Compare commits

..

66 Commits

Author SHA1 Message Date
Pim Hutting
7c10c50336 chore: removed resetExperiment from backened
now it happens in UI

ref: N25B-400
2026-01-16 14:29:46 +01:00
Pim Hutting
6d03ba8a41 feat: added extra endpoint for norm pings
also made sure that you cannot skip phase on end phase

ref: N25B-400
2026-01-16 14:28:27 +01:00
Pim Hutting
041fc4ab6e chore: cond_norms unachieve and via belief msg 2026-01-15 09:02:52 +01:00
39e1bb1ead fix: sync issues
ref: N25B-447
2026-01-14 15:28:29 +01:00
8f6662e64a feat: phase transitions
ref: N25B-446
2026-01-14 13:22:51 +01:00
0794c549a8 chore: remove agentspeak file from tracking 2026-01-14 11:27:29 +01:00
ff24ab7a27 fix: default behavior and end phase
ref: N25B-448
2026-01-14 11:24:19 +01:00
43ac8ad69f chore: delete outdated files
ref: N25B-446
2026-01-14 10:58:41 +01:00
Twirre Meulenbelt
f7669c021b feat: support force completed goals in semantic belief agent
ref: N25B-427
2026-01-13 17:04:44 +01:00
Björn Otgaar
8f52f8bf0c Merge branch 'feat/monitoringpage-cb' of git.science.uu.nl:ics/sp/2025/n25b/pepperplus-cb into feat/monitoringpage-cb 2026-01-13 14:03:40 +01:00
Björn Otgaar
2a94a45b34 chore: adjust 'phase_id' to 'id' for correct payload 2026-01-13 14:03:37 +01:00
f87651f691 fix: achieved goal in bdi core
ref: N25B-400
2026-01-13 12:26:18 +01:00
Pim Hutting
65e0b2d250 feat: added correct message
ref: N25B-400
2026-01-13 12:05:38 +01:00
177e844349 feat: send achieved goal from interrupt->manager->semantic
ref: N25B-400
2026-01-13 11:46:17 +01:00
Pim Hutting
0df6040444 feat: added sending goal overwrites in Userinter.
ref: N25B-400
2026-01-13 11:26:03 +01:00
Twirre Meulenbelt
af81bd8620 Merge branch 'feat/multiple-receivers' into feat/monitoringpage-cb
# Conflicts:
#	src/control_backend/core/agent_system.py
#	src/control_backend/schemas/internal_message.py
2026-01-13 11:14:18 +01:00
Twirre Meulenbelt
70e05b6c92 test: sending to multiple agents, including remote
ref: N25B-441
2026-01-13 11:10:35 +01:00
c0b8fb8612 feat: able to send to multiple receivers
ref: N25B-441
2026-01-13 11:06:42 +01:00
Pim Hutting
d499111ea4 feat: added pause functionality
Storms code wasnt fully included in Bjorns branch

ref: N25B-400
2026-01-13 00:52:04 +01:00
Pim Hutting
72c2c57f26 chore: merged button functionality and fix bug
merged björns branch that has the following button functionality
-Pause/resume
-Next phase
-Restart phase
-reset experiment
fix bug where norms where not properly sent to the user interrupt agent

ref: N25B-400
2026-01-12 19:31:50 +01:00
Pim Hutting
4a014b577a Merge remote-tracking branch 'origin/feat/reset-skip-buttons' into feat/monitoringpage-cb 2026-01-12 19:19:31 +01:00
Pim Hutting
c45a258b22 fix: fixed a bug where norms where not updated
Now in UserInterruptAgent we store the norm.norm and not the slugified norm

ref: N25B-400
2026-01-12 19:07:05 +01:00
0f09276477 fix: send norms back to UI
ref: N25B-400
2026-01-12 17:02:39 +01:00
4e113c2d5c fix: default plan and norm force
ref: N25B-400
2026-01-12 16:20:24 +01:00
Pim Hutting
54c835cc0f feat: added force_norm handling in BDI core agent
ref: N25B-400
2026-01-12 15:37:04 +01:00
Pim Hutting
c4ccbcd354 Merge remote-tracking branch 'origin/feat/extra-agentspeak-functionality' into feat/monitoringpage-cb 2026-01-12 15:24:48 +01:00
Pim Hutting
d202abcd1b fix: phases update correctly
there was a bug where phases would not update without restarting cb

ref: N25B-400
2026-01-12 12:51:24 +01:00
Twirre Meulenbelt
4b71981a3e fix: some bugs and some tests
ref: N25B-429
2026-01-12 09:00:50 +01:00
Björn Otgaar
c91b999104 chore: fix bugs and make sure connected robots work 2026-01-08 15:31:44 +01:00
866d7c4958 fix: end phase loop correctly notifies about user_said
ref: N25B-429
2026-01-08 15:13:12 +01:00
Pim Hutting
5e2126fc21 chore: code cleanup
ref: N25B-400
2026-01-08 15:05:43 +01:00
Pim Hutting
500bbc2d82 feat: added goal start sending functionality
ref: N25B-400
2026-01-08 14:52:55 +01:00
133019a928 feat: trigger name and trigger checks on belief update
ref: N25B-429
2026-01-08 14:04:44 +01:00
4d0ba69443 fix: don't re-add user_said upon phase transition
ref: N25B-429
2026-01-08 13:44:25 +01:00
625ef0c365 feat: phase transition waits for all goals
ref: N25B-429
2026-01-08 13:36:03 +01:00
b88758fa76 feat: phase transition independent of response
ref: N25B-429
2026-01-08 13:33:37 +01:00
Björn Otgaar
1360567820 chore: indenting 2026-01-08 13:01:38 +01:00
Björn Otgaar
cc0d5af28c chore: fixing bugs 2026-01-08 12:56:22 +01:00
Pim Hutting
3a8d1730a1 fix: made mapping for conditional norms only
ref: N25B-400
2026-01-08 12:29:16 +01:00
Pim Hutting
b27e5180c4 feat: small implementation change
ref: N25B-400
2026-01-08 11:25:53 +01:00
Pim Hutting
6b34f4b82c fix: small bugfix
ref: N25B-400
2026-01-08 10:59:24 +01:00
Twirre Meulenbelt
45719c580b feat: prepend more silence before speech audio for better transcription beginnings
ref: N25B-429
2026-01-08 10:49:13 +01:00
Pim Hutting
4bf2be6359 feat: added a functionality for monitoring page
ref: N25B-400
2026-01-08 09:56:10 +01:00
Pim Hutting
20e5e46639 Merge remote-tracking branch 'origin/feat/extra-agentspeak-functionality' into feat/monitoringpage-cb 2026-01-07 22:42:40 +01:00
Pim Hutting
365d449666 feat: commit before I can merge new changes
ref: N25B-400
2026-01-07 22:41:59 +01:00
Björn Otgaar
be88323cf7 chore: add one endpoint fo avoid errors 2026-01-07 18:24:35 +01:00
5a61225c6f feat: reset extractor history
ref: N25B-429
2026-01-07 18:10:13 +01:00
a30cea5231 Merge branch 'feat/semantic-beliefs' into feat/extra-agentspeak-functionality 2026-01-07 17:51:30 +01:00
Twirre Meulenbelt
93d67ccb66 feat: add reset functionality to semantic belief extractor
ref: N25B-432
2026-01-07 17:50:47 +01:00
240624f887 Merge branch 'dev' into feat/extra-agentspeak-functionality
# Conflicts:
#	src/control_backend/agents/bdi/bdi_program_manager.py
#	src/control_backend/agents/llm/llm_agent.py
#	test/unit/agents/bdi/test_bdi_program_manager.py
2026-01-07 17:46:48 +01:00
Pim Hutting
be6bbbb849 feat: added endpoint userinterrupt to userinterrupt
ref: N25B-400
2026-01-07 17:42:54 +01:00
8a77e8e1c7 feat: check goals only for this phase
Since conversation history still remains we can still check at a later point.

ref: N25B-429
2026-01-07 17:31:24 +01:00
3b4dccc760 Merge branch 'feat/semantic-beliefs' into feat/extra-agentspeak-functionality
# Conflicts:
#	src/control_backend/agents/bdi/bdi_program_manager.py
2026-01-07 17:20:52 +01:00
3d49e44cf7 fix: complete pipeline working
User interrupts still need to be tested.

ref: N25B-429
2026-01-07 17:13:58 +01:00
Twirre Meulenbelt
aa5b386f65 feat: semantically determine goal completion
ref: N25B-432
2026-01-07 17:08:23 +01:00
Storm
76dfcb23ef feat: added pause functionality
ref: N25B-350
2026-01-07 16:03:49 +01:00
Twirre Meulenbelt
3189b9fee3 fix: let belief extractor send user_said belief
ref: N25B-429
2026-01-07 15:19:23 +01:00
Björn Otgaar
34afca6652 chore: automatically send the experiment controls to the bdi core in the user interupt agent. 2026-01-07 15:07:33 +01:00
Björn Otgaar
324a63e5cc chore: add styles to user_interrupt_agent 2026-01-07 14:45:42 +01:00
07d70cb781 fix: single dispatch order
ref: N25B-429
2026-01-07 13:02:23 +01:00
af832980c8 feat: general slugify method
ref: N25B-429
2026-01-07 12:24:46 +01:00
Twirre Meulenbelt
cabe35cdbd feat: integrate AgentSpeak with semantic belief extraction
ref: N25B-429
2026-01-07 11:44:48 +01:00
Twirre Meulenbelt
de8e829d3e Merge remote-tracking branch 'origin/feat/agentspeak-generation' into feat/semantic-beliefs
# Conflicts:
#	test/unit/agents/bdi/test_bdi_program_manager.py
2026-01-06 15:30:59 +01:00
Twirre Meulenbelt
3406e9ac2f feat: make the pipeline work with Program and AgentSpeak
ref: N25B-429
2026-01-06 15:26:44 +01:00
a357b6990b feat: send program to bdi core
ref: N25B-376
2026-01-06 12:11:37 +01:00
9eea4ee345 feat: new ASL generation
ref: N25B-376
2026-01-02 12:08:20 +01:00
42 changed files with 2224 additions and 1843 deletions

20
.env.example Normal file
View File

@@ -0,0 +1,20 @@
# Example .env file. To use, make a copy, call it ".env" (i.e. removing the ".example" suffix), then you edit values.
# The hostname of the Robot Interface. Change if the Control Backend and Robot Interface are running on different computers.
RI_HOST="localhost"
# URL for the local LLM API. Must be an API that implements the OpenAI Chat Completions API, but most do.
LLM_SETTINGS__LOCAL_LLM_URL="http://localhost:1234/v1/chat/completions"
# Name of the local LLM model to use.
LLM_SETTINGS__LOCAL_LLM_MODEL="gpt-oss"
# Number of non-speech chunks to wait before speech ended. A chunk is approximately 31 ms. Increasing this number allows longer pauses in speech, but also increases response time.
BEHAVIOUR_SETTINGS__VAD_NON_SPEECH_PATIENCE_CHUNKS=15
# Timeout in milliseconds for socket polling. Increase this number if network latency/jitter is high, often the case when using Wi-Fi. Perhaps 500 ms. A symptom of this issue is transcriptions getting cut off.
BEHAVIOUR_SETTINGS__SOCKET_POLLER_TIMEOUT_MS=100
# For an exhaustive list of options, see the control_backend.core.config module in the docs.

2
.gitignore vendored
View File

@@ -222,6 +222,8 @@ __marimo__/
docs/*
!docs/conf.py
# Generated files
agentspeak.asl

