes(agent):
|
||||
"""Covers early return when beliefs are empty."""
|
||||
agent.send = AsyncMock()
|
||||
await agent._send_beliefs_to_bdi({})
|
||||
# Assert that nothing was sent
|
||||
agent.send.assert_not_awaited()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_belief_text_invalid_returns_none(agent, mocker):
|
||||
payload = {"type": "belief_extraction_text", "beliefs": {"user_said": "invalid-argument"}}
|
||||
|
||||
result = await agent._handle_belief_text(payload, "origin")
|
||||
|
||||
# The method itself returns None
|
||||
assert result is None
|
||||
@@ -6,11 +6,15 @@ import httpx
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.bdi import TextBeliefExtractorAgent
|
||||
from control_backend.agents.bdi.text_belief_extractor_agent import BeliefState
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.belief_list import BeliefList
|
||||
from control_backend.schemas.belief_message import Belief as InternalBelief
|
||||
from control_backend.schemas.belief_message import BeliefMessage
|
||||
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
|
||||
from control_backend.schemas.program import (
|
||||
BaseGoal, # Changed from Goal
|
||||
ConditionalNorm,
|
||||
KeywordBelief,
|
||||
LLMAction,
|
||||
@@ -23,11 +27,22 @@ from control_backend.schemas.program import (
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
agent = TextBeliefExtractorAgent("text_belief_agent")
|
||||
agent.send = AsyncMock()
|
||||
agent._query_llm = AsyncMock()
|
||||
return agent
|
||||
def llm():
|
||||
llm = TextBeliefExtractorAgent.LLM(MagicMock(), 4)
|
||||
# We must ensure _query_llm returns a dictionary so iterating it doesn't fail
|
||||
llm._query_llm = AsyncMock(return_value={})
|
||||
return llm
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent(llm):
|
||||
with patch(
|
||||
"control_backend.agents.bdi.text_belief_extractor_agent.TextBeliefExtractorAgent.LLM",
|
||||
return_value=llm,
|
||||
):
|
||||
agent = TextBeliefExtractorAgent("text_belief_agent")
|
||||
agent.send = AsyncMock()
|
||||
return agent
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@@ -102,24 +117,12 @@ async def test_handle_message_from_transcriber(agent, mock_settings):
|
||||
|
||||
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
|
||||
sent: InternalMessage = agent.send.call_args.args[0] # noqa
|
||||
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
|
||||
assert sent.to == mock_settings.agent_settings.bdi_core_name
|
||||
assert sent.thread == "beliefs"
|
||||
parsed = json.loads(sent.body)
|
||||
assert parsed == {"beliefs": {"user_said": [transcription]}, "type": "belief_extraction_text"}
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_process_user_said(agent, mock_settings):
|
||||
transcription = "this is a test"
|
||||
|
||||
await agent._user_said(transcription)
|
||||
|
||||
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
|
||||
sent: InternalMessage = agent.send.call_args.args[0] # noqa
|
||||
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
|
||||
assert sent.thread == "beliefs"
|
||||
parsed = json.loads(sent.body)
|
||||
assert parsed["beliefs"]["user_said"] == [transcription]
|
||||
parsed = BeliefMessage.model_validate_json(sent.body)
|
||||
replaced_last = parsed.replace.pop()
|
||||
assert replaced_last.name == "user_said"
|
||||
assert replaced_last.arguments == [transcription]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -144,46 +147,46 @@ async def test_query_llm():
|
||||
"control_backend.agents.bdi.text_belief_extractor_agent.httpx.AsyncClient",
|
||||
return_value=mock_async_client,
|
||||
):
|
||||
agent = TextBeliefExtractorAgent("text_belief_agent")
|
||||
llm = TextBeliefExtractorAgent.LLM(MagicMock(), 4)
|
||||
|
||||
res = await agent._query_llm("hello world", {"type": "null"})
|
||||
res = await llm._query_llm("hello world", {"type": "null"})
|
||||
# Response content was set as "null", so should be deserialized as None
|
||||
assert res is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_retry_query_llm_success(agent):
|
||||
agent._query_llm.return_value = None
|
||||
res = await agent._retry_query_llm("hello world", {"type": "null"})
|
||||
async def test_retry_query_llm_success(llm):
|
||||
llm._query_llm.return_value = None
|
||||
res = await llm.query("hello world", {"type": "null"})
|
||||
|
||||
agent._query_llm.assert_called_once()
|
||||
llm._query_llm.assert_called_once()
|
||||
assert res is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_retry_query_llm_success_after_failure(agent):
|
||||
agent._query_llm.side_effect = [KeyError(), "real value"]
|
||||
res = await agent._retry_query_llm("hello world", {"type": "string"})
|
||||
async def test_retry_query_llm_success_after_failure(llm):
|
||||
llm._query_llm.side_effect = [KeyError(), "real value"]
|
||||
res = await llm.query("hello world", {"type": "string"})
|
||||
|
||||
assert agent._query_llm.call_count == 2
|
||||
assert llm._query_llm.call_count == 2
|
||||
assert res == "real value"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_retry_query_llm_failures(agent):
|
||||
agent._query_llm.side_effect = [KeyError(), KeyError(), KeyError(), "real value"]
|
||||
res = await agent._retry_query_llm("hello world", {"type": "string"})
|
||||
async def test_retry_query_llm_failures(llm):
|
||||
llm._query_llm.side_effect = [KeyError(), KeyError(), KeyError(), "real value"]
|
||||
res = await llm.query("hello world", {"type": "string"})
|
||||
|
||||
assert agent._query_llm.call_count == 3
|
||||
assert llm._query_llm.call_count == 3
|
||||
assert res is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_retry_query_llm_fail_immediately(agent):
|
||||
agent._query_llm.side_effect = [KeyError(), "real value"]
|
||||
res = await agent._retry_query_llm("hello world", {"type": "string"}, tries=1)
|
||||
async def test_retry_query_llm_fail_immediately(llm):
|
||||
llm._query_llm.side_effect = [KeyError(), "real value"]
|
||||
res = await llm.query("hello world", {"type": "string"}, tries=1)
|
||||
|
||||
assert agent._query_llm.call_count == 1
|
||||
assert llm._query_llm.call_count == 1
|
||||
assert res is None
|
||||
|
||||
|
||||
@@ -192,7 +195,7 @@ async def test_extracting_semantic_beliefs(agent):
|
||||
"""
|
||||
The Program Manager sends beliefs to this agent. Test whether the agent handles them correctly.
|
||||
"""
|
||||
assert len(agent.available_beliefs) == 0
|
||||
assert len(agent.belief_inferrer.available_beliefs) == 0
|
||||
beliefs = BeliefList(
|
||||
beliefs=[
|
||||
KeywordBelief(
|
||||
@@ -213,26 +216,28 @@ async def test_extracting_semantic_beliefs(agent):
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=settings.agent_settings.bdi_program_manager_name,
|
||||
body=beliefs.model_dump_json(),
|
||||
thread="beliefs",
|
||||
),
|
||||
)
|
||||
assert len(agent.available_beliefs) == 2
|
||||
assert len(agent.belief_inferrer.available_beliefs) == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_invalid_program(agent, sample_program):
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
assert len(agent.available_beliefs) == 2
|
||||
async def test_handle_invalid_beliefs(agent, sample_program):
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
assert len(agent.belief_inferrer.available_beliefs) == 2
|
||||
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
sender=settings.agent_settings.bdi_program_manager_name,
|
||||
body=json.dumps({"phases": "Invalid"}),
|
||||
thread="beliefs",
|
||||
),
|
||||
)
|
||||
|
||||
assert len(agent.available_beliefs) == 2
|
||||
assert len(agent.belief_inferrer.available_beliefs) == 2
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -254,13 +259,13 @@ async def test_handle_robot_response(agent):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_simulated_real_turn_with_beliefs(agent, sample_program):
|
||||
async def test_simulated_real_turn_with_beliefs(agent, llm, sample_program):
|
||||
"""Test sending user message to extract beliefs from."""