View File

@@ -27,6 +27,7 @@ This + part might differ based on what model you choose.
copy the model name in the module loaded and replace local_llm_modelL. In settings.
## Running
To run the project (development server), execute the following command (while inside the root repository):
@@ -34,6 +35,14 @@ To run the project (development server), execute the following command (while in
uv run fastapi dev src/control_backend/main.py
```
### Environment Variables
You can use environment variables to change settings. Make a copy of the [`.env.example`](.env.example) file, name it `.env` and put it in the root directory. The file itself describes how to do the configuration.
For an exhaustive list of environment options, see the `control_backend.core.config` module in the docs.
## Testing
Testing happens automatically when opening a merge request to any branch. If you want to manually run the test suite, you can do so by running the following for unit tests:

View File

@@ -33,7 +33,7 @@ class RobotGestureAgent(BaseAgent):
def __init__(
self,
name: str,
address=settings.zmq_settings.ri_command_address,
address: str,
bind=False,
gesture_data=None,
single_gesture_data=None,
@@ -83,6 +83,8 @@ class RobotGestureAgent(BaseAgent):
self.subsocket.close()
if self.pubsocket:
self.pubsocket.close()
if self.repsocket:
self.repsocket.close()
await super().stop()
async def handle_message(self, msg: InternalMessage):

View File

@@ -187,9 +187,10 @@ class StatementType(StrEnum):
EMPTY = ""
DO_ACTION = "."
ACHIEVE_GOAL = "!"
# TEST_GOAL = "?" # TODO
TEST_GOAL = "?"
ADD_BELIEF = "+"
REMOVE_BELIEF = "-"
REPLACE_BELIEF = "-+"
@dataclass

View File

@@ -0,0 +1,514 @@
from functools import singledispatchmethod
from slugify import slugify
from control_backend.agents.bdi.agentspeak_ast import (
AstAtom,
AstBinaryOp,
AstExpression,
AstLiteral,
AstNumber,
AstPlan,
AstProgram,
AstRule,
AstStatement,
AstString,
AstVar,
BinaryOperatorType,
StatementType,
TriggerType,
)
from control_backend.schemas.program import (
BaseGoal,
BasicNorm,
ConditionalNorm,
GestureAction,
Goal,
InferredBelief,
KeywordBelief,
LLMAction,
LogicalOperator,
Norm,
Phase,
PlanElement,
Program,
ProgramElement,
SemanticBelief,
SpeechAction,
Trigger,
)
class AgentSpeakGenerator:
_asp: AstProgram
def generate(self, program: Program) -> str:
self._asp = AstProgram()
if program.phases:
self._asp.rules.append(AstRule(self._astify(program.phases[0])))
else:
self._asp.rules.append(AstRule(AstLiteral("phase", [AstString("end")])))
self._asp.rules.append(AstRule(AstLiteral("!notify_cycle")))
self._add_keyword_inference()
self._add_default_plans()
self._process_phases(program.phases)
self._add_fallbacks()
return str(self._asp)
def _add_keyword_inference(self) -> None:
keyword = AstVar("Keyword")
message = AstVar("Message")
position = AstVar("Pos")
self._asp.rules.append(
AstRule(
AstLiteral("keyword_said", [keyword]),
AstLiteral("user_said", [message])
& AstLiteral(".substring", [keyword, message, position])
& (position >= 0),
)
)
def _add_default_plans(self):
self._add_reply_with_goal_plan()
self._add_say_plan()
self._add_reply_plan()
self._add_notify_cycle_plan()
def _add_reply_with_goal_plan(self):
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("reply_with_goal", [AstVar("Goal")]),
[AstLiteral("user_said", [AstVar("Message")])],
[
AstStatement(StatementType.ADD_BELIEF, AstLiteral("responded_this_turn")),
AstStatement(
StatementType.DO_ACTION,
AstLiteral(
"findall",
[AstVar("Norm"), AstLiteral("norm", [AstVar("Norm")]), AstVar("Norms")],
),
),
AstStatement(
StatementType.DO_ACTION,
AstLiteral(
"reply_with_goal", [AstVar("Message"), AstVar("Norms"), AstVar("Goal")]
),
),
],
)
)
def _add_say_plan(self):
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("say", [AstVar("Text")]),
[],
[
AstStatement(StatementType.ADD_BELIEF, AstLiteral("responded_this_turn")),
AstStatement(StatementType.DO_ACTION, AstLiteral("say", [AstVar("Text")])),
],
)
)
def _add_reply_plan(self):
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("reply"),
[AstLiteral("user_said", [AstVar("Message")])],
[
AstStatement(StatementType.ADD_BELIEF, AstLiteral("responded_this_turn")),
AstStatement(
StatementType.DO_ACTION,
AstLiteral(
"findall",
[AstVar("Norm"), AstLiteral("norm", [AstVar("Norm")]), AstVar("Norms")],
),
),
AstStatement(
StatementType.DO_ACTION,
AstLiteral("reply", [AstVar("Message"), AstVar("Norms")]),
),
],
)
)
def _add_notify_cycle_plan(self):
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("notify_cycle"),
[],
[
AstStatement(
StatementType.DO_ACTION,
AstLiteral(
"findall",
[AstVar("Norm"), AstLiteral("norm", [AstVar("Norm")]), AstVar("Norms")],
),
),
AstStatement(
StatementType.DO_ACTION, AstLiteral("notify_norms", [AstVar("Norms")])
),
AstStatement(StatementType.DO_ACTION, AstLiteral("wait", [AstNumber(100)])),
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("notify_cycle")),
],
)
)
def _process_phases(self, phases: list[Phase]) -> None:
for curr_phase, next_phase in zip([None] + phases, phases + [None], strict=True):
if curr_phase:
self._process_phase(curr_phase)
self._add_phase_transition(curr_phase, next_phase)
# End phase behavior
# When deleting this, the entire `reply` plan and action can be deleted
self._asp.plans.append(
AstPlan(
type=TriggerType.ADDED_BELIEF,
trigger_literal=AstLiteral("user_said", [AstVar("Message")]),
context=[AstLiteral("phase", [AstString("end")])],
body=[
AstStatement(
StatementType.DO_ACTION, AstLiteral("notify_user_said", [AstVar("Message")])
),
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("reply")),
],
)
)
def _process_phase(self, phase: Phase) -> None:
for norm in phase.norms:
self._process_norm(norm, phase)
self._add_default_loop(phase)
previous_goal = None
for goal in phase.goals:
self._process_goal(goal, phase, previous_goal, main_goal=True)
previous_goal = goal
for trigger in phase.triggers:
self._process_trigger(trigger, phase)
def _add_phase_transition(self, from_phase: Phase | None, to_phase: Phase | None) -> None:
if from_phase is None:
return
from_phase_ast = self._astify(from_phase)
to_phase_ast = (
self._astify(to_phase) if to_phase else AstLiteral("phase", [AstString("end")])
)
check_context = [from_phase_ast]
if from_phase:
for goal in from_phase.goals:
check_context.append(self._astify(goal, achieved=True))
force_context = [from_phase_ast]
body = [
AstStatement(
StatementType.DO_ACTION,
AstLiteral(
"notify_transition_phase",
[
AstString(str(from_phase.id)),
AstString(str(to_phase.id) if to_phase else "end"),
],
),
),
AstStatement(StatementType.REMOVE_BELIEF, from_phase_ast),
AstStatement(StatementType.ADD_BELIEF, to_phase_ast),
]
# if from_phase:
# body.extend(
# [
# AstStatement(
# StatementType.TEST_GOAL, AstLiteral("user_said", [AstVar("Message")])
# ),
# AstStatement(
# StatementType.REPLACE_BELIEF, AstLiteral("user_said", [AstVar("Message")])
# ),
# ]
# )
# Check
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("transition_phase"),
check_context,
[
AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("force_transition_phase")),
],
)
)
# Force
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL, AstLiteral("force_transition_phase"), force_context, body
)
)
def _process_norm(self, norm: Norm, phase: Phase) -> None:
rule: AstRule | None = None
match norm:
case ConditionalNorm(condition=cond):
rule = AstRule(
self._astify(norm),
self._astify(phase) & self._astify(cond)
| AstAtom(f"force_{self.slugify(norm)}"),
)
case BasicNorm():
rule = AstRule(self._astify(norm), self._astify(phase))
if not rule:
return
self._asp.rules.append(rule)
def _add_default_loop(self, phase: Phase) -> None:
actions = []
actions.append(
AstStatement(
StatementType.DO_ACTION, AstLiteral("notify_user_said", [AstVar("Message")])
)
)
actions.append(AstStatement(StatementType.REMOVE_BELIEF, AstLiteral("responded_this_turn")))
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("check_triggers")))
for goal in phase.goals:
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, self._astify(goal)))
actions.append(AstStatement(StatementType.ACHIEVE_GOAL, AstLiteral("transition_phase")))
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_BELIEF,
AstLiteral("user_said", [AstVar("Message")]),
[self._astify(phase)],
actions,
)
)
def _process_goal(
self,
goal: Goal,
phase: Phase,
previous_goal: Goal | None = None,
continues_response: bool = False,
main_goal: bool = False,
) -> None:
context: list[AstExpression] = [self._astify(phase)]
context.append(~self._astify(goal, achieved=True))
if previous_goal and previous_goal.can_fail:
context.append(self._astify(previous_goal, achieved=True))
if not continues_response:
context.append(~AstLiteral("responded_this_turn"))
body = []
if main_goal: # UI only needs to know about the main goals
body.append(
AstStatement(
StatementType.DO_ACTION,
AstLiteral("notify_goal_start", [AstString(self.slugify(goal))]),
)
)
subgoals = []
for step in goal.plan.steps:
body.append(self._step_to_statement(step))
if isinstance(step, Goal):
subgoals.append(step)
if not goal.can_fail and not continues_response:
body.append(AstStatement(StatementType.ADD_BELIEF, self._astify(goal, achieved=True)))
self._asp.plans.append(AstPlan(TriggerType.ADDED_GOAL, self._astify(goal), context, body))
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
self._astify(goal),
context=[],
body=[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
)
)
prev_goal = None
for subgoal in subgoals:
self._process_goal(subgoal, phase, prev_goal)
prev_goal = subgoal
def _step_to_statement(self, step: PlanElement) -> AstStatement:
match step:
case Goal() | SpeechAction() | LLMAction() as a:
return AstStatement(StatementType.ACHIEVE_GOAL, self._astify(a))
case GestureAction() as a:
return AstStatement(StatementType.DO_ACTION, self._astify(a))
# TODO: separate handling of keyword and others
def _process_trigger(self, trigger: Trigger, phase: Phase) -> None:
body = []
subgoals = []
body.append(
AstStatement(
StatementType.DO_ACTION,
AstLiteral("notify_trigger_start", [AstString(self.slugify(trigger))]),
)
)
for step in trigger.plan.steps:
body.append(self._step_to_statement(step))
if isinstance(step, Goal):
step.can_fail = False # triggers are continuous sequence
subgoals.append(step)
# Arbitrary wait for UI to display nicely
body.append(AstStatement(StatementType.DO_ACTION, AstLiteral("wait", [AstNumber(2000)])))
body.append(
AstStatement(
StatementType.DO_ACTION,
AstLiteral("notify_trigger_end", [AstString(self.slugify(trigger))]),
)
)
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("check_triggers"),
[self._astify(phase), self._astify(trigger.condition)],
body,
)
)
# Force trigger (from UI)
self._asp.plans.append(AstPlan(TriggerType.ADDED_GOAL, self._astify(trigger), [], body))
for subgoal in subgoals:
self._process_goal(subgoal, phase, continues_response=True)
def _add_fallbacks(self):
# Trigger fallback
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("check_triggers"),
[],
[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
)
)
# Phase transition fallback
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("transition_phase"),
[],
[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
)
)
# Force phase transition fallback
self._asp.plans.append(
AstPlan(
TriggerType.ADDED_GOAL,
AstLiteral("force_transition_phase"),
[],
[AstStatement(StatementType.EMPTY, AstLiteral("true"))],
)
)
@singledispatchmethod
def _astify(self, element: ProgramElement) -> AstExpression:
raise NotImplementedError(f"Cannot convert element {element} to an AgentSpeak expression.")
@_astify.register
def _(self, kwb: KeywordBelief) -> AstExpression:
return AstLiteral("keyword_said", [AstString(kwb.keyword)])
@_astify.register
def _(self, sb: SemanticBelief) -> AstExpression:
return AstLiteral(self.slugify(sb))
@_astify.register
def _(self, ib: InferredBelief) -> AstExpression:
return AstBinaryOp(
self._astify(ib.left),
BinaryOperatorType.AND if ib.operator == LogicalOperator.AND else BinaryOperatorType.OR,
self._astify(ib.right),
)
@_astify.register
def _(self, norm: Norm) -> AstExpression:
functor = "critical_norm" if norm.critical else "norm"
return AstLiteral(functor, [AstString(norm.norm)])
@_astify.register
def _(self, phase: Phase) -> AstExpression:
return AstLiteral("phase", [AstString(str(phase.id))])
@_astify.register
def _(self, goal: Goal, achieved: bool = False) -> AstExpression:
return AstLiteral(f"{'achieved_' if achieved else ''}{self._slugify_str(goal.name)}")
@_astify.register
def _(self, trigger: Trigger) -> AstExpression:
return AstLiteral(self.slugify(trigger))
@_astify.register
def _(self, sa: SpeechAction) -> AstExpression:
return AstLiteral("say", [AstString(sa.text)])
@_astify.register
def _(self, ga: GestureAction) -> AstExpression:
gesture = ga.gesture
return AstLiteral("gesture", [AstString(gesture.type), AstString(gesture.name)])
@_astify.register
def _(self, la: LLMAction) -> AstExpression:
return AstLiteral("reply_with_goal", [AstString(la.goal)])
@singledispatchmethod
@staticmethod
def slugify(element: ProgramElement) -> str:
raise NotImplementedError(f"Cannot convert element {element} to a slug.")
@slugify.register
@staticmethod
def _(n: Norm) -> str:
return f"norm_{AgentSpeakGenerator._slugify_str(n.norm)}"
@slugify.register
@staticmethod
def _(sb: SemanticBelief) -> str:
return f"semantic_{AgentSpeakGenerator._slugify_str(sb.name)}"
@slugify.register
@staticmethod
def _(g: BaseGoal) -> str:
return AgentSpeakGenerator._slugify_str(g.name)
@slugify.register
@staticmethod
def _(t: Trigger):
return f"trigger_{AgentSpeakGenerator._slugify_str(t.name)}"
@staticmethod
def _slugify_str(text: str) -> str:
return slugify(text, separator="_", stopwords=["a", "an", "the", "we", "you", "I"])

View File

@@ -1,203 +0,0 @@
import typing
from dataclasses import dataclass, field
# --- Types ---
@dataclass
class BeliefLiteral:
"""
Represents a literal or atom.
Example: phase(1), user_said("hello"), ~started
"""
functor: str
args: list[str] = field(default_factory=list)
negated: bool = False
def __str__(self):
# In ASL, 'not' is usually for closed-world assumption (prolog style),
# '~' is for explicit negation in beliefs.
# For simplicity in behavior trees, we often use 'not' for conditions.
prefix = "not " if self.negated else ""
if not self.args:
return f"{prefix}{self.functor}"
# Clean args to ensure strings are quoted if they look like strings,
# but usually the converter handles the quoting of string literals.
args_str = ", ".join(self.args)
return f"{prefix}{self.functor}({args_str})"
@dataclass
class GoalLiteral:
name: str
def __str__(self):
return f"!{self.name}"
@dataclass
class ActionLiteral:
"""
Represents a step in a plan body.
Example: .say("Hello") or !achieve_goal
"""
code: str
def __str__(self):
return self.code
@dataclass
class BinaryOp:
"""
Represents logical operations.
Example: (A & B) | C
"""
left: "Expression | str"
operator: typing.Literal["&", "|"]
right: "Expression | str"
def __str__(self):
l_str = str(self.left)
r_str = str(self.right)
if isinstance(self.left, BinaryOp):
l_str = f"({l_str})"
if isinstance(self.right, BinaryOp):
r_str = f"({r_str})"
return f"{l_str} {self.operator} {r_str}"
Literal = BeliefLiteral | GoalLiteral | ActionLiteral
Expression = Literal | BinaryOp | str
@dataclass
class Rule:
"""
Represents an inference rule.
Example: head :- body.
"""
head: Expression
body: Expression | None = None
def __str__(self):
if not self.body:
return f"{self.head}."
return f"{self.head} :- {self.body}."
@dataclass
class PersistentRule:
"""
Represents an inference rule, where the inferred belief is persistent when formed.
"""
head: Expression
body: Expression
def __str__(self):
if not self.body:
raise Exception("Rule without body should not be persistent.")
lines = []
if isinstance(self.body, BinaryOp):
lines.append(f"+{self.body.left}")
if self.body.operator == "&":
lines.append(f" : {self.body.right}")
lines.append(f" <- +{self.head}.")
if self.body.operator == "|":
lines.append(f"+{self.body.right}")
lines.append(f" <- +{self.head}.")
return "\n".join(lines)
@dataclass
class Plan:
"""
Represents a plan.
Syntax: +trigger : context <- body.
"""
trigger: BeliefLiteral | GoalLiteral
context: list[Expression] = field(default_factory=list)
body: list[ActionLiteral] = field(default_factory=list)
def __str__(self):
# Indentation settings
INDENT = " "
ARROW = "\n <- "
COLON = "\n : "
# Build Header
header = f"+{self.trigger}"
if self.context:
ctx_str = f" &\n{INDENT}".join(str(c) for c in self.context)
header += f"{COLON}{ctx_str}"
# Case 1: Empty body
if not self.body:
return f"{header}."
# Case 2: Short body (optional optimization, keeping it uniform usually better)
header += ARROW
lines = []
# We start the first action on the same line or next line.
# Let's put it on the next line for readability if there are multiple.
if len(self.body) == 1:
return f"{header}{self.body[0]}."
# First item
lines.append(f"{header}{self.body[0]};")
# Middle items
for item in self.body[1:-1]:
lines.append(f"{INDENT}{item};")
# Last item
lines.append(f"{INDENT}{self.body[-1]}.")
return "\n".join(lines)
@dataclass
class AgentSpeakFile:
"""
Root element representing the entire generated file.
"""
initial_beliefs: list[Rule] = field(default_factory=list)
inference_rules: list[Rule | PersistentRule] = field(default_factory=list)
plans: list[Plan] = field(default_factory=list)
def __str__(self):
sections = []
if self.initial_beliefs:
sections.append("// --- Initial Beliefs & Facts ---")
sections.extend(str(rule) for rule in self.initial_beliefs)
sections.append("")
if self.inference_rules:
sections.append("// --- Inference Rules ---")
sections.extend(str(rule) for rule in self.inference_rules if isinstance(rule, Rule))
sections.append("")
sections.extend(
str(rule) for rule in self.inference_rules if isinstance(rule, PersistentRule)
)
sections.append("")
if self.plans:
sections.append("// --- Plans ---")
# Separate plans by a newline for readability
sections.extend(str(plan) + "\n" for plan in self.plans)
return "\n".join(sections)

View File

@@ -1,425 +0,0 @@
import asyncio
import time
from functools import singledispatchmethod
from slugify import slugify
from control_backend.agents.bdi import BDICoreAgent
from control_backend.agents.bdi.asl_ast import (
ActionLiteral,
AgentSpeakFile,
BeliefLiteral,
BinaryOp,
Expression,
GoalLiteral,
PersistentRule,
Plan,
Rule,
)
from control_backend.agents.bdi.bdi_program_manager import test_program
from control_backend.schemas.program import (
BasicBelief,
Belief,
ConditionalNorm,
GestureAction,
Goal,
InferredBelief,
KeywordBelief,
LLMAction,
LogicalOperator,
Phase,
Program,
ProgramElement,
SemanticBelief,
SpeechAction,
)
async def do_things():
res = input("Wanna generate")
if res == "y":
program = AgentSpeakGenerator().generate(test_program)
filename = f"{int(time.time())}.asl"
with open(filename, "w") as f:
f.write(program)
else:
# filename = "0test.asl"
filename = "1766062491.asl"
bdi_agent = BDICoreAgent("BDICoreAgent", filename)
flag = asyncio.Event()
await bdi_agent.start()
await flag.wait()
def do_other_things():
print(AgentSpeakGenerator().generate(test_program))
class AgentSpeakGenerator:
"""
Converts a Pydantic Program behavior model into an AgentSpeak(L) AST,
then renders it to a string.
"""
def generate(self, program: Program) -> str:
asl = AgentSpeakFile()
self._generate_startup(program, asl)
for i, phase in enumerate(program.phases):
next_phase = program.phases[i + 1] if i < len(program.phases) - 1 else None
self._generate_phase_flow(phase, next_phase, asl)
self._generate_norms(phase, asl)
self._generate_goals(phase, asl)
self._generate_triggers(phase, asl)
self._generate_fallbacks(program, asl)
return str(asl)
# --- Section: Startup & Phase Management ---
def _generate_startup(self, program: Program, asl: AgentSpeakFile):
if not program.phases:
return
# Initial belief: phase(start).
asl.initial_beliefs.append(Rule(head=BeliefLiteral("phase", ['"start"'])))
# Startup plan: +started : phase(start) <- -phase(start); +phase(first_id).
asl.plans.append(
Plan(
trigger=BeliefLiteral("started"),
context=[BeliefLiteral("phase", ['"start"'])],
body=[
ActionLiteral('-phase("start")'),
ActionLiteral(f'+phase("{program.phases[0].id}")'),
],
)
)
# Initial plans:
asl.plans.append(
Plan(
trigger=GoalLiteral("generate_response_with_goal(Goal)"),
context=[BeliefLiteral("user_said", ["Message"])],
body=[
ActionLiteral("+responded_this_turn"),
ActionLiteral(".findall(Norm, norm(Norm), Norms)"),
ActionLiteral(".reply_with_goal(Message, Norms, Goal)"),
],
)
)
def _generate_phase_flow(self, phase: Phase, next_phase: Phase | None, asl: AgentSpeakFile):
"""Generates the main loop listener and the transition logic for this phase."""
# +user_said(Message) : phase(ID) <- !goal1; !goal2; !transition_phase.
goal_actions = [ActionLiteral("-responded_this_turn")]
goal_actions += [
ActionLiteral(f"!check_{self._slugify_str(keyword)}")
for keyword in self._get_keyword_conditionals(phase)
]
goal_actions += [ActionLiteral(f"!{self._slugify(g)}") for g in phase.goals]
goal_actions.append(ActionLiteral("!transition_phase"))
asl.plans.append(
Plan(
trigger=BeliefLiteral("user_said", ["Message"]),
context=[BeliefLiteral("phase", [f'"{phase.id}"'])],
body=goal_actions,
)
)
# +!transition_phase : phase(ID) <- -phase(ID); +(NEXT_ID).
next_id = str(next_phase.id) if next_phase else "end"
transition_context = [BeliefLiteral("phase", [f'"{phase.id}"'])]
if phase.goals:
transition_context.append(BeliefLiteral(f"achieved_{self._slugify(phase.goals[-1])}"))
asl.plans.append(
Plan(
trigger=GoalLiteral("transition_phase"),
context=transition_context,
body=[
ActionLiteral(f'-phase("{phase.id}")'),
ActionLiteral(f'+phase("{next_id}")'),
ActionLiteral("user_said(Anything)"),
ActionLiteral("-+user_said(Anything)"),
],
)
)
def _get_keyword_conditionals(self, phase: Phase) -> list[str]:
res = []
for belief in self._extract_basic_beliefs_from_phase(phase):
if isinstance(belief, KeywordBelief):
res.append(belief.keyword)
return res
# --- Section: Norms & Beliefs ---
def _generate_norms(self, phase: Phase, asl: AgentSpeakFile):
for norm in phase.norms:
norm_slug = f'"{norm.norm}"'
head = BeliefLiteral("norm", [norm_slug])
# Base context is the phase
phase_lit = BeliefLiteral("phase", [f'"{phase.id}"'])
if isinstance(norm, ConditionalNorm):
self._ensure_belief_inference(norm.condition, asl)
condition_expr = self._belief_to_expr(norm.condition)
body = BinaryOp(phase_lit, "&", condition_expr)
else:
body = phase_lit
asl.inference_rules.append(Rule(head=head, body=body))
def _ensure_belief_inference(self, belief: Belief, asl: AgentSpeakFile):
"""
Recursively adds rules to infer beliefs.
Checks strictly to avoid duplicates if necessary,
though ASL engines often handle redefinition or we can use a set to track processed IDs.
"""
if isinstance(belief, KeywordBelief):
pass
# # Rule: keyword_said("word") :- user_said(M) & .substring("word", M, P) & P >= 0.
# kwd_slug = f'"{belief.keyword}"'
# head = BeliefLiteral("keyword_said", [kwd_slug])
#
# # Avoid duplicates
# if any(str(r.head) == str(head) for r in asl.inference_rules):
# return
#
# body = BinaryOp(
# BeliefLiteral("user_said", ["Message"]),
# "&",
# BinaryOp(f".substring({kwd_slug}, Message, Pos)", "&", "Pos >= 0"),
# )
#
# asl.inference_rules.append(Rule(head=head, body=body))
elif isinstance(belief, InferredBelief):
self._ensure_belief_inference(belief.left, asl)
self._ensure_belief_inference(belief.right, asl)
slug = self._slugify(belief)
head = BeliefLiteral(slug)
if any(str(r.head) == str(head) for r in asl.inference_rules):
return
op_char = "&" if belief.operator == LogicalOperator.AND else "|"
body = BinaryOp(
self._belief_to_expr(belief.left), op_char, self._belief_to_expr(belief.right)
)
asl.inference_rules.append(PersistentRule(head=head, body=body))
def _belief_to_expr(self, belief: Belief) -> Expression:
if isinstance(belief, KeywordBelief):
return BeliefLiteral("keyword_said", [f'"{belief.keyword}"'])
else:
return BeliefLiteral(self._slugify(belief))
# --- Section: Goals ---
def _generate_goals(self, phase: Phase, asl: AgentSpeakFile):
previous_goal: Goal | None = None
for goal in phase.goals:
self._generate_goal_plan_recursive(goal, str(phase.id), previous_goal, asl)
previous_goal = goal
def _generate_goal_plan_recursive(
self,
goal: Goal,
phase_id: str,
previous_goal: Goal | None,
asl: AgentSpeakFile,
responded_needed: bool = True,
can_fail: bool = True,
):
goal_slug = self._slugify(goal)
# phase(ID) & not responded_this_turn & not achieved_goal
context = [
BeliefLiteral("phase", [f'"{phase_id}"']),
]
if responded_needed:
context.append(BeliefLiteral("responded_this_turn", negated=True))
if can_fail:
context.append(BeliefLiteral(f"achieved_{goal_slug}", negated=True))
if previous_goal:
prev_slug = self._slugify(previous_goal)
context.append(BeliefLiteral(f"achieved_{prev_slug}"))
body_actions = []
sub_goals_to_process = []
for step in goal.plan.steps:
if isinstance(step, Goal):
sub_slug = self._slugify(step)
body_actions.append(ActionLiteral(f"!{sub_slug}"))
sub_goals_to_process.append(step)
elif isinstance(step, SpeechAction):
body_actions.append(ActionLiteral(f'.say("{step.text}")'))
elif isinstance(step, GestureAction):
body_actions.append(ActionLiteral(f'.gesture("{step.gesture}")'))
elif isinstance(step, LLMAction):
body_actions.append(ActionLiteral(f'!generate_response_with_goal("{step.goal}")'))
# Mark achievement
if not goal.can_fail:
body_actions.append(ActionLiteral(f"+achieved_{goal_slug}"))
asl.plans.append(Plan(trigger=GoalLiteral(goal_slug), context=context, body=body_actions))
asl.plans.append(
Plan(trigger=GoalLiteral(goal_slug), context=[], body=[ActionLiteral("true")])
)
prev_sub = None
for sub_goal in sub_goals_to_process:
self._generate_goal_plan_recursive(sub_goal, phase_id, prev_sub, asl)
prev_sub = sub_goal
# --- Section: Triggers ---
def _generate_triggers(self, phase: Phase, asl: AgentSpeakFile):
for keyword in self._get_keyword_conditionals(phase):
asl.plans.append(
Plan(
trigger=GoalLiteral(f"check_{self._slugify_str(keyword)}"),
context=[
ActionLiteral(
f'user_said(Message) & .substring("{keyword}", Message, Pos) & Pos >= 0'
)
],
body=[
ActionLiteral(f'+keyword_said("{keyword}")'),
ActionLiteral(f'-keyword_said("{keyword}")'),
],
)
)
asl.plans.append(
Plan(
trigger=GoalLiteral(f"check_{self._slugify_str(keyword)}"),
body=[ActionLiteral("true")],
)
)
for trigger in phase.triggers:
self._ensure_belief_inference(trigger.condition, asl)
trigger_belief_slug = self._belief_to_expr(trigger.condition)
body_actions = []
sub_goals = []
for step in trigger.plan.steps:
if isinstance(step, Goal):
sub_slug = self._slugify(step)
body_actions.append(ActionLiteral(f"!{sub_slug}"))
sub_goals.append(step)
elif isinstance(step, SpeechAction):
body_actions.append(ActionLiteral(f'.say("{step.text}")'))
elif isinstance(step, GestureAction):
body_actions.append(
ActionLiteral(f'.gesture("{step.gesture.type}", "{step.gesture.name}")')
)
elif isinstance(step, LLMAction):
body_actions.append(
ActionLiteral(f'!generate_response_with_goal("{step.goal}")')
)
asl.plans.append(
Plan(
trigger=BeliefLiteral(trigger_belief_slug),
context=[BeliefLiteral("phase", [f'"{phase.id}"'])],
body=body_actions,
)
)
# Recurse for triggered goals
prev_sub = None
for sub_goal in sub_goals:
self._generate_goal_plan_recursive(
sub_goal, str(phase.id), prev_sub, asl, False, False
)
prev_sub = sub_goal
# --- Section: Fallbacks ---
def _generate_fallbacks(self, program: Program, asl: AgentSpeakFile):
asl.plans.append(
Plan(trigger=GoalLiteral("transition_phase"), context=[], body=[ActionLiteral("true")])
)
# --- Helpers ---
@singledispatchmethod
def _slugify(self, element: ProgramElement) -> str:
if element.name:
raise NotImplementedError("Cannot slugify this element.")
return self._slugify_str(element.name)
@_slugify.register
def _(self, goal: Goal) -> str:
if goal.name:
return self._slugify_str(goal.name)
return f"goal_{goal.id.hex}"
@_slugify.register
def _(self, kwb: KeywordBelief) -> str:
return f"keyword_said({kwb.keyword})"
@_slugify.register
def _(self, sb: SemanticBelief) -> str:
return self._slugify_str(sb.description)
@_slugify.register
def _(self, ib: InferredBelief) -> str:
return self._slugify_str(ib.name)
def _slugify_str(self, text: str) -> str:
return slugify(text, separator="_", stopwords=["a", "an", "the", "we", "you", "I"])
def _extract_basic_beliefs_from_program(self, program: Program) -> list[BasicBelief]:
beliefs = []
for phase in program.phases:
beliefs.extend(self._extract_basic_beliefs_from_phase(phase))
return beliefs
def _extract_basic_beliefs_from_phase(self, phase: Phase) -> list[BasicBelief]:
beliefs = []
for norm in phase.norms:
if isinstance(norm, ConditionalNorm):
beliefs += self._extract_basic_beliefs_from_belief(norm.condition)
for trigger in phase.triggers:
beliefs += self._extract_basic_beliefs_from_belief(trigger.condition)
return beliefs
def _extract_basic_beliefs_from_belief(self, belief: Belief) -> list[BasicBelief]:
if isinstance(belief, InferredBelief):
return self._extract_basic_beliefs_from_belief(
belief.left
) + self._extract_basic_beliefs_from_belief(belief.right)
return [belief]
if __name__ == "__main__":
asyncio.run(do_things())
# do_other_things()y

View File

@@ -1,5 +1,6 @@
import asyncio
import copy
import json
import time
from collections.abc import Iterable
@@ -13,7 +14,7 @@ from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.belief_message import BeliefMessage
from control_backend.schemas.llm_prompt_message import LLMPromptMessage
from control_backend.schemas.ri_message import SpeechCommand
from control_backend.schemas.ri_message import GestureCommand, RIEndpoint, SpeechCommand
DELIMITER = ";\n" # TODO: temporary until we support lists in AgentSpeak
@@ -42,13 +43,13 @@ class BDICoreAgent(BaseAgent):
bdi_agent: agentspeak.runtime.Agent
def __init__(self, name: str, asl: str):
def __init__(self, name: str):
super().__init__(name)
self.asl_file = asl
self.env = agentspeak.runtime.Environment()
# Deep copy because we don't actually want to modify the standard actions globally
self.actions = copy.deepcopy(agentspeak.stdlib.actions)
self._wake_bdi_loop = asyncio.Event()
self._bdi_loop_task = None
async def setup(self) -> None:
"""
@@ -65,19 +66,22 @@ class BDICoreAgent(BaseAgent):