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
|
||||
# Send a user message with the belief that there's no more booze
|
||||
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": True}
|
||||
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": True}
|
||||
assert len(agent.conversation.messages) == 0
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
@@ -275,20 +280,20 @@ async def test_simulated_real_turn_with_beliefs(agent, sample_program):
|
||||
assert agent.send.call_count == 2
|
||||
|
||||
# First should be the beliefs message
|
||||
message: InternalMessage = agent.send.call_args_list[0].args[0]
|
||||
message: InternalMessage = agent.send.call_args_list[1].args[0]
|
||||
beliefs = BeliefMessage.model_validate_json(message.body)
|
||||
assert len(beliefs.create) == 1
|
||||
assert beliefs.create[0].name == "no_more_booze"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_simulated_real_turn_no_beliefs(agent, sample_program):
|
||||
async def test_simulated_real_turn_no_beliefs(agent, llm, sample_program):
|
||||
"""Test a user message to extract beliefs from, but no beliefs are formed."""
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
|
||||
# Send a user message with no new beliefs
|
||||
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": None}
|
||||
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": None}
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
@@ -302,17 +307,17 @@ async def test_simulated_real_turn_no_beliefs(agent, sample_program):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_simulated_real_turn_no_new_beliefs(agent, sample_program):
|
||||
async def test_simulated_real_turn_no_new_beliefs(agent, llm, sample_program):
|
||||
"""
|
||||
Test a user message to extract beliefs from, but no new beliefs are formed because they already
|
||||
existed.
|
||||
"""
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
agent.beliefs["is_pirate"] = True
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
agent._current_beliefs = BeliefState(true={InternalBelief(name="is_pirate", arguments=None)})
|
||||
|
||||
# Send a user message with the belief the user is a pirate, still
|
||||
agent._query_llm.return_value = {"is_pirate": True, "no_more_booze": None}
|
||||
llm._query_llm.return_value = {"is_pirate": True, "no_more_booze": None}
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
@@ -326,17 +331,19 @@ async def test_simulated_real_turn_no_new_beliefs(agent, sample_program):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_simulated_real_turn_remove_belief(agent, sample_program):
|
||||
async def test_simulated_real_turn_remove_belief(agent, llm, sample_program):
|
||||
"""
|
||||
Test a user message to extract beliefs from, but an existing belief is determined no longer to
|
||||
hold.
|
||||
"""
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
agent.beliefs["no_more_booze"] = True
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
agent._current_beliefs = BeliefState(
|
||||
true={InternalBelief(name="no_more_booze", arguments=None)},
|
||||
)
|
||||
|
||||
# Send a user message with the belief the user is a pirate, still
|
||||
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": False}
|
||||
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": False}
|
||||
await agent.handle_message(
|
||||
InternalMessage(
|
||||
to=settings.agent_settings.text_belief_extractor_name,
|
||||
@@ -349,18 +356,199 @@ async def test_simulated_real_turn_remove_belief(agent, sample_program):
|
||||
assert agent.send.call_count == 2
|
||||
|
||||
# Agent's current beliefs should've changed
|
||||
assert not agent.beliefs["no_more_booze"]
|
||||
assert any(b.name == "no_more_booze" for b in agent._current_beliefs.false)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_llm_failure_handling(agent, sample_program):
|
||||
async def test_infer_goal_completions_sends_beliefs(agent, llm):
|
||||
"""Test that inferred goal completions are sent to the BDI core."""
|
||||
goal = BaseGoal(
|
||||
id=uuid.uuid4(), name="Say Hello", description="The user said hello", can_fail=True
|
||||
)
|
||||
agent.goal_inferrer.goals = {goal}
|
||||
|
||||
# Mock goal inference: goal is achieved
|
||||
llm.query = AsyncMock(return_value=True)
|
||||
|
||||
await agent._infer_goal_completions()
|
||||
|
||||
# Should send belief change to BDI core
|
||||
agent.send.assert_awaited_once()
|
||||
sent: InternalMessage = agent.send.call_args.args[0]
|
||||
assert sent.to == settings.agent_settings.bdi_core_name
|
||||
assert sent.thread == "beliefs"
|
||||
|
||||
parsed = BeliefMessage.model_validate_json(sent.body)
|
||||
assert len(parsed.create) == 1
|
||||
assert parsed.create[0].name == "achieved_say_hello"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_llm_failure_handling(agent, llm, sample_program):
|
||||
"""
|
||||
Check that the agent handles failures gracefully without crashing.
|
||||
"""
|
||||
agent._query_llm.side_effect = httpx.HTTPError("")
|
||||
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
llm._query_llm.side_effect = httpx.HTTPError("")
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
|
||||
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
|
||||
|
||||
belief_changes = await agent._infer_turn()
|
||||
belief_changes = await agent.belief_inferrer.infer_from_conversation(
|
||||
ChatHistory(
|
||||
messages=[ChatMessage(role="user", content="Good day!")],
|
||||
),
|
||||
)
|
||||
|
||||
assert len(belief_changes) == 0
|
||||
assert len(belief_changes.true) == 0
|
||||
assert len(belief_changes.false) == 0
|
||||
|
||||
|
||||
def test_belief_state_bool():
|
||||
# Empty
|
||||
bs = BeliefState()
|
||||
assert not bs
|
||||
|
||||
# True set
|
||||
bs_true = BeliefState(true={InternalBelief(name="a", arguments=None)})
|
||||
assert bs_true
|
||||
|
||||
# False set
|
||||
bs_false = BeliefState(false={InternalBelief(name="a", arguments=None)})
|
||||
assert bs_false
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_beliefs_message_validation_error(agent, mock_settings):
|
||||
# Invalid JSON
|
||||
mock_settings.agent_settings.bdi_program_manager_name = "bdi_program_manager_agent"
|
||||
msg = InternalMessage(
|
||||
to="me",
|
||||
sender=mock_settings.agent_settings.bdi_program_manager_name,
|
||||
thread="beliefs",
|
||||
body="invalid json",
|
||||
)
|
||||
# Should log warning and return
|
||||
agent.logger = MagicMock()
|
||||
await agent.handle_message(msg)
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
# Invalid Model
|
||||
msg.body = json.dumps({"beliefs": [{"invalid": "obj"}]})
|
||||
await agent.handle_message(msg)
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_goals_message_validation_error(agent, mock_settings):
|
||||
mock_settings.agent_settings.bdi_program_manager_name = "bdi_program_manager_agent"
|
||||
msg = InternalMessage(
|
||||
to="me",
|
||||
sender=mock_settings.agent_settings.bdi_program_manager_name,
|
||||
thread="goals",
|
||||
body="invalid json",
|
||||
)
|
||||
agent.logger = MagicMock()
|
||||
await agent.handle_message(msg)
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_goal_achieved_message_validation_error(agent, mock_settings):
|
||||
mock_settings.agent_settings.bdi_program_manager_name = "bdi_program_manager_agent"
|
||||
msg = InternalMessage(
|
||||
to="me",
|
||||
sender=mock_settings.agent_settings.bdi_program_manager_name,