await self._load_asl()
# Start the BDI cycle loop
self.add_behavior(self._bdi_loop())
self._bdi_loop_task = self.add_behavior(self._bdi_loop())
self._wake_bdi_loop.set()
self.logger.debug("Setup complete.")
async def _load_asl(self):
async def _load_asl(self, file_name: str | None = None) -> None:
"""
Load and parse the AgentSpeak source file.
"""
file_name = file_name or "src/control_backend/agents/bdi/default_behavior.asl"
try:
with open(self.asl_file) as source:
with open(file_name) as source:
self.bdi_agent = self.env.build_agent(source, self.actions)
self.logger.info(f"Loaded new ASL from {file_name}.")
except FileNotFoundError:
self.logger.warning(f"Could not find the specified ASL file at {self.asl_file}.")
self.logger.warning(f"Could not find the specified ASL file at {file_name}.")
self.bdi_agent = agentspeak.runtime.Agent(self.env, self.name)
async def _bdi_loop(self):
@@ -97,14 +101,12 @@ class BDICoreAgent(BaseAgent):
maybe_more_work = True
while maybe_more_work:
maybe_more_work = False
self.logger.debug("Stepping BDI.")
if self.bdi_agent.step():
maybe_more_work = True
if not maybe_more_work:
deadline = self.bdi_agent.shortest_deadline()
if deadline:
self.logger.debug("Sleeping until %s", deadline)
await asyncio.sleep(deadline - time.time())
maybe_more_work = True
else:
@@ -116,6 +118,7 @@ class BDICoreAgent(BaseAgent):
Handle incoming messages.
- **Beliefs**: Updates the internal belief base.
- **Program**: Updates the internal agentspeak file to match the current program.
- **LLM Responses**: Forwards the generated text to the Robot Speech Agent (actuation).
:param msg: The received internal message.
@@ -130,6 +133,13 @@ class BDICoreAgent(BaseAgent):
self.logger.exception("Error processing belief.")
return
# New agentspeak file
if msg.thread == "new_program":
if self._bdi_loop_task:
self._bdi_loop_task.cancel()
await self._load_asl(msg.body)
self.add_behavior(self._bdi_loop())
# The message was not a belief, handle special cases based on sender
match msg.sender:
case settings.agent_settings.llm_name:
@@ -144,6 +154,20 @@ class BDICoreAgent(BaseAgent):
body=cmd.model_dump_json(),
)
await self.send(out_msg)
case settings.agent_settings.user_interrupt_name:
self.logger.debug("Received user interruption: %s", msg)
match msg.thread:
case "force_phase_transition":
self._set_goal("transition_phase")
case "force_trigger":
self._force_trigger(msg.body)
case "force_norm":
self._force_norm(msg.body)
case "force_next_phase":
self._force_next_phase()
case _:
self.logger.warning("Received unknow user interruption: %s", msg)
def _apply_belief_changes(self, belief_changes: BeliefMessage):
"""
@@ -190,14 +214,33 @@ class BDICoreAgent(BaseAgent):
agentspeak.runtime.Intention(),
)
# Check for transitions
self.bdi_agent.call(
agentspeak.Trigger.addition,
agentspeak.GoalType.achievement,
agentspeak.Literal("transition_phase"),
agentspeak.runtime.Intention(),
)
# Check triggers
self.bdi_agent.call(
agentspeak.Trigger.addition,
agentspeak.GoalType.achievement,
agentspeak.Literal("check_triggers"),
agentspeak.runtime.Intention(),
)
self._wake_bdi_loop.set()
self.logger.debug(f"Added belief {self.format_belief_string(name, args)}")
def _remove_belief(self, name: str, args: Iterable[str]):
def _remove_belief(self, name: str, args: Iterable[str] | None):
"""
Removes a specific belief (with arguments), if it exists.
"""
if args is None:
term = agentspeak.Literal(name)
else:
new_args = (agentspeak.Literal(arg) for arg in args)
term = agentspeak.Literal(name, new_args)
@@ -239,6 +282,43 @@ class BDICoreAgent(BaseAgent):
self.logger.debug(f"Removed {removed_count} beliefs.")
def _set_goal(self, name: str, args: Iterable[str] | None = None):
args = args or []
if args:
merged_args = DELIMITER.join(arg for arg in args)
new_args = (agentspeak.Literal(merged_args),)
term = agentspeak.Literal(name, new_args)
else:
term = agentspeak.Literal(name)
self.bdi_agent.call(
agentspeak.Trigger.addition,
agentspeak.GoalType.achievement,
term,
agentspeak.runtime.Intention(),
)
self._wake_bdi_loop.set()
self.logger.debug(f"Set goal !{self.format_belief_string(name, args)}.")
def _force_trigger(self, name: str):
self._set_goal(name)
self.logger.info("Manually forced trigger %s.", name)
# TODO: make this compatible for critical norms
def _force_norm(self, name: str):
self._add_belief(f"force_{name}")
self.logger.info("Manually forced norm %s.", name)
def _force_next_phase(self):
self._set_goal("force_transition_phase")
self.logger.info("Manually forced phase transition.")
def _add_custom_actions(self) -> None:
"""
Add any custom actions here. Inside `@self.actions.add()`, the first argument is
@@ -246,20 +326,15 @@ class BDICoreAgent(BaseAgent):
the function expects (which will be located in `term.args`).
"""
@self.actions.add(".reply", 3)
def _reply(agent: "BDICoreAgent", term, intention):
@self.actions.add(".reply", 2)
def _reply(agent, term, intention):
"""
Let the LLM generate a response to a user's utterance with the current norms and goals.
"""
message_text = agentspeak.grounded(term.args[0], intention.scope)
norms = agentspeak.grounded(term.args[1], intention.scope)
goals = agentspeak.grounded(term.args[2], intention.scope)
self.logger.debug("Norms: %s", norms)
self.logger.debug("Goals: %s", goals)
self.logger.debug("User text: %s", message_text)
asyncio.create_task(self._send_to_llm(str(message_text), str(norms), str(goals)))
self.add_behavior(self._send_to_llm(str(message_text), str(norms), ""))
yield
@self.actions.add(".reply_with_goal", 3)
@@ -271,18 +346,24 @@ class BDICoreAgent(BaseAgent):
message_text = agentspeak.grounded(term.args[0], intention.scope)
norms = agentspeak.grounded(term.args[1], intention.scope)
goal = agentspeak.grounded(term.args[2], intention.scope)
self.add_behavior(self._send_to_llm(str(message_text), str(norms), str(goal)))
yield
self.logger.debug(
'"reply_with_goal" action called with message=%s, norms=%s, goal=%s',
message_text,
norms,
goal,
@self.actions.add(".notify_norms", 1)
def _notify_norms(agent, term, intention):
norms = agentspeak.grounded(term.args[0], intention.scope)
norm_update_message = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
thread="active_norms_update",
body=str(norms),
)
# asyncio.create_task(self._send_to_llm(str(message_text), norms, str(goal)))
self.add_behavior(self.send(norm_update_message, should_log=False))
yield
@self.actions.add(".say", 1)
def _say(agent: "BDICoreAgent", term, intention):
def _say(agent, term, intention):
"""
Make the robot say the given text instantly.
"""
@@ -290,17 +371,27 @@ class BDICoreAgent(BaseAgent):
self.logger.debug('"say" action called with text=%s', message_text)
# speech_command = SpeechCommand(data=message_text)
# speech_message = InternalMessage(
# to=settings.agent_settings.robot_speech_name,
# sender=settings.agent_settings.bdi_core_name,
# body=speech_command.model_dump_json(),
# )
# asyncio.create_task(agent.send(speech_message))
speech_command = SpeechCommand(data=message_text)
speech_message = InternalMessage(
to=settings.agent_settings.robot_speech_name,
sender=settings.agent_settings.bdi_core_name,
body=speech_command.model_dump_json(),
)
self.add_behavior(self.send(speech_message))
chat_history_message = InternalMessage(
to=settings.agent_settings.llm_name,
thread="assistant_message",
body=str(message_text),
)
self.add_behavior(self.send(chat_history_message))
yield
@self.actions.add(".gesture", 2)
def _gesture(agent: "BDICoreAgent", term, intention):
def _gesture(agent, term, intention):
"""
Make the robot perform the given gesture instantly.
"""
@@ -313,15 +404,118 @@ class BDICoreAgent(BaseAgent):
gesture_name,
)
# gesture = Gesture(type=gesture_type, name=gesture_name)
# gesture_message = InternalMessage(
# to=settings.agent_settings.robot_gesture_name,
# sender=settings.agent_settings.bdi_core_name,
# body=gesture.model_dump_json(),
# )
# asyncio.create_task(agent.send(gesture_message))
if str(gesture_type) == "single":
endpoint = RIEndpoint.GESTURE_SINGLE
elif str(gesture_type) == "tag":
endpoint = RIEndpoint.GESTURE_TAG
else:
self.logger.warning("Gesture type %s could not be resolved.", gesture_type)
endpoint = RIEndpoint.GESTURE_SINGLE
gesture_command = GestureCommand(endpoint=endpoint, data=gesture_name)
gesture_message = InternalMessage(
to=settings.agent_settings.robot_gesture_name,
sender=settings.agent_settings.bdi_core_name,
body=gesture_command.model_dump_json(),
)
self.add_behavior(self.send(gesture_message))
yield
@self.actions.add(".notify_user_said", 1)
def _notify_user_said(agent, term, intention):
user_said = agentspeak.grounded(term.args[0], intention.scope)
msg = InternalMessage(
to=settings.agent_settings.llm_name, thread="user_message", body=str(user_said)
)
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_trigger_start", 1)
def _notify_trigger_start(agent, term, intention):
"""
Notify the UI about the trigger we just started doing.
"""
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
self.logger.debug("Started trigger %s", trigger_name)
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
sender=self.name,
thread="trigger_start",
body=str(trigger_name),
)
# TODO: check with Pim
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_trigger_end", 1)
def _notify_trigger_end(agent, term, intention):
"""
Notify the UI about the trigger we just started doing.
"""
trigger_name = agentspeak.grounded(term.args[0], intention.scope)
self.logger.debug("Finished trigger %s", trigger_name)
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
sender=self.name,
thread="trigger_end",
body=str(trigger_name),
)
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_goal_start", 1)
def _notify_goal_start(agent, term, intention):
"""
Notify the UI about the goal we just started chasing.
"""
goal_name = agentspeak.grounded(term.args[0], intention.scope)
self.logger.debug("Started chasing goal %s", goal_name)
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
sender=self.name,
thread="goal_start",
body=str(goal_name),
)
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_transition_phase", 2)
def _notify_transition_phase(agent, term, intention):
"""
Notify the BDI program manager about a phase transition.
"""
old = agentspeak.grounded(term.args[0], intention.scope)
new = agentspeak.grounded(term.args[1], intention.scope)
msg = InternalMessage(
to=settings.agent_settings.bdi_program_manager_name,
thread="transition_phase",
body=json.dumps({"old": str(old), "new": str(new)}),
)
self.add_behavior(self.send(msg))
yield
@self.actions.add(".notify_ui", 0)
def _notify_ui(agent, term, intention):
pass
async def _send_to_llm(self, text: str, norms: str, goals: str):
"""
Sends a text query to the LLM agent asynchronously.
@@ -331,13 +525,14 @@ class BDICoreAgent(BaseAgent):
to=settings.agent_settings.llm_name,
sender=self.name,
body=prompt.model_dump_json(),
thread="prompt_message",
)
await self.send(msg)
self.logger.info("Message sent to LLM agent: %s", text)
@staticmethod
def format_belief_string(name: str, args: Iterable[str] = []):
def format_belief_string(name: str, args: Iterable[str] | None = []):
"""
Given a belief's name and its args, return a string of the form "name(*args)"
"""
return f"{name}{'(' if args else ''}{','.join(args)}{')' if args else ''}"
return f"{name}{'(' if args else ''}{','.join(args or [])}{')' if args else ''}"

View File

@@ -1,599 +1,24 @@
import uuid
from collections.abc import Iterable
import asyncio
import json
import zmq
from pydantic import ValidationError
from slugify import slugify
from zmq.asyncio import Context
from control_backend.agents import BaseAgent
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
from control_backend.core.config import settings
from control_backend.schemas.belief_list import BeliefList, GoalList
from control_backend.schemas.internal_message import InternalMessage
from control_backend.schemas.program import (
Action,
BasicBelief,
BasicNorm,
Belief,
ConditionalNorm,
GestureAction,
Goal,
InferredBelief,
KeywordBelief,
LLMAction,
LogicalOperator,
Phase,
Plan,
Program,
ProgramElement,
SemanticBelief,
SpeechAction,
Trigger,
)
test_program = Program(
phases=[
Phase(
norms=[
BasicNorm(norm="Talk like a pirate", id=uuid.uuid4()),
ConditionalNorm(
condition=InferredBelief(
left=KeywordBelief(keyword="Arr", id=uuid.uuid4()),
right=SemanticBelief(
description="testing", name="semantic belief", id=uuid.uuid4()
),
operator=LogicalOperator.OR,
name="Talking to a pirate",
id=uuid.uuid4(),
),
norm="Use nautical terms",
id=uuid.uuid4(),
),
ConditionalNorm(
condition=SemanticBelief(
description="We are talking to a child",
name="talking to child",
id=uuid.uuid4(),
),
norm="Do not use cuss words",
id=uuid.uuid4(),
),
],
triggers=[
Trigger(
condition=InferredBelief(
left=KeywordBelief(keyword="key", id=uuid.uuid4()),
right=InferredBelief(
left=KeywordBelief(keyword="key2", id=uuid.uuid4()),
right=SemanticBelief(
description="Decode this", name="semantic belief 2", id=uuid.uuid4()
),
operator=LogicalOperator.OR,
name="test trigger inferred inner",
id=uuid.uuid4(),
),
operator=LogicalOperator.OR,
name="test trigger inferred outer",
id=uuid.uuid4(),
),
plan=Plan(
steps=[
SpeechAction(text="Testing trigger", id=uuid.uuid4()),
Goal(
name="Testing trigger",
plan=Plan(
steps=[LLMAction(goal="Do something", id=uuid.uuid4())],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
)
],
goals=[
Goal(
name="Determine user age",
plan=Plan(
steps=[LLMAction(goal="Determine the age of the user.", id=uuid.uuid4())],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
Goal(
name="Find the user's name",
plan=Plan(
steps=[
Goal(
name="Greet the user",
plan=Plan(
steps=[LLMAction(goal="Greet the user.", id=uuid.uuid4())],
id=uuid.uuid4(),
),
can_fail=False,
id=uuid.uuid4(),
),
Goal(
name="Ask for name",
plan=Plan(
steps=[
LLMAction(goal="Obtain the user's name.", id=uuid.uuid4())
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
Goal(
name="Tell a joke",
plan=Plan(
steps=[LLMAction(goal="Tell a joke.", id=uuid.uuid4())], id=uuid.uuid4()
),
id=uuid.uuid4(),
),
],
id=uuid.uuid4(),
),
Phase(
id=uuid.uuid4(),
norms=[
BasicNorm(norm="Use very gentle speech.", id=uuid.uuid4()),
ConditionalNorm(
condition=SemanticBelief(
description="We are talking to a child",
name="talking to child",
id=uuid.uuid4(),
),
norm="Do not use cuss words",
id=uuid.uuid4(),
),
],
triggers=[
Trigger(
condition=InferredBelief(
left=KeywordBelief(keyword="help", id=uuid.uuid4()),
right=SemanticBelief(
description="User is stuck", name="stuck", id=uuid.uuid4()
),
operator=LogicalOperator.OR,
name="help_or_stuck",
id=uuid.uuid4(),
),
plan=Plan(
steps=[
Goal(
name="Unblock user",
plan=Plan(
steps=[
LLMAction(
goal="Provide a step-by-step path to "
"resolve the user's issue.",
id=uuid.uuid4(),
)
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
],
goals=[
Goal(
name="Clarify intent",
plan=Plan(
steps=[
LLMAction(
goal="Ask 1-2 targeted questions to clarify the "
"user's intent, then proceed.",
id=uuid.uuid4(),
)
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
Goal(
name="Provide solution",
plan=Plan(
steps=[
LLMAction(
goal="Deliver a solution to complete the user's goal.",
id=uuid.uuid4(),
)
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
Goal(
name="Summarize next steps",
plan=Plan(
steps=[
LLMAction(
goal="Summarize what the user should do next.", id=uuid.uuid4()
)
],
id=uuid.uuid4(),
),
id=uuid.uuid4(),
),
],
),
]
)
def do_things():
print(AgentSpeakGenerator().generate(test_program))
class AgentSpeakGenerator:
"""
Converts Pydantic representation of behavior programs into AgentSpeak(L) code string.
"""
arrow_prefix = f"{' ' * 2}<-{' ' * 2}"
colon_prefix = f"{' ' * 2}:{' ' * 3}"
indent_prefix = " " * 6
def generate(self, program: Program) -> str:
lines = []
lines.append("")
lines += self._generate_initial_beliefs(program)
lines += self._generate_basic_flow(program)
lines += self._generate_phase_transitions(program)
lines += self._generate_norms(program)
lines += self._generate_belief_inference(program)
lines += self._generate_goals(program)
lines += self._generate_triggers(program)
return "\n".join(lines)
def _generate_initial_beliefs(self, program: Program) -> Iterable[str]:
yield "// --- Initial beliefs and agent startup ---"
yield "phase(start)."
yield ""
yield "+started"
yield f"{self.colon_prefix}phase(start)"
yield f"{self.arrow_prefix}phase({program.phases[0].id if program.phases else 'end'})."
yield from ["", ""]
def _generate_basic_flow(self, program: Program) -> Iterable[str]:
yield "// --- Basic flow ---"
for phase in program.phases:
yield from self._generate_basic_flow_per_phase(phase)
yield from ["", ""]
def _generate_basic_flow_per_phase(self, phase: Phase) -> Iterable[str]:
yield "+user_said(Message)"
yield f"{self.colon_prefix}phase({phase.id})"
goals = phase.goals
if goals:
yield f"{self.arrow_prefix}{self._slugify(goals[0], include_prefix=True)}"
for goal in goals[1:]:
yield f"{self.indent_prefix}{self._slugify(goal, include_prefix=True)}"
yield f"{self.indent_prefix if goals else self.arrow_prefix}!transition_phase."
def _generate_phase_transitions(self, program: Program) -> Iterable[str]:
yield "// --- Phase transitions ---"
if len(program.phases) == 0:
yield from ["", ""]
return
# TODO: remove outdated things
for i in range(-1, len(program.phases)):
predecessor = program.phases[i] if i >= 0 else None
successor = program.phases[i + 1] if i < len(program.phases) - 1 else None
yield from self._generate_phase_transition(predecessor, successor)
yield from self._generate_phase_transition(None, None) # to avoid failing plan
yield from ["", ""]
def _generate_phase_transition(
self, phase: Phase | None = None, next_phase: Phase | None = None
) -> Iterable[str]:
yield "+!transition_phase"
if phase is None and next_phase is None: # base case true to avoid failing plan
yield f"{self.arrow_prefix}true."
return
yield f"{self.colon_prefix}phase({phase.id if phase else 'start'})"
yield f"{self.arrow_prefix}-+phase({next_phase.id if next_phase else 'end'})."
def _generate_norms(self, program: Program) -> Iterable[str]:
yield "// --- Norms ---"
for phase in program.phases:
for norm in phase.norms:
if type(norm) is BasicNorm:
yield f"{self._slugify(norm)} :- phase({phase.id})."
if type(norm) is ConditionalNorm:
yield (
f"{self._slugify(norm)} :- phase({phase.id}) & "
f"{self._slugify(norm.condition)}."
)
yield from ["", ""]
def _generate_belief_inference(self, program: Program) -> Iterable[str]:
yield "// --- Belief inference rules ---"
for phase in program.phases:
for norm in phase.norms:
if not isinstance(norm, ConditionalNorm):
continue
yield from self._belief_inference_recursive(norm.condition)
for trigger in phase.triggers:
yield from self._belief_inference_recursive(trigger.condition)
yield from ["", ""]
def _belief_inference_recursive(self, belief: Belief) -> Iterable[str]:
if type(belief) is KeywordBelief:
yield (
f"{self._slugify(belief)} :- user_said(Message) & "
f'.substring(Message, "{belief.keyword}", Pos) & Pos >= 0.'
)
if type(belief) is InferredBelief:
yield (
f"{self._slugify(belief)} :- {self._slugify(belief.left)} "
f"{'&' if belief.operator == LogicalOperator.AND else '|'} "
f"{self._slugify(belief.right)}."
)
yield from self._belief_inference_recursive(belief.left)
yield from self._belief_inference_recursive(belief.right)
def _generate_goals(self, program: Program) -> Iterable[str]:
yield "// --- Goals ---"
for phase in program.phases:
previous_goal: Goal | None = None
for goal in phase.goals:
yield from self._generate_goal_plan_recursive(goal, phase, previous_goal)
previous_goal = goal
yield from ["", ""]
def _generate_goal_plan_recursive(
self, goal: Goal, phase: Phase, previous_goal: Goal | None = None
) -> Iterable[str]:
yield f"+{self._slugify(goal, include_prefix=True)}"
# Context
yield f"{self.colon_prefix}phase({phase.id}) &"
yield f"{self.indent_prefix}not responded_this_turn &"
yield f"{self.indent_prefix}not achieved_{self._slugify(goal)} &"
if previous_goal:
yield f"{self.indent_prefix}achieved_{self._slugify(previous_goal)}"
else:
yield f"{self.indent_prefix}true"
extra_goals_to_generate = []
steps = goal.plan.steps
if len(steps) == 0:
yield f"{self.arrow_prefix}true."
return
first_step = steps[0]
yield (
f"{self.arrow_prefix}{self._slugify(first_step, include_prefix=True)}"
f"{'.' if len(steps) == 1 and goal.can_fail else ';'}"
)
if isinstance(first_step, Goal):
extra_goals_to_generate.append(first_step)
for step in steps[1:-1]:
yield f"{self.indent_prefix}{self._slugify(step, include_prefix=True)};"
if isinstance(step, Goal):
extra_goals_to_generate.append(step)
if len(steps) > 1:
last_step = steps[-1]
yield (
f"{self.indent_prefix}{self._slugify(last_step, include_prefix=True)}"
f"{'.' if goal.can_fail else ';'}"
)
if isinstance(last_step, Goal):
extra_goals_to_generate.append(last_step)
if not goal.can_fail:
yield f"{self.indent_prefix}+achieved_{self._slugify(goal)}."
yield f"+{self._slugify(goal, include_prefix=True)}"
yield f"{self.arrow_prefix}true."
yield ""
extra_previous_goal: Goal | None = None
for extra_goal in extra_goals_to_generate:
yield from self._generate_goal_plan_recursive(extra_goal, phase, extra_previous_goal)
extra_previous_goal = extra_goal
def _generate_triggers(self, program: Program) -> Iterable[str]:
yield "// --- Triggers ---"
for phase in program.phases:
for trigger in phase.triggers:
yield from self._generate_trigger_plan(trigger, phase)
yield from ["", ""]
def _generate_trigger_plan(self, trigger: Trigger, phase: Phase) -> Iterable[str]:
belief_name = self._slugify(trigger.condition)
yield f"+{belief_name}"
yield f"{self.colon_prefix}phase({phase.id})"
extra_goals_to_generate = []
steps = trigger.plan.steps
if len(steps) == 0:
yield f"{self.arrow_prefix}true."
return
first_step = steps[0]
yield (
f"{self.arrow_prefix}{self._slugify(first_step, include_prefix=True)}"
f"{'.' if len(steps) == 1 else ';'}"
)
if isinstance(first_step, Goal):
extra_goals_to_generate.append(first_step)
for step in steps[1:-1]:
yield f"{self.indent_prefix}{self._slugify(step, include_prefix=True)};"
if isinstance(step, Goal):
extra_goals_to_generate.append(step)
if len(steps) > 1:
last_step = steps[-1]
yield f"{self.indent_prefix}{self._slugify(last_step, include_prefix=True)}."
if isinstance(last_step, Goal):
extra_goals_to_generate.append(last_step)
yield ""
extra_previous_goal: Goal | None = None
for extra_goal in extra_goals_to_generate:
yield from self._generate_trigger_plan_recursive(extra_goal, phase, extra_previous_goal)
extra_previous_goal = extra_goal
def _generate_trigger_plan_recursive(
self, goal: Goal, phase: Phase, previous_goal: Goal | None = None
) -> Iterable[str]:
yield f"+{self._slugify(goal, include_prefix=True)}"
extra_goals_to_generate = []
steps = goal.plan.steps
if len(steps) == 0:
yield f"{self.arrow_prefix}true."
return
first_step = steps[0]
yield (
f"{self.arrow_prefix}{self._slugify(first_step, include_prefix=True)}"
f"{'.' if len(steps) == 1 and goal.can_fail else ';'}"
)
if isinstance(first_step, Goal):
extra_goals_to_generate.append(first_step)
for step in steps[1:-1]:
yield f"{self.indent_prefix}{self._slugify(step, include_prefix=True)};"
if isinstance(step, Goal):
extra_goals_to_generate.append(step)
if len(steps) > 1:
last_step = steps[-1]
yield (
f"{self.indent_prefix}{self._slugify(last_step, include_prefix=True)}"
f"{'.' if goal.can_fail else ';'}"
)
if isinstance(last_step, Goal):
extra_goals_to_generate.append(last_step)
if not goal.can_fail:
yield f"{self.indent_prefix}+achieved_{self._slugify(goal)}."
yield f"+{self._slugify(goal, include_prefix=True)}"
yield f"{self.arrow_prefix}true."
yield ""
extra_previous_goal: Goal | None = None
for extra_goal in extra_goals_to_generate:
yield from self._generate_goal_plan_recursive(extra_goal, phase, extra_previous_goal)
extra_previous_goal = extra_goal
def _slugify(self, element: ProgramElement, include_prefix: bool = False) -> str:
def base_slugify_call(text: str):
return slugify(text, separator="_", stopwords=["a", "the"])
if type(element) is KeywordBelief:
return f'keyword_said("{element.keyword}")'
if type(element) is SemanticBelief:
name = element.name
return f"semantic_{base_slugify_call(name if name else element.description)}"
if isinstance(element, BasicNorm):
return f'norm("{element.norm}")'
if isinstance(element, Goal):
return f"{'!' if include_prefix else ''}{base_slugify_call(element.name)}"
if isinstance(element, SpeechAction):
return f'.say("{element.text}")'
if isinstance(element, GestureAction):
return f'.gesture("{element.gesture}")'
if isinstance(element, LLMAction):
return f'!generate_response_with_goal("{element.goal}")'
if isinstance(element, Action.__value__):
raise NotImplementedError(
"Have not implemented an ASL string representation for this action."
)
if element.name == "":
raise ValueError("Name must be initialized for this type of ProgramElement.")
return base_slugify_call(element.name)
def _extract_basic_beliefs_from_program(self, program: Program) -> list[BasicBelief]:
beliefs = []
for phase in program.phases:
for norm in phase.norms:
if isinstance(norm, ConditionalNorm):
beliefs += self._extract_basic_beliefs_from_belief(norm.condition)
for trigger in phase.triggers:
beliefs += self._extract_basic_beliefs_from_belief(trigger.condition)
return beliefs
def _extract_basic_beliefs_from_belief(self, belief: Belief) -> list[BasicBelief]:
if isinstance(belief, InferredBelief):
return self._extract_basic_beliefs_from_belief(
belief.left
) + self._extract_basic_beliefs_from_belief(belief.right)
return [belief]
class BDIProgramManager(BaseAgent):
"""
@@ -607,44 +32,214 @@ class BDIProgramManager(BaseAgent):
:ivar sub_socket: The ZMQ SUB socket used to receive program updates.
"""
_program: Program
_phase: Phase | None
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.sub_socket = None
# async def _send_to_bdi(self, program: Program):
# """
# Convert a received program into BDI beliefs and send them to the BDI Core Agent.
#
# Currently, it takes the **first phase** of the program and extracts:
# - **Norms**: Constraints or rules the agent must follow.
# - **Goals**: Objectives the agent must achieve.
#
# These are sent as a ``BeliefMessage`` with ``replace=True``, meaning they will
# overwrite any existing norms/goals of the same name in the BDI agent.
#
# :param program: The program object received from the API.
# """
# first_phase = program.phases[0]
# norms_belief = Belief(
# name="norms",
# arguments=[norm.norm for norm in first_phase.norms],
# replace=True,
# )
# goals_belief = Belief(
# name="goals",
# arguments=[goal.description for goal in first_phase.goals],
# replace=True,
# )
# program_beliefs = BeliefMessage(beliefs=[norms_belief, goals_belief])
#
# message = InternalMessage(
# to=settings.agent_settings.bdi_core_name,
# sender=self.name,
# body=program_beliefs.model_dump_json(),
# thread="beliefs",
# )
# await self.send(message)
# self.logger.debug("Sent new norms and goals to the BDI agent.")
def _initialize_internal_state(self, program: Program):
self._program = program
self._phase = program.phases[0] # start in first phase
self._goal_mapping: dict[str, Goal] = {}
for phase in program.phases:
for goal in phase.goals:
self._populate_goal_mapping_with_goal(goal)
def _populate_goal_mapping_with_goal(self, goal: Goal):
self._goal_mapping[str(goal.id)] = goal
for step in goal.plan.steps:
if isinstance(step, Goal):
self._populate_goal_mapping_with_goal(step)
async def _create_agentspeak_and_send_to_bdi(self, program: Program):
"""
Convert a received program into an AgentSpeak file and send it to the BDI Core Agent.
:param program: The program object received from the API.
"""
asg = AgentSpeakGenerator()
asl_str = asg.generate(program)
file_name = "src/control_backend/agents/bdi/agentspeak.asl"
with open(file_name, "w") as f:
f.write(asl_str)
msg = InternalMessage(
sender=self.name,
to=settings.agent_settings.bdi_core_name,
body=file_name,
thread="new_program",
)
await self.send(msg)
async def handle_message(self, msg: InternalMessage):
match msg.thread:
case "transition_phase":
phases = json.loads(msg.body)
await self._transition_phase(phases["old"], phases["new"])
case "achieve_goal":
goal_id = msg.body
await self._send_achieved_goal_to_semantic_belief_extractor(goal_id)
async def _transition_phase(self, old: str, new: str):
if old != str(self._phase.id):
self.logger.warning(
f"Phase transition desync detected! ASL requested move from '{old}', "
f"but Python is currently in '{self._phase.id}'. Request ignored."
)
return
if new == "end":
self._phase = None
# Notify user interaction agent
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
thread="transition_phase",
body="end",
)
self.logger.info("Transitioned to end phase, notifying UserInterruptAgent.")
self.add_behavior(self.send(msg))
return
for phase in self._program.phases:
if str(phase.id) == new:
self._phase = phase
await self._send_beliefs_to_semantic_belief_extractor()
await self._send_goals_to_semantic_belief_extractor()
# Notify user interaction agent
msg = InternalMessage(
to=settings.agent_settings.user_interrupt_name,
thread="transition_phase",
body=str(self._phase.id),
)
self.logger.info(f"Transitioned to phase {new}, notifying UserInterruptAgent.")
self.add_behavior(self.send(msg))
def _extract_current_beliefs(self) -> list[Belief]:
beliefs: list[Belief] = []
for norm in self._phase.norms:
if isinstance(norm, ConditionalNorm):
beliefs += self._extract_beliefs_from_belief(norm.condition)
for trigger in self._phase.triggers:
beliefs += self._extract_beliefs_from_belief(trigger.condition)
return beliefs
@staticmethod
def _extract_beliefs_from_belief(belief: Belief) -> list[Belief]:
if isinstance(belief, InferredBelief):
return BDIProgramManager._extract_beliefs_from_belief(
belief.left
) + BDIProgramManager._extract_beliefs_from_belief(belief.right)
return [belief]
async def _send_beliefs_to_semantic_belief_extractor(self):
"""
Extract beliefs from the program and send them to the Semantic Belief Extractor Agent.
"""
beliefs = BeliefList(beliefs=self._extract_current_beliefs())
message = InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
sender=self.name,
body=beliefs.model_dump_json(),
thread="beliefs",
)
await self.send(message)
@staticmethod