|
||||
thread="achieved_goals",
|
||||
body="invalid json",
|
||||
)
|
||||
agent.logger = MagicMock()
|
||||
await agent.handle_message(msg)
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_goal_inferrer_infer_from_conversation(agent, llm):
|
||||
# Setup goals
|
||||
# Use BaseGoal object as typically received by the extractor
|
||||
g1 = BaseGoal(id=uuid.uuid4(), name="g1", description="desc", can_fail=True)
|
||||
|
||||
# Use real GoalAchievementInferrer
|
||||
from control_backend.agents.bdi.text_belief_extractor_agent import GoalAchievementInferrer
|
||||
|
||||
inferrer = GoalAchievementInferrer(llm)
|
||||
inferrer.goals = {g1}
|
||||
|
||||
# Mock LLM response
|
||||
llm._query_llm.return_value = True
|
||||
|
||||
completions = await inferrer.infer_from_conversation(ChatHistory(messages=[]))
|
||||
assert completions
|
||||
# slugify uses slugify library, hard to predict exact string without it,
|
||||
# but we can check values
|
||||
assert list(completions.values())[0] is True
|
||||
|
||||
|
||||
def test_apply_conversation_message_limit(agent):
|
||||
with patch("control_backend.agents.bdi.text_belief_extractor_agent.settings") as mock_s:
|
||||
mock_s.behaviour_settings.conversation_history_length_limit = 2
|
||||
agent.conversation.messages = []
|
||||
|
||||
agent._apply_conversation_message(ChatMessage(role="user", content="1"))
|
||||
agent._apply_conversation_message(ChatMessage(role="assistant", content="2"))
|
||||
agent._apply_conversation_message(ChatMessage(role="user", content="3"))
|
||||
|
||||
assert len(agent.conversation.messages) == 2
|
||||
assert agent.conversation.messages[0].content == "2"
|
||||
assert agent.conversation.messages[1].content == "3"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_program_manager_reset(agent):
|
||||
with patch("control_backend.agents.bdi.text_belief_extractor_agent.settings") as mock_s:
|
||||
mock_s.agent_settings.bdi_program_manager_name = "pm"
|
||||
agent.conversation.messages = [ChatMessage(role="user", content="hi")]
|
||||
agent.belief_inferrer.available_beliefs = [
|
||||
SemanticBelief(id=uuid.uuid4(), name="b", description="d")
|
||||
]
|
||||
|
||||
msg = InternalMessage(to="me", sender="pm", thread="conversation_history", body="reset")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
assert len(agent.conversation.messages) == 0
|
||||
assert len(agent.belief_inferrer.available_beliefs) == 0
|
||||
|
||||
|
||||
def test_split_into_chunks():
|
||||
from control_backend.agents.bdi.text_belief_extractor_agent import SemanticBeliefInferrer
|
||||
|
||||
items = [1, 2, 3, 4, 5]
|
||||
chunks = SemanticBeliefInferrer._split_into_chunks(items, 2)
|
||||
assert len(chunks) == 2
|
||||
assert len(chunks[0]) + len(chunks[1]) == 5
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_infer_beliefs_call(agent, llm):
|
||||
from control_backend.agents.bdi.text_belief_extractor_agent import SemanticBeliefInferrer
|
||||
|
||||
inferrer = SemanticBeliefInferrer(llm)
|
||||
sb = SemanticBelief(id=uuid.uuid4(), name="is_happy", description="User is happy")
|
||||
|
||||
llm.query = AsyncMock(return_value={"is_happy": True})
|
||||
|
||||
res = await inferrer._infer_beliefs(ChatHistory(messages=[]), [sb])
|
||||
assert res == {"is_happy": True}
|
||||
llm.query.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_infer_goal_call(agent, llm):
|
||||
from control_backend.agents.bdi.text_belief_extractor_agent import GoalAchievementInferrer
|
||||
|
||||
inferrer = GoalAchievementInferrer(llm)
|
||||
goal = BaseGoal(id=uuid.uuid4(), name="g1", description="d")
|
||||
|
||||
llm.query = AsyncMock(return_value=True)
|
||||
|
||||
res = await inferrer._infer_goal(ChatHistory(messages=[]), goal)
|
||||
assert res is True
|
||||
llm.query.assert_called_once()
|
||||
|
||||
@@ -4,6 +4,8 @@ from unittest.mock import ANY, AsyncMock, MagicMock, patch
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.communication.ri_communication_agent import RICommunicationAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.schemas.ri_message import PauseCommand, RIEndpoint
|
||||
|
||||
|
||||
def speech_agent_path():
|
||||
@@ -53,7 +55,11 @@ async def test_setup_success_connects_and_starts_robot(zmq_context):
|
||||
MockGesture.return_value.start = AsyncMock()
|
||||
agent = RICommunicationAgent("ri_comm", address="tcp://localhost:5555", bind=False)
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -83,7 +89,11 @@ async def test_setup_binds_when_requested(zmq_context):
|
||||
|
||||
agent = RICommunicationAgent("ri_comm", address="tcp://localhost:5555", bind=True)
|
||||
|
||||
agent.add_behavior = MagicMock()
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
with (
|
||||
patch(speech_agent_path(), autospec=True) as MockSpeech,
|
||||
@@ -151,6 +161,7 @@ async def test_handle_negotiation_response_updates_req_socket(zmq_context):
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_disconnection_publishes_and_reconnects():
|
||||
pub_socket = AsyncMock()
|
||||
pub_socket.close = MagicMock()
|
||||
agent = RICommunicationAgent("ri_comm")
|
||||
agent.pub_socket = pub_socket
|
||||
agent.connected = True
|
||||
@@ -233,6 +244,25 @@ async def test_handle_negotiation_response_unhandled_id():
|
||||
)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_negotiation_response_audio(zmq_context):
|
||||
agent = RICommunicationAgent("ri_comm")
|
||||
|
||||
with patch(
|
||||
"control_backend.agents.communication.ri_communication_agent.VADAgent", autospec=True
|
||||
) as MockVAD:
|
||||
MockVAD.return_value.start = AsyncMock()
|
||||
|
||||
await agent._handle_negotiation_response(
|
||||
{"data": [{"id": "audio", "port": 7000, "bind": False}]}
|
||||
)
|
||||
|
||||
MockVAD.assert_called_once_with(
|
||||
audio_in_address="tcp://localhost:7000", audio_in_bind=False
|
||||
)
|
||||
MockVAD.return_value.start.assert_awaited_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_stop_closes_sockets():
|
||||
req = MagicMock()
|
||||
@@ -323,6 +353,7 @@ async def test_listen_loop_generic_exception():
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_disconnection_timeout(monkeypatch):
|
||||
pub = AsyncMock()
|
||||
pub.close = MagicMock()
|
||||
pub.send_multipart = AsyncMock(side_effect=TimeoutError)
|
||||
|
||||
agent = RICommunicationAgent("ri_comm")
|
||||
@@ -365,3 +396,38 @@ async def test_negotiate_req_socket_none_causes_retry(zmq_context):
|
||||
result = await agent._negotiate_connection(max_retries=1)
|
||||
|
||||
assert result is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_pause_command(zmq_context):
|
||||
"""Test handle_message with a valid PauseCommand."""
|
||||
agent = RICommunicationAgent("ri_comm")
|
||||
agent._req_socket = AsyncMock()
|
||||
agent.logger = MagicMock()
|
||||
|
||||
agent._req_socket.recv_json.return_value = {"status": "ok"}
|
||||
|
||||
pause_cmd = PauseCommand(data=True)
|
||||
msg = InternalMessage(to="ri_comm", sender="user_int", body=pause_cmd.model_dump_json())
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent._req_socket.send_json.assert_awaited_once()
|
||||
args = agent._req_socket.send_json.await_args[0][0]
|
||||
assert args["endpoint"] == RIEndpoint.PAUSE.value
|
||||
assert args["data"] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_invalid_pause_command(zmq_context):
|
||||
"""Test handle_message with invalid JSON."""