def _extract_goals_from_goal(goal: Goal) -> list[Goal]:
"""
Extract all goals from a given goal, that is: the goal itself and any subgoals.
:return: All goals within and including the given goal.
"""
goals: list[Goal] = [goal]
for plan in goal.plan:
if isinstance(plan, Goal):
goals.extend(BDIProgramManager._extract_goals_from_goal(plan))
return goals
def _extract_current_goals(self) -> list[Goal]:
"""
Extract all goals from the program, including subgoals.
:return: A list of Goal objects.
"""
goals: list[Goal] = []
for goal in self._phase.goals:
goals.extend(self._extract_goals_from_goal(goal))
return goals
async def _send_goals_to_semantic_belief_extractor(self):
"""
Extract goals for the current phase and send them to the Semantic Belief Extractor Agent.
"""
goals = GoalList(goals=self._extract_current_goals())
message = InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
sender=self.name,
body=goals.model_dump_json(),
thread="goals",
)
await self.send(message)
async def _send_achieved_goal_to_semantic_belief_extractor(self, achieved_goal_id: str):
"""
Inform the semantic belief extractor when a goal is marked achieved.
:param achieved_goal_id: The id of the achieved goal.
"""
goal = self._goal_mapping.get(achieved_goal_id)
if goal is None:
self.logger.debug(f"Goal with ID {achieved_goal_id} marked achieved but was not found.")
return
goals = self._extract_goals_from_goal(goal)
message = InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
body=GoalList(goals=goals).model_dump_json(),
thread="achieved_goals",
)
await self.send(message)
async def _send_clear_llm_history(self):
"""
Clear the LLM Agent's conversation history.
Sends an empty history to the LLM Agent to reset its state.
"""
message = InternalMessage(
to=settings.agent_settings.llm_name,
body="clear_history",
)
await self.send(message)
self.logger.debug("Sent message to LLM agent to clear history.")
extractor_msg = InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
thread="conversation_history",
body="reset",
)
await self.send(extractor_msg)
self.logger.debug("Sent message to extractor agent to clear history.")
async def _receive_programs(self):
"""
@@ -652,6 +247,7 @@ class BDIProgramManager(BaseAgent):
It listens to the ``program`` topic on the internal ZMQ SUB socket.
When a program is received, it is validated and forwarded to BDI via :meth:`_send_to_bdi`.
Additionally, the LLM history is cleared via :meth:`_send_clear_llm_history`.
"""
while True:
topic, body = await self.sub_socket.recv_multipart()
@@ -659,18 +255,43 @@ class BDIProgramManager(BaseAgent):
try:
program = Program.model_validate_json(body)
except ValidationError:
self.logger.exception("Received an invalid program.")
self.logger.warning("Received an invalid program.")
continue
await self._send_to_bdi(program)
self._initialize_internal_state(program)
await self._send_program_to_user_interrupt(program)
await self._send_clear_llm_history()
await asyncio.gather(
self._create_agentspeak_and_send_to_bdi(program),
self._send_beliefs_to_semantic_belief_extractor(),
self._send_goals_to_semantic_belief_extractor(),
)
async def _send_program_to_user_interrupt(self, program: Program):
"""
Send the received program to the User Interrupt Agent.
:param program: The program object received from the API.
"""
msg = InternalMessage(
sender=self.name,
to=settings.agent_settings.user_interrupt_name,
body=program.model_dump_json(),
thread="new_program",
)
await self.send(msg)
async def setup(self):
"""
Initialize the agent.
Connects the internal ZMQ SUB socket and subscribes to the 'program' topic.
Starts the background behavior to receive programs.
Starts the background behavior to receive programs. Initializes a default program.
"""
await self._create_agentspeak_and_send_to_bdi(Program(phases=[]))
context = Context.instance()
self.sub_socket = context.socket(zmq.SUB)
@@ -678,7 +299,3 @@ class BDIProgramManager(BaseAgent):
self.sub_socket.subscribe("program")
self.add_behavior(self._receive_programs())
if __name__ == "__main__":
do_things()

View File

@@ -0,0 +1,34 @@
phase("end").
keyword_said(Keyword) :- (user_said(Message) & .substring(Keyword, Message, Pos)) & (Pos >= 0).
+!reply_with_goal(Goal)
: user_said(Message)
<- +responded_this_turn;
.findall(Norm, norm(Norm), Norms);
.reply_with_goal(Message, Norms, Goal).
+!say(Text)
<- +responded_this_turn;
.say(Text).
+!reply
: user_said(Message)
<- +responded_this_turn;
.findall(Norm, norm(Norm), Norms);
.reply(Message, Norms).
+!notify_cycle
<- .notify_ui;
.wait(1).
+user_said(Message)
: phase("end")
<- .notify_user_said(Message);
!reply.
+!check_triggers
<- true.
+!transition_phase
<- true.

View File

@@ -1,6 +0,0 @@
norms("").
goals("").
+user_said(Message) : norms(Norms) & goals(Goals) <-
-user_said(Message);
.reply(Message, Norms, Goals).

View File

@@ -2,23 +2,46 @@ import asyncio
import json
import httpx
from pydantic import ValidationError
from slugify import slugify
from pydantic import BaseModel, ValidationError
from control_backend.agents.base import BaseAgent
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.belief_list import BeliefList, GoalList
from control_backend.schemas.belief_message import Belief as InternalBelief
from control_backend.schemas.belief_message import BeliefMessage
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
from control_backend.schemas.program import (
Belief,
ConditionalNorm,
InferredBelief,
Program,
SemanticBelief,
from control_backend.schemas.program import BaseGoal, SemanticBelief
type JSONLike = None | bool | int | float | str | list["JSONLike"] | dict[str, "JSONLike"]
class BeliefState(BaseModel):
true: set[InternalBelief] = set()
false: set[InternalBelief] = set()
def difference(self, other: "BeliefState") -> "BeliefState":
return BeliefState(
true=self.true - other.true,
false=self.false - other.false,
)
def union(self, other: "BeliefState") -> "BeliefState":
return BeliefState(
true=self.true | other.true,
false=self.false | other.false,
)
def __sub__(self, other):
return self.difference(other)
def __or__(self, other):
return self.union(other)
def __bool__(self):
return bool(self.true) or bool(self.false)
class TextBeliefExtractorAgent(BaseAgent):
"""
@@ -34,8 +57,12 @@ class TextBeliefExtractorAgent(BaseAgent):
def __init__(self, name: str):
super().__init__(name)
self.beliefs: dict[str, bool] = {}
self.available_beliefs: list[SemanticBelief] = []
self._llm = self.LLM(self, settings.llm_settings.n_parallel)
self.belief_inferrer = SemanticBeliefInferrer(self._llm)
self.goal_inferrer = GoalAchievementInferrer(self._llm)
self._current_beliefs = BeliefState()
self._current_goal_completions: dict[str, bool] = {}
self._force_completed_goals: set[BaseGoal] = set()
self.conversation = ChatHistory(messages=[])
async def setup(self):
@@ -57,13 +84,14 @@ class TextBeliefExtractorAgent(BaseAgent):
case settings.agent_settings.transcription_name:
self.logger.debug("Received text from transcriber: %s", msg.body)
self._apply_conversation_message(ChatMessage(role="user", content=msg.body))
await self._infer_new_beliefs()
await self._user_said(msg.body)
await self._infer_new_beliefs()
await self._infer_goal_completions()
case settings.agent_settings.llm_name:
self.logger.debug("Received text from LLM: %s", msg.body)
self._apply_conversation_message(ChatMessage(role="assistant", content=msg.body))
case settings.agent_settings.bdi_program_manager_name:
self._handle_program_manager_message(msg)
await self._handle_program_manager_message(msg)
case _:
self.logger.info("Discarding message from %s", sender)
return
@@ -78,51 +106,86 @@ class TextBeliefExtractorAgent(BaseAgent):
length_limit = settings.behaviour_settings.conversation_history_length_limit
self.conversation.messages = (self.conversation.messages + [message])[-length_limit:]
def _handle_program_manager_message(self, msg: InternalMessage):
async def _handle_program_manager_message(self, msg: InternalMessage):
"""
Handle a message from the program manager: extract available beliefs from it.
Handle a message from the program manager: extract available beliefs and goals from it.
:param msg: The received message from the program manager.
"""
match msg.thread:
case "beliefs":
self._handle_beliefs_message(msg)
await self._infer_new_beliefs()
case "goals":
self._handle_goals_message(msg)
await self._infer_goal_completions()
case "achieved_goals":
self._handle_goal_achieved_message(msg)
case "conversation_history":
if msg.body == "reset":
self._reset_phase()
case _:
self.logger.warning("Received unexpected message from %s", msg.sender)
def _reset_phase(self):
self.conversation = ChatHistory(messages=[])
self.belief_inferrer.available_beliefs.clear()
self._current_beliefs = BeliefState()
self.goal_inferrer.goals.clear()
self._current_goal_completions = {}
def _handle_beliefs_message(self, msg: InternalMessage):
try:
program = Program.model_validate_json(msg.body)
belief_list = BeliefList.model_validate_json(msg.body)
except ValidationError:
self.logger.warning(
"Received message from program manager but it is not a valid program."
"Received message from program manager but it is not a valid list of beliefs."
)
return
self.logger.debug("Received a program from the program manager.")
self.available_beliefs = self._extract_basic_beliefs_from_program(program)
# TODO Copied from an incomplete version of the program manager. Use that one instead.
@staticmethod
def _extract_basic_beliefs_from_program(program: Program) -> list[SemanticBelief]:
beliefs = []
for phase in program.phases:
for norm in phase.norms:
if isinstance(norm, ConditionalNorm):
beliefs += TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(
norm.condition
available_beliefs = [b for b in belief_list.beliefs if isinstance(b, SemanticBelief)]
self.belief_inferrer.available_beliefs = available_beliefs
self.logger.debug(
"Received %d semantic beliefs from the program manager: %s",
len(available_beliefs),
", ".join(b.name for b in available_beliefs),
)
for trigger in phase.triggers:
beliefs += TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(
trigger.condition
def _handle_goals_message(self, msg: InternalMessage):
try:
goals_list = GoalList.model_validate_json(msg.body)
except ValidationError:
self.logger.warning(
"Received message from program manager but it is not a valid list of goals."
)
return
# Use only goals that can fail, as the others are always assumed to be completed
available_goals = {g for g in goals_list.goals if g.can_fail}
available_goals -= self._force_completed_goals
self.goal_inferrer.goals = available_goals
self.logger.debug(
"Received %d failable goals from the program manager: %s",
len(available_goals),
", ".join(g.name for g in available_goals),
)
return beliefs
def _handle_goal_achieved_message(self, msg: InternalMessage):
# NOTE: When goals can be marked unachieved, remember to re-add them to the goal_inferrer
try:
goals_list = GoalList.model_validate_json(msg.body)
except ValidationError:
self.logger.warning(
"Received goal achieved message from the program manager, "
"but it is not a valid list of goals."
)
return
# TODO Copied from an incomplete version of the program manager. Use that one instead.
@staticmethod
def _extract_basic_beliefs_from_belief(belief: Belief) -> list[SemanticBelief]:
if isinstance(belief, InferredBelief):
return TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(
belief.left
) + TextBeliefExtractorAgent._extract_basic_beliefs_from_belief(belief.right)
return [belief]
for goal in goals_list.goals:
self._force_completed_goals.add(goal)
self._current_goal_completions[f"achieved_{AgentSpeakGenerator.slugify(goal)}"] = True
self.goal_inferrer.goals -= self._force_completed_goals
async def _user_said(self, text: str):
"""
@@ -130,161 +193,88 @@ class TextBeliefExtractorAgent(BaseAgent):
:param text: User's transcribed text.
"""
belief = {"beliefs": {"user_said": [text]}, "type": "belief_extraction_text"}
payload = json.dumps(belief)
belief_msg = InternalMessage(
to=settings.agent_settings.bdi_belief_collector_name,
to=settings.agent_settings.bdi_core_name,
sender=self.name,
body=payload,
body=BeliefMessage(
replace=[InternalBelief(name="user_said", arguments=[text])],
).model_dump_json(),
thread="beliefs",
)
await self.send(belief_msg)
async def _infer_new_beliefs(self):
"""
Process conversation history to extract beliefs, semantically. Any changed beliefs are sent
to the BDI core.
"""
# Return instantly if there are no beliefs to infer
if not self.available_beliefs:
conversation_beliefs = await self.belief_inferrer.infer_from_conversation(self.conversation)
new_beliefs = conversation_beliefs - self._current_beliefs
if not new_beliefs:
self.logger.debug("No new beliefs detected.")
return
candidate_beliefs = await self._infer_turn()
belief_changes = BeliefMessage()
for belief_key, belief_value in candidate_beliefs.items():
if belief_value is None:
continue
old_belief_value = self.beliefs.get(belief_key)
if belief_value == old_belief_value:
continue
self._current_beliefs |= new_beliefs
self.beliefs[belief_key] = belief_value
belief_changes = BeliefMessage(
create=list(new_beliefs.true),
delete=list(new_beliefs.false),
)
belief = InternalBelief(name=belief_key, arguments=None)
if belief_value:
belief_changes.create.append(belief)
else:
belief_changes.delete.append(belief)
# Return if there were no changes in beliefs
if not belief_changes.has_values():
return
beliefs_message = InternalMessage(
message = InternalMessage(
to=settings.agent_settings.bdi_core_name,
sender=self.name,
body=belief_changes.model_dump_json(),
thread="beliefs",
)
await self.send(beliefs_message)
await self.send(message)
@staticmethod
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
k, m = divmod(len(items), n)
return [items[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)]
async def _infer_goal_completions(self):
goal_completions = await self.goal_inferrer.infer_from_conversation(self.conversation)
async def _infer_turn(self) -> dict:
"""
Process the stored conversation history to extract semantic beliefs. Returns a list of
beliefs that have been set to ``True``, ``False`` or ``None``.
:return: A dict mapping belief names to a value ``True``, ``False`` or ``None``.
"""
n_parallel = max(1, min(settings.llm_settings.n_parallel - 1, len(self.available_beliefs)))
all_beliefs = await asyncio.gather(
*[
self._infer_beliefs(self.conversation, beliefs)
for beliefs in self._split_into_chunks(self.available_beliefs, n_parallel)
new_achieved = [
InternalBelief(name=goal, arguments=None)
for goal, achieved in goal_completions.items()
if achieved and self._current_goal_completions.get(goal) != achieved
]
)
retval = {}
for beliefs in all_beliefs:
if beliefs is None:
continue
retval.update(beliefs)
return retval
@staticmethod
def _create_belief_schema(belief: SemanticBelief) -> tuple[str, dict]:
# TODO: use real belief names
return belief.name or slugify(belief.description), {
"type": ["boolean", "null"],
"description": belief.description,
}
@staticmethod
def _create_beliefs_schema(beliefs: list[SemanticBelief]) -> dict:
belief_schemas = [
TextBeliefExtractorAgent._create_belief_schema(belief) for belief in beliefs
new_not_achieved = [