|
||||
agent = RICommunicationAgent("ri_comm")
|
||||
agent._req_socket = AsyncMock()
|
||||
agent.logger = MagicMock()
|
||||
|
||||
msg = InternalMessage(to="ri_comm", sender="user_int", body="invalid json")
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.logger.warning.assert_called_with("Incorrect message format for PauseCommand.")
|
||||
agent._req_socket.send_json.assert_not_called()
|
||||
|
||||
@@ -58,17 +58,20 @@ async def test_llm_processing_success(mock_httpx_client, mock_settings):
|
||||
to="llm_agent",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
body=prompt.model_dump_json(),
|
||||
thread="prompt_message", # REQUIRED: thread must match handle_message logic
|
||||
)
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# Verification
|
||||
# "Hello world." constitutes one sentence/chunk based on punctuation split
|
||||
# The agent should call send once with the full sentence
|
||||
# The agent should call send once with the full sentence, PLUS once more for full reply
|
||||
assert agent.send.called
|
||||
args = agent.send.call_args_list[0][0][0]
|
||||
assert args.to == mock_settings.agent_settings.bdi_core_name
|
||||
assert "Hello world." in args.body
|
||||
|
||||
# Check args. We expect at least one call sending "Hello world."
|
||||
calls = agent.send.call_args_list
|
||||
bodies = [c[0][0].body for c in calls]
|
||||
assert any("Hello world." in b for b in bodies)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -80,18 +83,23 @@ async def test_llm_processing_errors(mock_httpx_client, mock_settings):
|
||||
to="llm",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
body=prompt.model_dump_json(),
|
||||
thread="prompt_message",
|
||||
)
|
||||
|
||||
# HTTP Error
|
||||
# HTTP Error: stream method RAISES exception immediately
|
||||
mock_httpx_client.stream = MagicMock(side_effect=httpx.HTTPError("Fail"))
|
||||
|
||||
await agent.handle_message(msg)
|
||||
assert "LLM service unavailable." in agent.send.call_args[0][0].body
|
||||
|
||||
# Check that error message was sent
|
||||
assert agent.send.called
|
||||
assert "LLM service unavailable." in agent.send.call_args_list[0][0][0].body
|
||||
|
||||
# General Exception
|
||||
agent.send.reset_mock()
|
||||
mock_httpx_client.stream = MagicMock(side_effect=Exception("Boom"))
|
||||
await agent.handle_message(msg)
|
||||
assert "Error processing the request." in agent.send.call_args[0][0].body
|
||||
assert "Error processing the request." in agent.send.call_args_list[0][0][0].body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -113,16 +121,19 @@ async def test_llm_json_error(mock_httpx_client, mock_settings):
|
||||
|
||||
agent = LLMAgent("llm_agent")
|
||||
agent.send = AsyncMock()
|
||||
# Ensure logger is mocked
|
||||
agent.logger = MagicMock()
|
||||
|
||||
with patch.object(agent.logger, "error") as log:
|
||||
prompt = LLMPromptMessage(text="Hi", norms=[], goals=[])
|
||||
msg = InternalMessage(
|
||||
to="llm",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
body=prompt.model_dump_json(),
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
log.assert_called() # Should log JSONDecodeError
|
||||
prompt = LLMPromptMessage(text="Hi", norms=[], goals=[])
|
||||
msg = InternalMessage(
|
||||
to="llm",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
body=prompt.model_dump_json(),
|
||||
thread="prompt_message",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.logger.error.assert_called() # Should log JSONDecodeError
|
||||
|
||||
|
||||
def test_llm_instructions():
|
||||
@@ -157,6 +168,7 @@ async def test_handle_message_validation_error_branch_no_send(mock_httpx_client,
|
||||
to="llm_agent",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
body=invalid_json,
|
||||
thread="prompt_message",
|
||||
)
|
||||
|
||||
await agent.handle_message(msg)
|
||||
@@ -265,3 +277,48 @@ async def test_stream_query_llm_skips_non_data_lines(mock_httpx_client, mock_set
|
||||
|
||||
# Only the valid 'data:' line should yield content
|
||||
assert tokens == ["Hi"]
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_clear_history_command(mock_settings):
|
||||
"""Test that the 'clear_history' message clears the agent's memory."""
|
||||
# setup LLM to have some history
|
||||
mock_settings.agent_settings.bdi_program_manager_name = "bdi_program_manager_agent"
|
||||
agent = LLMAgent("llm_agent")
|
||||
agent.history = [
|
||||
{"role": "user", "content": "Old conversation context"},
|
||||
{"role": "assistant", "content": "Old response"},
|
||||
]
|
||||
assert len(agent.history) == 2
|
||||
msg = InternalMessage(
|
||||
to="llm_agent",
|
||||
sender=mock_settings.agent_settings.bdi_program_manager_name,
|
||||
body="clear_history",
|
||||
)
|
||||
await agent.handle_message(msg)
|
||||
assert len(agent.history) == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_assistant_and_user_messages(mock_settings):
|
||||
agent = LLMAgent("llm_agent")
|
||||
|
||||
# Assistant message
|
||||
msg_ast = InternalMessage(
|
||||
to="llm_agent",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
thread="assistant_message",
|
||||
body="I said this",
|
||||
)
|
||||
await agent.handle_message(msg_ast)
|
||||
assert agent.history[-1] == {"role": "assistant", "content": "I said this"}
|
||||
|
||||
# User message
|
||||
msg_usr = InternalMessage(
|
||||
to="llm_agent",
|
||||
sender=mock_settings.agent_settings.bdi_core_name,
|
||||
thread="user_message",
|
||||
body="User said this",
|
||||
)
|
||||
await agent.handle_message(msg_usr)
|
||||
assert agent.history[-1] == {"role": "user", "content": "User said this"}
|
||||
|
||||
@@ -55,4 +55,6 @@ def test_get_decode_options():
|
||||
assert isinstance(options["sample_len"], int)
|
||||
|
||||
# When disabled, it should not limit output length based on input size
|
||||
assert "sample_rate" not in options
|
||||
recognizer = OpenAIWhisperSpeechRecognizer(limit_output_length=False)
|
||||
options = recognizer._get_decode_options(audio)
|
||||
assert "sample_len" not in options
|
||||
|
||||
@@ -36,7 +36,12 @@ async def test_transcription_agent_flow(mock_zmq_context):
|
||||
agent.send = AsyncMock()
|
||||
|
||||
agent._running = True
|
||||
agent.add_behavior = AsyncMock()
|
||||
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -143,7 +148,12 @@ async def test_transcription_loop_continues_after_error(mock_zmq_context):
|
||||
agent = TranscriptionAgent("tcp://in")
|
||||
agent._running = True # ← REQUIRED to enter the loop
|
||||
agent.send = AsyncMock() # should never be called
|
||||
agent.add_behavior = AsyncMock() # match other tests
|
||||
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro) # match other tests
|
||||
|
||||
await agent.setup()
|
||||
|
||||
@@ -180,7 +190,12 @@ async def test_transcription_continue_branch_when_empty(mock_zmq_context):
|
||||
# Make loop runnable
|
||||
agent._running = True
|
||||
agent.send = AsyncMock()
|
||||
agent.add_behavior = AsyncMock()
|
||||
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
await agent.setup()
|
||||
|
||||
|
||||
152
test/unit/agents/perception/vad_agent/test_vad_agent.py
Normal file
152
test/unit/agents/perception/vad_agent/test_vad_agent.py
Normal file
@@ -0,0 +1,152 @@
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
|
||||
from control_backend.agents.perception.vad_agent import VADAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.schemas.program_status import PROGRAM_STATUS, ProgramStatus
|
||||
|
||||
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_zmq():
|
||||
with patch("zmq.asyncio.Context") as mock:
|
||||
mock.instance.return_value = MagicMock()
|
||||
yield mock