InternalBelief(name=goal, arguments=None)
for goal, achieved in goal_completions.items()
if not achieved and self._current_goal_completions.get(goal) != achieved
]
for goal, achieved in goal_completions.items():
self._current_goal_completions[goal] = achieved
return {
"type": "object",
"properties": dict(belief_schemas),
"required": [name for name, _ in belief_schemas],
}
if not new_achieved and not new_not_achieved:
self.logger.debug("No goal achievement changes detected.")
return
@staticmethod
def _format_message(message: ChatMessage):
return f"{message.role.upper()}:\n{message.content}"
@staticmethod
def _format_conversation(conversation: ChatHistory):
return "\n\n".join(
[TextBeliefExtractorAgent._format_message(message) for message in conversation.messages]
belief_changes = BeliefMessage(
create=new_achieved,
delete=new_not_achieved,
)
@staticmethod
def _format_beliefs(beliefs: list[SemanticBelief]):
# TODO: use real belief names
return "\n".join(
[
f"- {belief.name or slugify(belief.description)}: {belief.description}"
for belief in beliefs
]
message = InternalMessage(
to=settings.agent_settings.bdi_core_name,
sender=self.name,
body=belief_changes.model_dump_json(),
thread="beliefs",
)
await self.send(message)
async def _infer_beliefs(
self,
conversation: ChatHistory,
beliefs: list[SemanticBelief],
) -> dict | None:
class LLM:
"""
Infer given beliefs based on the given conversation.
:param conversation: The conversation to infer beliefs from.
:param beliefs: The beliefs to infer.
:return: A dict containing belief names and a boolean whether they hold, or None if the
belief cannot be inferred based on the given conversation.
"""
example = {
"example_belief": True,
}
prompt = f"""{self._format_conversation(conversation)}
Given the above conversation, what beliefs can be inferred?
If there is no relevant information about a belief belief, give null.
In case messages conflict, prefer using the most recent messages for inference.
Choose from the following list of beliefs, formatted as (belief_name, description):
{self._format_beliefs(beliefs)}
Respond with a JSON similar to the following, but with the property names as given above:
{json.dumps(example, indent=2)}
Class that handles sending structured generation requests to an LLM.
"""
schema = self._create_beliefs_schema(beliefs)
def __init__(self, agent: "TextBeliefExtractorAgent", n_parallel: int):
self._agent = agent
self._semaphore = asyncio.Semaphore(n_parallel)
return await self._retry_query_llm(prompt, schema)
async def _retry_query_llm(self, prompt: str, schema: dict, tries: int = 3) -> dict | None:
async def query(self, prompt: str, schema: dict, tries: int = 3) -> JSONLike | None:
"""
Query the LLM with the given prompt and schema, return an instance of a dict conforming
to this schema. Try ``tries`` times, or return None.
:param prompt: Prompt to be queried.
:param schema: Schema to be queried.
:param tries: Number of times to try to query the LLM.
:return: An instance of a dict conforming to this schema, or None if failed.
"""
try_count = 0
@@ -296,7 +286,7 @@ Respond with a JSON similar to the following, but with the property names as giv
except (httpx.HTTPError, json.JSONDecodeError, KeyError) as e:
if try_count < tries:
continue
self.logger.exception(
self._agent.logger.exception(
"Failed to get LLM response after %d tries.",
try_count,
exc_info=e,
@@ -304,11 +294,10 @@ Respond with a JSON similar to the following, but with the property names as giv
return None
@staticmethod
async def _query_llm(prompt: str, schema: dict) -> dict:
async def _query_llm(self, prompt: str, schema: dict) -> JSONLike:
"""
Query an LLM with the given prompt and schema, return an instance of a dict conforming to
that schema.
Query an LLM with the given prompt and schema, return an instance of a dict conforming
to that schema.
:param prompt: The prompt to be queried.
:param schema: Schema to use during response.
@@ -316,8 +305,10 @@ Respond with a JSON similar to the following, but with the property names as giv
:raises httpx.HTTPStatusError: If the LLM server responded with an error.
:raises json.JSONDecodeError: If the LLM response was not valid JSON. May happen if the
response was cut off early due to length limitations.
:raises KeyError: If the LLM server responded with no error, but the response was invalid.
:raises KeyError: If the LLM server responded with no error, but the response was
invalid.
"""
async with self._semaphore:
async with httpx.AsyncClient() as client:
response = await client.post(
settings.llm_settings.local_llm_url,
@@ -336,10 +327,177 @@ Respond with a JSON similar to the following, but with the property names as giv
"temperature": settings.llm_settings.code_temperature,
"stream": False,
},
timeout=None,
timeout=30.0,
)
response.raise_for_status()
response_json = response.json()
json_message = response_json["choices"][0]["message"]["content"]
return json.loads(json_message)
class SemanticBeliefInferrer:
"""
Class that handles only prompting an LLM for semantic beliefs.
"""
def __init__(
self,
llm: "TextBeliefExtractorAgent.LLM",
available_beliefs: list[SemanticBelief] | None = None,
):
self._llm = llm
self.available_beliefs: list[SemanticBelief] = available_beliefs or []
async def infer_from_conversation(self, conversation: ChatHistory) -> BeliefState:
"""
Process conversation history to extract beliefs, semantically. The result is an object that
describes all beliefs that hold or don't hold based on the full conversation.
:param conversation: The conversation history to be processed.
:return: An object that describes beliefs.
"""
# Return instantly if there are no beliefs to infer
if not self.available_beliefs:
return BeliefState()
n_parallel = max(1, min(settings.llm_settings.n_parallel - 1, len(self.available_beliefs)))
all_beliefs: list[dict[str, bool | None] | None] = await asyncio.gather(
*[
self._infer_beliefs(conversation, beliefs)
for beliefs in self._split_into_chunks(self.available_beliefs, n_parallel)
]
)
retval = BeliefState()
for beliefs in all_beliefs:
if beliefs is None:
continue
for belief_name, belief_holds in beliefs.items():
if belief_holds is None:
continue
belief = InternalBelief(name=belief_name, arguments=None)
if belief_holds:
retval.true.add(belief)
else:
retval.false.add(belief)
return retval
@staticmethod
def _split_into_chunks[T](items: list[T], n: int) -> list[list[T]]:
"""
Split a list into ``n`` chunks, making each chunk approximately ``len(items) / n`` long.
:param items: The list of items to split.
:param n: The number of desired chunks.
:return: A list of chunks each approximately ``len(items) / n`` long.
"""
k, m = divmod(len(items), n)
return [items[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n)]
async def _infer_beliefs(
self,
conversation: ChatHistory,
beliefs: list[SemanticBelief],
) -> dict[str, bool | None] | None:
"""
Infer given beliefs based on the given conversation.
:param conversation: The conversation to infer beliefs from.
:param beliefs: The beliefs to infer.
:return: A dict containing belief names and a boolean whether they hold, or None if the
belief cannot be inferred based on the given conversation.
"""
example = {
"example_belief": True,
}
prompt = f"""{self._format_conversation(conversation)}
Given the above conversation, what beliefs can be inferred?
If there is no relevant information about a belief belief, give null.
In case messages conflict, prefer using the most recent messages for inference.
Choose from the following list of beliefs, formatted as `- <belief_name>: <description>`:
{self._format_beliefs(beliefs)}
Respond with a JSON similar to the following, but with the property names as given above:
{json.dumps(example, indent=2)}
"""
schema = self._create_beliefs_schema(beliefs)
return await self._llm.query(prompt, schema)
@staticmethod
def _create_belief_schema(belief: SemanticBelief) -> tuple[str, dict]:
return AgentSpeakGenerator.slugify(belief), {
"type": ["boolean", "null"],
"description": belief.description,
}
@staticmethod
def _create_beliefs_schema(beliefs: list[SemanticBelief]) -> dict:
belief_schemas = [
SemanticBeliefInferrer._create_belief_schema(belief) for belief in beliefs
]
return {
"type": "object",
"properties": dict(belief_schemas),
"required": [name for name, _ in belief_schemas],
}
@staticmethod
def _format_message(message: ChatMessage):
return f"{message.role.upper()}:\n{message.content}"
@staticmethod
def _format_conversation(conversation: ChatHistory):
return "\n\n".join(
[SemanticBeliefInferrer._format_message(message) for message in conversation.messages]
)
@staticmethod
def _format_beliefs(beliefs: list[SemanticBelief]):
return "\n".join(
[f"- {AgentSpeakGenerator.slugify(belief)}: {belief.description}" for belief in beliefs]
)
class GoalAchievementInferrer(SemanticBeliefInferrer):
def __init__(self, llm: TextBeliefExtractorAgent.LLM):
super().__init__(llm)
self.goals: set[BaseGoal] = set()
async def infer_from_conversation(self, conversation: ChatHistory) -> dict[str, bool]:
"""
Determine which goals have been achieved based on the given conversation.
:param conversation: The conversation to infer goal completion from.
:return: A mapping of goals and a boolean whether they have been achieved.
"""
if not self.goals:
return {}
goals_achieved = await asyncio.gather(
*[self._infer_goal(conversation, g) for g in self.goals]
)
return {
f"achieved_{AgentSpeakGenerator.slugify(goal)}": achieved
for goal, achieved in zip(self.goals, goals_achieved, strict=True)
}
async def _infer_goal(self, conversation: ChatHistory, goal: BaseGoal) -> bool:
prompt = f"""{self._format_conversation(conversation)}
Given the above conversation, what has the following goal been achieved?
The name of the goal: {goal.name}
Description of the goal: {goal.description}
Answer with literally only `true` or `false` (without backticks)."""
schema = {
"type": "boolean",
}
return await self._llm.query(prompt, schema)

View File

@@ -8,8 +8,8 @@ from zmq.asyncio import Context
from control_backend.agents import BaseAgent
from control_backend.agents.actuation.robot_gesture_agent import RobotGestureAgent
from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.internal_message import InternalMessage
from control_backend.schemas.ri_message import PauseCommand
from ..actuation.robot_speech_agent import RobotSpeechAgent
@@ -41,7 +41,7 @@ class RICommunicationAgent(BaseAgent):
def __init__(
self,
name: str,
address=settings.zmq_settings.ri_command_address,
address=settings.zmq_settings.ri_communication_address,
bind=False,
):
super().__init__(name)
@@ -50,6 +50,8 @@ class RICommunicationAgent(BaseAgent):
self._req_socket: azmq.Socket | None = None
self.pub_socket: azmq.Socket | None = None
self.connected = False
self.gesture_agent: RobotGestureAgent | None = None
self.speech_agent: RobotSpeechAgent | None = None
async def setup(self):
"""
@@ -143,6 +145,7 @@ class RICommunicationAgent(BaseAgent):
# At this point, we have a valid response
try:
self.logger.debug("Negotiation successful. Handling rn")
await self._handle_negotiation_response(received_message)
# Let UI know that we're connected
topic = b"ping"
@@ -171,7 +174,7 @@ class RICommunicationAgent(BaseAgent):
bind = port_data["bind"]
if not bind:
addr = f"tcp://localhost:{port}"
addr = f"tcp://{settings.ri_host}:{port}"
else:
addr = f"tcp://*:{port}"
@@ -191,6 +194,7 @@ class RICommunicationAgent(BaseAgent):
address=addr,
bind=bind,
)
self.speech_agent = robot_speech_agent
robot_gesture_agent = RobotGestureAgent(
settings.agent_settings.robot_gesture_name,
address=addr,
@@ -198,6 +202,7 @@ class RICommunicationAgent(BaseAgent):
gesture_data=gesture_data,
single_gesture_data=single_gesture_data,
)
self.gesture_agent = robot_gesture_agent
await robot_speech_agent.start()
await asyncio.sleep(0.1) # Small delay
await robot_gesture_agent.start()
@@ -228,6 +233,7 @@ class RICommunicationAgent(BaseAgent):
while self._running:
if not self.connected:
await asyncio.sleep(settings.behaviour_settings.sleep_s)
self.logger.debug("Not connected, skipping ping loop iteration.")
continue
# We need to listen and send pings.
@@ -251,6 +257,7 @@ class RICommunicationAgent(BaseAgent):
self._req_socket.recv_json(), timeout=seconds_to_wait_total / 2
)
if "endpoint" in message and message["endpoint"] != "ping":
self.logger.debug(f'Received message "{message}" from RI.')
if "endpoint" not in message:
self.logger.warning("No received endpoint in message, expected ping endpoint.")
@@ -291,15 +298,27 @@ class RICommunicationAgent(BaseAgent):
# Tell UI we're disconnected.
topic = b"ping"
data = json.dumps(False).encode()
self.logger.debug("1")
if self.pub_socket:
try:
self.logger.debug("2")
await asyncio.wait_for(self.pub_socket.send_multipart([topic, data]), 5)
except TimeoutError:
self.logger.debug("3")
self.logger.warning("Connection ping for router timed out.")
# Try to reboot/renegotiate
if self.gesture_agent is not None:
await self.gesture_agent.stop()
if self.speech_agent is not None:
await self.speech_agent.stop()
if self.pub_socket is not None:
self.pub_socket.close()
self.logger.debug("Restarting communication negotiation.")
if await self._negotiate_connection(max_retries=1):
if await self._negotiate_connection(max_retries=2):
self.connected = True
async def handle_message(self, msg: InternalMessage):

View File

@@ -46,14 +46,23 @@ class LLMAgent(BaseAgent):
:param msg: The received internal message.
"""
if msg.sender == settings.agent_settings.bdi_core_name:
self.logger.debug("Processing message from BDI core.")
match msg.thread:
case "prompt_message":
try:
prompt_message = LLMPromptMessage.model_validate_json(msg.body)
await self._process_bdi_message(prompt_message)
except ValidationError:
self.logger.debug("Prompt message from BDI core is invalid.")
case "assistant_message":
self.history.append({"role": "assistant", "content": msg.body})
case "user_message":
self.history.append({"role": "user", "content": msg.body})
elif msg.sender == settings.agent_settings.bdi_program_manager_name:
if msg.body == "clear_history":
self.logger.debug("Clearing conversation history.")
self.history.clear()
else:
self.logger.debug("Message ignored (not from BDI core.")
self.logger.debug("Message ignored.")
async def _process_bdi_message(self, message: LLMPromptMessage):
"""
@@ -114,13 +123,6 @@ class LLMAgent(BaseAgent):
:param goals: Goals the LLM should achieve.
:yield: Fragments of the LLM-generated content (e.g., sentences/phrases).
"""
self.history.append(
{
"role": "user",
"content": prompt,
}
)
instructions = LLMInstructions(norms if norms else None, goals if goals else None)
messages = [
{

View File

@@ -1,68 +0,0 @@
import asyncio
import json
import zmq
from zmq.asyncio import Context
from control_backend.agents.base import BaseAgent
from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
class TestPauseAgent(BaseAgent):
def __init__(self, name: str):
super().__init__(name)
async def setup(self):
context = Context.instance()
self.pub_socket = context.socket(zmq.PUB)
self.pub_socket.connect(settings.zmq_settings.internal_pub_address)
self.add_behavior(self._pause_command_loop())
self.logger.debug("TestPauseAgent setup complete.")