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def agent():
|
||||
return VADAgent("tcp://localhost:5555", False)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_pause(agent):
|
||||
agent._paused = MagicMock()
|
||||
# It starts set (not paused)
|
||||
|
||||
msg = InternalMessage(to="vad", sender="user_interrupt_agent", body="PAUSE")
|
||||
|
||||
# We need to mock settings to match sender name
|
||||
with patch("control_backend.agents.perception.vad_agent.settings") as mock_settings:
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent._paused.clear.assert_called_once()
|
||||
assert agent._reset_needed is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_resume(agent):
|
||||
agent._paused = MagicMock()
|
||||
msg = InternalMessage(to="vad", sender="user_interrupt_agent", body="RESUME")
|
||||
|
||||
with patch("control_backend.agents.perception.vad_agent.settings") as mock_settings:
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent._paused.set.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_unknown_command(agent):
|
||||
agent._paused = MagicMock()
|
||||
msg = InternalMessage(to="vad", sender="user_interrupt_agent", body="UNKNOWN")
|
||||
|
||||
with patch("control_backend.agents.perception.vad_agent.settings") as mock_settings:
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
agent.logger = MagicMock()
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent._paused.clear.assert_not_called()
|
||||
agent._paused.set.assert_not_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_unknown_sender(agent):
|
||||
agent._paused = MagicMock()
|
||||
msg = InternalMessage(to="vad", sender="other_agent", body="PAUSE")
|
||||
|
||||
with patch("control_backend.agents.perception.vad_agent.settings") as mock_settings:
|
||||
mock_settings.agent_settings.user_interrupt_name = "user_interrupt_agent"
|
||||
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent._paused.clear.assert_not_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_status_loop_waits_for_running(agent):
|
||||
agent._running = True
|
||||
agent.program_sub_socket = AsyncMock()
|
||||
agent.program_sub_socket.close = MagicMock()
|
||||
agent._reset_stream = AsyncMock()
|
||||
|
||||
# Sequence of messages:
|
||||
# 1. Wrong topic
|
||||
# 2. Right topic, wrong status (STARTING)
|
||||
# 3. Right topic, RUNNING -> Should break loop
|
||||
|
||||
agent.program_sub_socket.recv_multipart.side_effect = [
|
||||
(b"wrong_topic", b"whatever"),
|
||||
(PROGRAM_STATUS, ProgramStatus.STARTING.value),
|
||||
(PROGRAM_STATUS, ProgramStatus.RUNNING.value),
|
||||
]
|
||||
|
||||
await agent._status_loop()
|
||||
|
||||
assert agent._reset_stream.await_count == 1
|
||||
agent.program_sub_socket.close.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_setup_success(agent, mock_zmq):
|
||||
def close_coro(coro):
|
||||
coro.close()
|
||||
return MagicMock()
|
||||
|
||||
agent.add_behavior = MagicMock(side_effect=close_coro)
|
||||
|
||||
mock_context = mock_zmq.instance.return_value
|
||||
mock_sub = MagicMock()
|
||||
mock_pub = MagicMock()
|
||||
|
||||
# We expect multiple socket calls:
|
||||
# 1. audio_in (SUB)
|
||||
# 2. audio_out (PUB)
|
||||
# 3. program_sub (SUB)
|
||||
mock_context.socket.side_effect = [mock_sub, mock_pub, mock_sub]
|
||||
|
||||
with patch("control_backend.agents.perception.vad_agent.torch.hub.load") as mock_load:
|
||||
mock_load.return_value = (MagicMock(), None)
|
||||
|
||||
with patch("control_backend.agents.perception.vad_agent.TranscriptionAgent") as MockTrans:
|
||||
mock_trans_instance = MockTrans.return_value
|
||||
mock_trans_instance.start = AsyncMock()
|
||||
|
||||
await agent.setup()
|
||||
|
||||
mock_trans_instance.start.assert_awaited_once()
|
||||
|
||||
assert agent.add_behavior.call_count == 2 # streaming_loop + status_loop
|
||||
assert agent.audio_in_socket is not None
|
||||
assert agent.audio_out_socket is not None
|
||||
assert agent.program_sub_socket is not None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_reset_stream(agent):
|
||||
mock_poller = MagicMock()
|
||||
agent.audio_in_poller = mock_poller
|
||||
|
||||
# poll(1) returns not None twice, then None
|
||||
mock_poller.poll = AsyncMock(side_effect=[b"data", b"data", None])
|
||||
|
||||
agent._ready = MagicMock()
|
||||
|
||||
await agent._reset_stream()
|
||||
|
||||
assert mock_poller.poll.await_count == 3
|
||||
agent._ready.set.assert_called_once()
|
||||
@@ -5,6 +5,16 @@ import pytest
|
||||
import zmq
|
||||
|
||||
from control_backend.agents.perception.vad_agent import VADAgent
|
||||
from control_backend.core.config import settings
|
||||
|
||||
|
||||
# We don't want to use real ZMQ in unit tests, for example because it can give errors when sockets
|
||||
# aren't closed properly.
|
||||
@pytest.fixture(autouse=True)
|
||||
def mock_zmq():
|
||||
with patch("zmq.asyncio.Context") as mock:
|
||||
mock.instance.return_value = MagicMock()
|
||||
yield mock
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
@@ -126,6 +136,54 @@ async def test_no_data(audio_out_socket, vad_agent):
|
||||
assert len(vad_agent.audio_buffer) == 0
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_streaming_loop_reset_needed(audio_out_socket, vad_agent):
|
||||
"""Test that _reset_needed branch works as expected."""
|
||||
vad_agent._reset_needed = True
|
||||
vad_agent._ready.set()
|
||||
vad_agent._paused.set()
|
||||
vad_agent._running = True
|
||||
vad_agent.audio_buffer = np.array([1.0], dtype=np.float32)
|
||||
vad_agent.i_since_speech = 0
|
||||
|
||||
# Mock _reset_stream to stop the loop by setting _running=False
|
||||
async def mock_reset():
|
||||
vad_agent._running = False
|
||||
|
||||
vad_agent._reset_stream = mock_reset
|
||||
|
||||
# Needs a poller to avoid AssertionError
|
||||
vad_agent.audio_in_poller = AsyncMock()
|
||||
vad_agent.audio_in_poller.poll.return_value = None
|
||||
|
||||
await vad_agent._streaming_loop()
|
||||
|
||||
assert vad_agent._reset_needed is False
|
||||
assert len(vad_agent.audio_buffer) == 0
|
||||
assert vad_agent.i_since_speech == settings.behaviour_settings.vad_initial_since_speech
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_streaming_loop_no_data_clears_buffer(audio_out_socket, vad_agent):
|
||||
"""Test that if poll returns None, buffer is cleared if not empty."""
|
||||
vad_agent.audio_buffer = np.array([1.0], dtype=np.float32)
|
||||
vad_agent._ready.set()
|
||||
vad_agent._paused.set()
|
||||
vad_agent._running = True
|
||||
|
||||
class MockPoller:
|
||||
async def poll(self, timeout_ms=None):
|
||||
vad_agent._running = False # stop after one poll
|
||||
return None
|
||||
|
||||
vad_agent.audio_in_poller = MockPoller()
|
||||
|
||||
await vad_agent._streaming_loop()
|
||||
|
||||
assert len(vad_agent.audio_buffer) == 0
|
||||
assert vad_agent.i_since_speech == settings.behaviour_settings.vad_initial_since_speech
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_vad_model_load_failure_stops_agent(vad_agent):
|
||||
"""
|
||||
@@ -140,12 +198,10 @@ async def test_vad_model_load_failure_stops_agent(vad_agent):
|
||||
# Patch stop to an AsyncMock so we can check it was awaited
|
||||
vad_agent.stop = AsyncMock()
|
||||
|
||||
result = await vad_agent.setup()
|
||||
await vad_agent.setup()
|
||||
|
||||
# Assert stop was called
|
||||
vad_agent.stop.assert_awaited_once()
|
||||
# Assert setup returned None
|
||||
assert result is None
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -155,7 +211,7 @@ async def test_audio_out_bind_failure_sets_none_and_logs(vad_agent, caplog):
|
||||
audio_out_socket is set to None, None is returned, and an error is logged.
|
||||
"""
|
||||
mock_socket = MagicMock()
|
||||
mock_socket.bind_to_random_port.side_effect = zmq.ZMQBindError()
|
||||
mock_socket.bind.side_effect = zmq.ZMQBindError()
|
||||
with patch("control_backend.agents.perception.vad_agent.azmq.Context.instance") as mock_ctx:
|
||||
mock_ctx.return_value.socket.return_value = mock_socket
|
||||
|
||||
|
||||
24
test/unit/agents/test_base.py
Normal file
24
test/unit/agents/test_base.py
Normal file
@@ -0,0 +1,24 @@
|
||||
import logging
|
||||
|
||||
from control_backend.agents.base import BaseAgent
|
||||
|
||||
|
||||
class MyAgent(BaseAgent):
|
||||
async def setup(self):
|
||||
pass
|
||||
|
||||
async def handle_message(self, msg):
|
||||
pass
|
||||
|
||||
|
||||
def test_base_agent_logger_init():
|
||||
# When defining a subclass, __init_subclass__ runs
|
||||
# The BaseAgent in agents/base.py sets the logger
|
||||
assert hasattr(MyAgent, "logger")
|
||||
assert isinstance(MyAgent.logger, logging.Logger)
|
||||
# The logger name depends on the package.
|
||||
# Since this test file is running as a module, __package__ might be None or the test package.
|
||||
# In 'src/control_backend/agents/base.py', it uses __package__ of base.py which is
|
||||
# 'control_backend.agents'.
|
||||
# So logger name should be control_backend.agents.MyAgent
|
||||
assert MyAgent.logger.name == "control_backend.agents.MyAgent"
|
||||
@@ -7,6 +7,15 @@ import pytest
|
||||
from control_backend.agents.user_interrupt.user_interrupt_agent import UserInterruptAgent
|
||||
from control_backend.core.agent_system import InternalMessage
|
||||
from control_backend.core.config import settings
|
||||
from control_backend.schemas.program import (
|
||||
ConditionalNorm,
|
||||
Goal,
|
||||
KeywordBelief,
|
||||
Phase,
|
||||
Plan,
|
||||
Program,
|
||||
Trigger,
|
||||
)
|
||||
from control_backend.schemas.ri_message import RIEndpoint
|
||||
|
||||
|
||||
@@ -16,6 +25,7 @@ def agent():
|
||||
agent.send = AsyncMock()
|
||||
agent.logger = MagicMock()
|
||||
agent.sub_socket = AsyncMock()
|
||||
agent.pub_socket = AsyncMock()
|
||||
return agent
|
||||
|
||||
|
||||
@@ -49,21 +59,18 @@ async def test_send_to_gesture_agent(agent):
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_program_manager(agent):
|
||||
async def test_send_to_bdi_belief(agent):
|
||||
"""Verify belief update format."""
|
||||
context_str = "2"
|
||||
context_str = "some_goal"
|
||||
|
||||
await agent._send_to_program_manager(context_str)
|
||||
await agent._send_to_bdi_belief(context_str)
|
||||
|
||||
agent.send.assert_awaited_once()
|
||||
sent_msg: InternalMessage = agent.send.call_args.args[0]
|
||||
assert agent.send.await_count == 1
|
||||
sent_msg = agent.send.call_args.args[0]
|
||||
|
||||
assert sent_msg.to == settings.agent_settings.bdi_program_manager_name
|
||||
assert sent_msg.thread == "belief_override_id"
|
||||
|
||||
body = json.loads(sent_msg.body)
|
||||
|
||||
assert body["belief"] == context_str
|
||||
assert sent_msg.to == settings.agent_settings.bdi_core_name
|
||||
assert sent_msg.thread == "beliefs"
|
||||
assert "achieved_some_goal" in sent_msg.body
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -77,6 +84,10 @@ async def test_receive_loop_routing_success(agent):
|
||||
# Prepare JSON payloads as bytes
|
||||
payload_speech = json.dumps({"type": "speech", "context": "Hello Speech"}).encode()
|
||||
payload_gesture = json.dumps({"type": "gesture", "context": "Hello Gesture"}).encode()
|
||||
# override calls _send_to_bdi (for trigger/norm) OR _send_to_bdi_belief (for goal).
|
||||
|
||||
# To test routing, we need to populate the maps
|
||||
agent._goal_map["Hello Override"] = "some_goal_slug"
|
||||
payload_override = json.dumps({"type": "override", "context": "Hello Override"}).encode()
|
||||
|
||||
agent.sub_socket.recv_multipart.side_effect = [
|
||||
@@ -88,7 +99,7 @@ async def test_receive_loop_routing_success(agent):
|
||||
|
||||
agent._send_to_speech_agent = AsyncMock()
|
||||
agent._send_to_gesture_agent = AsyncMock()
|
||||
agent._send_to_program_manager = AsyncMock()
|
||||
agent._send_to_bdi_belief = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
@@ -103,12 +114,12 @@ async def test_receive_loop_routing_success(agent):
|
||||
# Gesture
|
||||
agent._send_to_gesture_agent.assert_awaited_once_with("Hello Gesture")
|
||||
|
||||
# Override
|
||||
agent._send_to_program_manager.assert_awaited_once_with("Hello Override")
|
||||
# Override (since we mapped it to a goal)
|
||||
agent._send_to_bdi_belief.assert_awaited_once_with("some_goal_slug")
|
||||
|
||||
assert agent._send_to_speech_agent.await_count == 1
|
||||
assert agent._send_to_gesture_agent.await_count == 1
|
||||
assert agent._send_to_program_manager.await_count == 1
|
||||
assert agent._send_to_bdi_belief.await_count == 1
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
@@ -125,7 +136,6 @@ async def test_receive_loop_unknown_type(agent):
|
||||
|
||||
agent._send_to_speech_agent = AsyncMock()
|
||||
agent._send_to_gesture_agent = AsyncMock()
|
||||
agent._send_to_belief_collector = AsyncMock()
|
||||
|
||||
try:
|
||||
await agent._receive_button_event()
|
||||
@@ -137,10 +147,165 @@ async def test_receive_loop_unknown_type(agent):
|
||||
# Ensure no handlers were called
|
||||
agent._send_to_speech_agent.assert_not_called()
|
||||
agent._send_to_gesture_agent.assert_not_called()
|
||||
agent._send_to_belief_collector.assert_not_called()
|
||||
|
||||
agent.logger.warning.assert_called_with(
|
||||
"Received button press with unknown type '%s' (context: '%s').",
|
||||
"unknown_thing",
|
||||
"some_data",
|
||||
)
|
||||
agent.logger.warning.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_mapping(agent):
|
||||
# Create a program with a trigger, goal, and conditional norm
|
||||
import uuid
|
||||
|
||||
trigger_id = uuid.uuid4()
|
||||
goal_id = uuid.uuid4()
|
||||
norm_id = uuid.uuid4()
|
||||
|
||||
cond = KeywordBelief(id=uuid.uuid4(), name="k1", keyword="key")
|
||||
plan = Plan(id=uuid.uuid4(), name="p1", steps=[])
|
||||
|
||||
trigger = Trigger(id=trigger_id, name="my_trigger", condition=cond, plan=plan)
|
||||
goal = Goal(id=goal_id, name="my_goal", description="desc", plan=plan)
|
||||
|
||||
cn = ConditionalNorm(id=norm_id, name="my_norm", norm="be polite", condition=cond)
|
||||
|
||||
phase = Phase(id=uuid.uuid4(), name="phase1", norms=[cn], goals=[goal], triggers=[trigger])
|
||||
prog = Program(phases=[phase])
|
||||
|
||||
# Call create_mapping via handle_message
|
||||
msg = InternalMessage(to="me", thread="new_program", body=prog.model_dump_json())
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# Check maps
|
||||
assert str(trigger_id) in agent._trigger_map
|
||||
assert agent._trigger_map[str(trigger_id)] == "trigger_my_trigger"
|
||||
|
||||
assert str(goal_id) in agent._goal_map
|
||||
assert agent._goal_map[str(goal_id)] == "my_goal"
|
||||
|
||||
assert str(norm_id) in agent._cond_norm_map
|
||||
assert agent._cond_norm_map[str(norm_id)] == "norm_be_polite"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_create_mapping_invalid_json(agent):
|
||||
# Pass invalid json to handle_message thread "new_program"
|
||||
msg = InternalMessage(to="me", thread="new_program", body="invalid json")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
# Should log error and maps should remain empty or cleared
|
||||
agent.logger.error.assert_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_trigger_start(agent):
|
||||
# Setup reverse map manually
|
||||
agent._trigger_reverse_map["trigger_slug"] = "ui_id_123"
|
||||
|
||||
msg = InternalMessage(to="me", thread="trigger_start", body="trigger_slug")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.pub_socket.send_multipart.assert_awaited_once()
|
||||
args = agent.pub_socket.send_multipart.call_args[0][0]
|
||||
assert args[0] == b"experiment"
|
||||
payload = json.loads(args[1])
|
||||
assert payload["type"] == "trigger_update"
|
||||
assert payload["id"] == "ui_id_123"
|
||||
assert payload["achieved"] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_trigger_end(agent):
|
||||
agent._trigger_reverse_map["trigger_slug"] = "ui_id_123"
|
||||
|
||||
msg = InternalMessage(to="me", thread="trigger_end", body="trigger_slug")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.pub_socket.send_multipart.assert_awaited_once()
|
||||
payload = json.loads(agent.pub_socket.send_multipart.call_args[0][0][1])
|
||||
assert payload["type"] == "trigger_update"
|
||||
assert payload["achieved"] is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_transition_phase(agent):
|
||||
msg = InternalMessage(to="me", thread="transition_phase", body="phase_id_123")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.pub_socket.send_multipart.assert_awaited_once()
|
||||
payload = json.loads(agent.pub_socket.send_multipart.call_args[0][0][1])
|
||||
assert payload["type"] == "phase_update"
|
||||
assert payload["id"] == "phase_id_123"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_goal_start(agent):
|
||||
agent._goal_reverse_map["goal_slug"] = "goal_id_123"
|
||||
|
||||
msg = InternalMessage(to="me", thread="goal_start", body="goal_slug")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.pub_socket.send_multipart.assert_awaited_once()
|
||||
payload = json.loads(agent.pub_socket.send_multipart.call_args[0][0][1])
|
||||
assert payload["type"] == "goal_update"
|
||||
assert payload["id"] == "goal_id_123"
|
||||
assert payload["active"] is True
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_handle_message_active_norms_update(agent):
|
||||
agent._cond_norm_reverse_map["norm_active"] = "id_1"
|
||||
agent._cond_norm_reverse_map["norm_inactive"] = "id_2"
|
||||
|
||||
# Body is like: "('norm_active', 'other')"
|
||||
# The split logic handles quotes etc.
|
||||
msg = InternalMessage(to="me", thread="active_norms_update", body="'norm_active', 'other'")
|
||||
await agent.handle_message(msg)
|
||||
|
||||
agent.pub_socket.send_multipart.assert_awaited_once()
|
||||
payload = json.loads(agent.pub_socket.send_multipart.call_args[0][0][1])
|
||||
assert payload["type"] == "cond_norms_state_update"
|
||||
norms = {n["id"]: n["active"] for n in payload["norms"]}
|
||||
assert norms["id_1"] is True
|
||||
assert norms["id_2"] is False
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_experiment_control(agent):
|
||||
# Test next_phase
|
||||
await agent._send_experiment_control_to_bdi_core("next_phase")
|
||||
agent.send.assert_awaited()
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == "force_next_phase"
|
||||
|
||||
# Test reset_phase
|
||||
await agent._send_experiment_control_to_bdi_core("reset_phase")
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == "reset_current_phase"
|
||||
|
||||
# Test reset_experiment
|
||||
await agent._send_experiment_control_to_bdi_core("reset_experiment")
|
||||
msg = agent.send.call_args[0][0]
|
||||
assert msg.thread == "reset_experiment"
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_pause_command(agent):
|
||||
await agent._send_pause_command("true")
|
||||
# Sends to RI and VAD
|
||||
assert agent.send.await_count == 2
|
||||
msgs = [call.args[0] for call in agent.send.call_args_list]
|
||||
|
||||
ri_msg = next(m for m in msgs if m.to == settings.agent_settings.ri_communication_name)
|
||||
assert json.loads(ri_msg.body)["endpoint"] == "" # PAUSE endpoint
|
||||
assert json.loads(ri_msg.body)["data"] is True
|
||||
|
||||
vad_msg = next(m for m in msgs if m.to == settings.agent_settings.vad_name)
|
||||
assert vad_msg.body == "PAUSE"
|
||||
|
||||
agent.send.reset_mock()
|
||||
await agent._send_pause_command("false")
|
||||
assert agent.send.await_count == 2
|
||||
vad_msg = next(
|
||||
m for m in agent.send.call_args_list if m.args[0].to == settings.agent_settings.vad_name
|
||||
).args[0]
|
||||
assert vad_msg.body == "RESUME"
|
||||
|
||||
96
test/unit/api/v1/endpoints/test_user_interact.py
Normal file
96
test/unit/api/v1/endpoints/test_user_interact.py
Normal file
@@ -0,0 +1,96 @@
|
||||
from unittest.mock import AsyncMock, MagicMock, patch
|
||||
|
||||
import pytest
|
||||
from fastapi import FastAPI
|
||||
from fastapi.testclient import TestClient
|
||||
|
||||
from control_backend.api.v1.endpoints import user_interact
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def app():
|
||||
app = FastAPI()
|
||||
app.include_router(user_interact.router)
|
||||
return app
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def client(app):
|
||||
return TestClient(app)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_button_event(client):
|
||||
mock_pub_socket = AsyncMock()
|
||||
client.app.state.endpoints_pub_socket = mock_pub_socket
|
||||
|
||||
payload = {"type": "speech", "context": "hello"}
|
||||
response = client.post("/button_pressed", json=payload)
|
||||
|
||||
assert response.status_code == 202
|
||||
assert response.json() == {"status": "Event received"}
|
||||
|
||||
mock_pub_socket.send_multipart.assert_awaited_once()
|
||||
args = mock_pub_socket.send_multipart.call_args[0][0]
|
||||
assert args[0] == b"button_pressed"
|
||||
assert "speech" in args[1].decode()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_receive_button_event_invalid_payload(client):
|
||||
mock_pub_socket = AsyncMock()
|
||||
client.app.state.endpoints_pub_socket = mock_pub_socket
|
||||
|
||||
# Missing context
|
||||
payload = {"type": "speech"}
|
||||
response = client.post("/button_pressed", json=payload)
|
||||
|
||||
assert response.status_code == 422
|
||||
mock_pub_socket.send_multipart.assert_not_called()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_experiment_stream_direct_call():
|
||||
"""
|
||||
Directly calling the endpoint function to test the streaming logic
|
||||
without dealing with TestClient streaming limitations.
|
||||
"""
|
||||
mock_socket = AsyncMock()
|
||||
# 1. recv data
|
||||
# 2. recv timeout
|
||||
# 3. disconnect (request.is_disconnected returns True)
|
||||
mock_socket.recv_multipart.side_effect = [
|
||||
(b"topic", b"message1"),
|
||||
TimeoutError(),
|
||||
(b"topic", b"message2"), # Should not be reached if disconnect checks work
|
||||
]
|
||||
mock_socket.close = MagicMock()
|
||||
mock_socket.connect = MagicMock()
|
||||
mock_socket.subscribe = MagicMock()
|
||||
|
||||
mock_context = MagicMock()
|
||||
mock_context.socket.return_value = mock_socket
|
||||
|
||||
with patch(
|
||||
"control_backend.api.v1.endpoints.user_interact.Context.instance", return_value=mock_context
|
||||
):
|
||||
mock_request = AsyncMock()
|
||||
# is_disconnected sequence:
|
||||
# 1. False (before first recv) -> reads message1
|
||||
# 2. False (before second recv) -> triggers TimeoutError, continues
|
||||
# 3. True (before third recv) -> break loop
|
||||
mock_request.is_disconnected.side_effect = [False, False, True]
|
||||
|
||||
response = await user_interact.experiment_stream(mock_request)
|
||||
|
||||
lines = []
|
||||
# Consume the generator
|
||||
async for line in response.body_iterator:
|
||||
lines.append(line)
|
||||
|
||||
assert "data: message1\n\n" in lines
|
||||
assert len(lines) == 1
|
||||
|
||||
mock_socket.connect.assert_called()
|
||||
mock_socket.subscribe.assert_called_with(b"experiment")
|
||||
mock_socket.close.assert_called()
|
||||
@@ -25,7 +25,6 @@ def mock_settings():
|
||||
mock.zmq_settings.internal_sub_address = "tcp://localhost:5561"
|
||||
mock.zmq_settings.ri_command_address = "tcp://localhost:0000"
|
||||
mock.agent_settings.bdi_core_name = "bdi_core_agent"
|
||||
mock.agent_settings.bdi_belief_collector_name = "belief_collector_agent"
|
||||
mock.agent_settings.llm_name = "llm_agent"
|
||||
mock.agent_settings.robot_speech_name = "robot_speech_agent"
|
||||
mock.agent_settings.transcription_name = "transcription_agent"
|
||||
|
||||
@@ -99,12 +99,75 @@ async def test_send_to_local_agent(monkeypatch):
|
||||
# Patch inbox.put
|
||||
target.inbox.put = AsyncMock()
|
||||
|
||||
message = InternalMessage(to="receiver", sender="sender", body="hello")
|
||||
message = InternalMessage(to=target.name, sender=sender.name, body="hello")
|
||||
|
||||
await sender.send(message)
|
||||
|
||||
target.inbox.put.assert_awaited_once_with(message)
|
||||
sender.logger.debug.assert_called_once()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_zmq_agent(monkeypatch):
|
||||
sender = DummyAgent("sender")
|
||||
target = "remote_receiver"
|
||||
|
||||
# Fake logger
|
||||
sender.logger = MagicMock()
|
||||
|
||||
# Fake zmq
|
||||
sender._internal_pub_socket = AsyncMock()
|
||||
|
||||
message = InternalMessage(to=target, sender=sender.name, body="hello")
|
||||
|
||||
await sender.send(message)
|
||||
|
||||
zmq_calls = sender._internal_pub_socket.send_multipart.call_args[0][0]
|
||||
assert zmq_calls[0] == f"internal/{target}".encode()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_multiple_local_agents(monkeypatch):
|
||||
sender = DummyAgent("sender")
|
||||
target1 = DummyAgent("receiver1")
|
||||
target2 = DummyAgent("receiver2")
|
||||
|
||||
# Fake logger
|
||||
sender.logger = MagicMock()
|
||||
|
||||
# Patch inbox.put
|
||||
target1.inbox.put = AsyncMock()
|
||||
target2.inbox.put = AsyncMock()
|
||||
|
||||
message = InternalMessage(to=[target1.name, target2.name], sender=sender.name, body="hello")
|
||||
|
||||
await sender.send(message)
|
||||
|
||||
target1.inbox.put.assert_awaited_once_with(message)
|
||||
target2.inbox.put.assert_awaited_once_with(message)
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
async def test_send_to_multiple_agents(monkeypatch):
|
||||
sender = DummyAgent("sender")
|
||||
target1 = DummyAgent("receiver1")
|
||||
target2 = "remote_receiver"
|
||||
|
||||
# Fake logger
|
||||
sender.logger = MagicMock()
|
||||
|
||||
# Fake zmq
|
||||
sender._internal_pub_socket = AsyncMock()
|
||||
|
||||
# Patch inbox.put
|
||||
target1.inbox.put = AsyncMock()
|
||||
|
||||
message = InternalMessage(to=[target1.name, target2], sender=sender.name, body="hello")
|
||||
|
||||
await sender.send(message)
|
||||
|
||||
target1.inbox.put.assert_awaited_once_with(message)
|
||||
zmq_calls = sender._internal_pub_socket.send_multipart.call_args[0][0]
|
||||
assert zmq_calls[0] == f"internal/{target2}".encode()
|
||||
|
||||
|
||||
@pytest.mark.asyncio
|
||||
|
||||
40
test/unit/test_main_sockets.py
Normal file
40
test/unit/test_main_sockets.py
Normal file
@@ -0,0 +1,40 @@
|
||||
from unittest.mock import MagicMock, patch
|
||||
|
||||
import zmq
|
||||
|
||||
from control_backend.main import setup_sockets
|
||||
|
||||
|
||||
def test_setup_sockets_proxy():
|
||||
mock_context = MagicMock()
|
||||
mock_pub = MagicMock()
|
||||
mock_sub = MagicMock()
|
||||
|
||||
mock_context.socket.side_effect = [mock_pub, mock_sub]
|
||||
|
||||
with patch("zmq.asyncio.Context.instance", return_value=mock_context):
|
||||
with patch("zmq.proxy") as mock_proxy:
|
||||
setup_sockets()
|
||||
|
||||
mock_pub.bind.assert_called()
|
||||
mock_sub.bind.assert_called()
|
||||
mock_proxy.assert_called_with(mock_sub, mock_pub)
|
||||
|
||||
# Check cleanup
|
||||
mock_pub.close.assert_called()
|
||||
mock_sub.close.assert_called()
|
||||
|
||||
|
||||
def test_setup_sockets_proxy_error():
|
||||
mock_context = MagicMock()
|
||||
mock_pub = MagicMock()
|
||||
mock_sub = MagicMock()
|
||||
mock_context.socket.side_effect = [mock_pub, mock_sub]
|
||||
|
||||
with patch("zmq.asyncio.Context.instance", return_value=mock_context):
|
||||
with patch("zmq.proxy", side_effect=zmq.ZMQError):
|
||||
with patch("control_backend.main.logger") as mock_logger:
|
||||
setup_sockets()
|
||||
mock_logger.warning.assert_called()
|
||||
mock_pub.close.assert_called()
|
||||
mock_sub.close.assert_called()
|
||||
Reference in New Issue
Block a user