async def _pause_command_loop(self):
print("Starting Pause command test loop.")
while True:
pause_command = {
"endpoint": "pause",
"data": True,
}
message = InternalMessage(
to="ri_communication_agent",
sender=self.name,
body=json.dumps(pause_command),
)
await self.send(message)
# User interrupt message
data = {
"type": "pause",
"context": True,
}
await self.pub_socket.send_multipart([b"button_pressed", json.dumps(data).encode()])
self.logger.info("Pausing robot actions.")
await asyncio.sleep(15) # Simulate delay between messages
pause_command = {
"endpoint": "pause",
"data": False,
}
message = InternalMessage(
to="ri_communication_agent",
sender=self.name,
body=json.dumps(pause_command),
)
await self.send(message)
# User interrupt message
data = {
"type": "pause",
"context": False,
}
await self.pub_socket.send_multipart([b"button_pressed", json.dumps(data).encode()])
self.logger.info("Resuming robot actions.")
await asyncio.sleep(15) # Simulate delay between messages

View File

@@ -110,12 +110,11 @@ class VADAgent(BaseAgent):
self._connect_audio_in_socket()
audio_out_port = self._connect_audio_out_socket()
if audio_out_port is None:
audio_out_address = self._connect_audio_out_socket()
if audio_out_address is None:
self.logger.error("Could not bind output socket, stopping.")
await self.stop()
return
audio_out_address = f"tcp://localhost:{audio_out_port}"
# Connect to internal communication socket
self.program_sub_socket = azmq.Context.instance().socket(zmq.SUB)
@@ -168,13 +167,14 @@ class VADAgent(BaseAgent):
self.audio_in_socket.connect(self.audio_in_address)
self.audio_in_poller = SocketPoller[bytes](self.audio_in_socket)
def _connect_audio_out_socket(self) -> int | None:
def _connect_audio_out_socket(self) -> str | None:
"""
Returns the port bound, or None if binding failed.
Returns the address that was bound to, or None if binding failed.
"""
try:
self.audio_out_socket = azmq.Context.instance().socket(zmq.PUB)
return self.audio_out_socket.bind_to_random_port("tcp://localhost", max_tries=100)
self.audio_out_socket.bind(settings.zmq_settings.vad_pub_address)
return settings.zmq_settings.vad_pub_address
except zmq.ZMQBindError:
self.logger.error("Failed to bind an audio output socket after 100 tries.")
self.audio_out_socket = None
@@ -246,10 +246,11 @@ class VADAgent(BaseAgent):
assert self.model is not None
prob = self.model(torch.from_numpy(chunk), settings.vad_settings.sample_rate_hz).item()
non_speech_patience = settings.behaviour_settings.vad_non_speech_patience_chunks
begin_silence_length = settings.behaviour_settings.vad_begin_silence_chunks
prob_threshold = settings.behaviour_settings.vad_prob_threshold
if prob > prob_threshold:
if self.i_since_speech > non_speech_patience:
if self.i_since_speech > non_speech_patience + begin_silence_length:
self.logger.debug("Speech started.")
self.audio_buffer = np.append(self.audio_buffer, chunk)
self.i_since_speech = 0
@@ -263,7 +264,7 @@ class VADAgent(BaseAgent):
continue
# Speech probably ended. Make sure we have a usable amount of data.
if len(self.audio_buffer) >= 3 * len(chunk):
if len(self.audio_buffer) > begin_silence_length * len(chunk):
self.logger.debug("Speech ended.")
assert self.audio_out_socket is not None
await self.audio_out_socket.send(self.audio_buffer[: -2 * len(chunk)].tobytes())

View File

@@ -4,8 +4,11 @@ import zmq
from zmq.asyncio import Context
from control_backend.agents import BaseAgent
from control_backend.agents.bdi.agentspeak_generator import AgentSpeakGenerator
from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.belief_message import Belief, BeliefMessage
from control_backend.schemas.program import ConditionalNorm, Program
from control_backend.schemas.ri_message import (
GestureCommand,
PauseCommand,
@@ -23,18 +26,45 @@ class UserInterruptAgent(BaseAgent):
- Send a prioritized message to the `RobotSpeechAgent`
- Send a prioritized gesture to the `RobotGestureAgent`
- Send a belief override to the `BDIProgramManager`in order to activate a
- Send a belief override to the `BDI Core` in order to activate a
trigger/conditional norm or complete a goal.
Prioritized actions clear the current RI queue before inserting the new item,
ensuring they are executed immediately after Pepper's current action has been fulfilled.
:ivar sub_socket: The ZMQ SUB socket used to receive user intterupts.
:ivar sub_socket: The ZMQ SUB socket used to receive user interrupts.
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.sub_socket = None
self.pub_socket = None
self._trigger_map = {}
self._trigger_reverse_map = {}
self._goal_map = {} # id -> sluggified goal
self._goal_reverse_map = {} # sluggified goal -> id
self._cond_norm_map = {} # id -> sluggified cond norm
self._cond_norm_reverse_map = {} # sluggified cond norm -> id
async def setup(self):
"""
Initialize the agent.
Connects the internal ZMQ SUB socket and subscribes to the 'button_pressed' topic.
Starts the background behavior to receive the user interrupts.
"""
context = Context.instance()
self.sub_socket = context.socket(zmq.SUB)
self.sub_socket.connect(settings.zmq_settings.internal_sub_address)
self.sub_socket.subscribe("button_pressed")
self.pub_socket = context.socket(zmq.PUB)
self.pub_socket.connect(settings.zmq_settings.internal_pub_address)
self.add_behavior(self._receive_button_event())
async def _receive_button_event(self):
"""
@@ -45,7 +75,11 @@ class UserInterruptAgent(BaseAgent):
These are the different types and contexts:
- type: "speech", context: string that the robot has to say.
- type: "gesture", context: single gesture name that the robot has to perform.
- type: "override", context: belief_id that overrides the goal/trigger/conditional norm.
- type: "override", context: id that belongs to the goal/trigger/conditional norm.
- type: "override_unachieve", context: id that belongs to the conditional norm to unachieve.
- type: "next_phase", context: None, indicates to the BDI Core to
- type: "pause", context: boolean indicating whether to pause
- type: "reset_phase", context: None, indicates to the BDI Core to
"""
while True:
topic, body = await self.sub_socket.recv_multipart()
@@ -58,37 +92,201 @@ class UserInterruptAgent(BaseAgent):
self.logger.error("Received invalid JSON payload on topic %s", topic)
continue
if event_type == "speech":
self.logger.debug("Received event type %s", event_type)
match event_type:
case "speech":
await self._send_to_speech_agent(event_context)
self.logger.info(
"Forwarded button press (speech) with context '%s' to RobotSpeechAgent.",
event_context,
)
elif event_type == "gesture":
case "gesture":
await self._send_to_gesture_agent(event_context)
self.logger.info(
"Forwarded button press (gesture) with context '%s' to RobotGestureAgent.",
event_context,
)
elif event_type == "override":
await self._send_to_program_manager(event_context)
case "override":
ui_id = str(event_context)
if asl_trigger := self._trigger_map.get(ui_id):
await self._send_to_bdi("force_trigger", asl_trigger)
self.logger.info(
"Forwarded button press (override) with context '%s' to BDIProgramManager.",
"Forwarded button press (override) with context '%s' to BDI Core.",
event_context,
)
elif event_type == "pause":
elif asl_cond_norm := self._cond_norm_map.get(ui_id):
await self._send_to_bdi_belief(asl_cond_norm, "cond_norm")
self.logger.info(
"Forwarded button press (override) with context '%s' to BDI Core.",
event_context,
)
elif asl_goal := self._goal_map.get(ui_id):
await self._send_to_bdi_belief(asl_goal, "goal")
self.logger.info(
"Forwarded button press (override) with context '%s' to BDI Core.",
event_context,
)
# Send achieve_goal to program manager to update semantic belief extractor
goal_achieve_msg = InternalMessage(
to=settings.agent_settings.bdi_program_manager_name,
thread="achieve_goal",
body=ui_id,
)
await self.send(goal_achieve_msg)
else:
self.logger.warning("Could not determine which element to override.")
case "override_unachieve":
ui_id = str(event_context)
if asl_cond_norm := self._cond_norm_map.get(ui_id):
await self._send_to_bdi_belief(asl_cond_norm, "cond_norm", True)
self.logger.info(
"Forwarded button press (override_unachieve)"
"with context '%s' to BDI Core.",
event_context,
)
else:
self.logger.warning(
"Could not determine which conditional norm to unachieve."
)
case "pause":
self.logger.debug(
"Received pause/resume button press with context '%s'.", event_context
)
await self._send_pause_command(event_context)
if event_context:
self.logger.info("Sent pause command.")
else:
self.logger.info("Sent resume command.")
else:
case "next_phase" | "reset_phase":
await self._send_experiment_control_to_bdi_core(event_type)
case _:
self.logger.warning(
"Received button press with unknown type '%s' (context: '%s').",
event_type,
event_context,
)
async def handle_message(self, msg: InternalMessage):
"""
Handle commands received from other internal Python agents.
"""
match msg.thread:
case "new_program":
self._create_mapping(msg.body)
case "trigger_start":
# msg.body is the sluggified trigger
asl_slug = msg.body
ui_id = self._trigger_reverse_map.get(asl_slug)
if ui_id:
payload = {"type": "trigger_update", "id": ui_id, "achieved": True}
await self._send_experiment_update(payload)
self.logger.info(f"UI Update: Trigger {asl_slug} started (ID: {ui_id})")
case "trigger_end":
asl_slug = msg.body
ui_id = self._trigger_reverse_map.get(asl_slug)
if ui_id:
payload = {"type": "trigger_update", "id": ui_id, "achieved": False}
await self._send_experiment_update(payload)
self.logger.info(f"UI Update: Trigger {asl_slug} ended (ID: {ui_id})")
case "transition_phase":
new_phase_id = msg.body
self.logger.info(f"Phase transition detected: {new_phase_id}")
payload = {"type": "phase_update", "id": new_phase_id}
await self._send_experiment_update(payload)
case "goal_start":
goal_name = msg.body
ui_id = self._goal_reverse_map.get(goal_name)
if ui_id:
payload = {"type": "goal_update", "id": ui_id}
await self._send_experiment_update(payload)
self.logger.info(f"UI Update: Goal {goal_name} started (ID: {ui_id})")
case "active_norms_update":
active_norms_asl = [
s.strip("() '\",") for s in msg.body.split(",") if s.strip("() '\",")
]
await self._broadcast_cond_norms(active_norms_asl)
case _:
self.logger.debug(f"Received internal message on unhandled thread: {msg.thread}")
async def _broadcast_cond_norms(self, active_slugs: list[str]):
"""
Sends the current state of all conditional norms to the UI.
:param active_slugs: A list of slugs (strings) currently active in the BDI core.
"""
updates = []
for asl_slug, ui_id in self._cond_norm_reverse_map.items():
is_active = asl_slug in active_slugs
updates.append({"id": ui_id, "active": is_active})
payload = {"type": "cond_norms_state_update", "norms": updates}
if self.pub_socket:
topic = b"status"
body = json.dumps(payload).encode("utf-8")
await self.pub_socket.send_multipart([topic, body])
# self.logger.info(f"UI Update: Active norms {updates}")
def _create_mapping(self, program_json: str):
"""
Create mappings between UI IDs and ASL slugs for triggers, goals, and conditional norms
"""
try:
program = Program.model_validate_json(program_json)
self._trigger_map = {}
self._trigger_reverse_map = {}
self._goal_map = {}
self._cond_norm_map = {}
self._cond_norm_reverse_map = {}
for phase in program.phases:
for trigger in phase.triggers:
slug = AgentSpeakGenerator.slugify(trigger)
self._trigger_map[str(trigger.id)] = slug
self._trigger_reverse_map[slug] = str(trigger.id)
for goal in phase.goals:
self._goal_map[str(goal.id)] = AgentSpeakGenerator.slugify(goal)
self._goal_reverse_map[AgentSpeakGenerator.slugify(goal)] = str(goal.id)
for goal, id in self._goal_reverse_map.items():
self.logger.debug(f"Goal mapping: UI ID {goal} -> {id}")
for norm in phase.norms:
if isinstance(norm, ConditionalNorm):
asl_slug = AgentSpeakGenerator.slugify(norm)
norm_id = str(norm.id)
self._cond_norm_map[norm_id] = asl_slug
self._cond_norm_reverse_map[norm.norm] = norm_id
self.logger.debug("Added conditional norm %s", asl_slug)
self.logger.info(
f"Mapped {len(self._trigger_map)} triggers and {len(self._goal_map)} goals "
f"and {len(self._cond_norm_map)} conditional norms for UserInterruptAgent."
)
except Exception as e:
self.logger.error(f"Mapping failed: {e}")
async def _send_experiment_update(self, data, should_log: bool = True):
"""
Sends an update to the 'experiment' topic.
The SSE endpoint will pick this up and push it to the UI.
"""
if self.pub_socket:
topic = b"experiment"
body = json.dumps(data).encode("utf-8")
await self.pub_socket.send_multipart([topic, body])
if should_log:
self.logger.debug(f"Sent experiment update: {data}")
async def _send_to_speech_agent(self, text_to_say: str):
"""
method to send prioritized speech command to RobotSpeechAgent.
@@ -120,28 +318,62 @@ class UserInterruptAgent(BaseAgent):
)
await self.send(out_msg)
async def _send_to_program_manager(self, belief_id: str):
"""
Send a button_override belief to the BDIProgramManager.
async def _send_to_bdi(self, thread: str, body: str):
"""Send slug of trigger to BDI"""
msg = InternalMessage(to=settings.agent_settings.bdi_core_name, thread=thread, body=body)
await self.send(msg)
self.logger.info(f"Directly forced {thread} in BDI: {body}")
:param belief_id: The belief_id that overrides the goal/trigger/conditional norm.
this id can belong to a basic belief or an inferred belief.
See also: https://utrechtuniversity.youtrack.cloud/articles/N25B-A-27/UI-components
async def _send_to_bdi_belief(self, asl: str, asl_type: str, unachieve: bool = False):
"""Send belief to BDI Core"""
if asl_type == "goal":
belief_name = f"achieved_{asl}"
elif asl_type == "cond_norm":
belief_name = f"force_{asl}"
else:
self.logger.warning("Tried to send belief with unknown type")
belief = Belief(name=belief_name, arguments=None)
self.logger.debug(f"Sending belief to BDI Core: {belief_name}")
# Conditional norms are unachieved by removing the belief
belief_message = (
BeliefMessage(delete=[belief]) if unachieve else BeliefMessage(create=[belief])
)
msg = InternalMessage(
to=settings.agent_settings.bdi_core_name,
thread="beliefs",
body=belief_message.model_dump_json(),
)
await self.send(msg)
async def _send_experiment_control_to_bdi_core(self, type):
"""
data = {"belief": belief_id}
message = InternalMessage(
to=settings.agent_settings.bdi_program_manager_name,
method to send experiment control buttons to bdi core.
:param type: the type of control button we should send to the bdi core.
"""
# Switch which thread we should send to bdi core
thread = ""
match type:
case "next_phase":
thread = "force_next_phase"
case "reset_phase":
thread = "reset_current_phase"
case _:
self.logger.warning(
"Received unknown experiment control type '%s' to send to BDI Core.",
type,
)
out_msg = InternalMessage(
to=settings.agent_settings.bdi_core_name,
sender=self.name,
body=json.dumps(data),
thread="belief_override_id",
)
await self.send(message)
self.logger.info(
"Sent button_override belief with id '%s' to Program manager.",
belief_id,
thread=thread,
body="",
)
self.logger.debug("Sending experiment control '%s' to BDI Core.", thread)
await self.send(out_msg)
async def _send_pause_command(self, pause : bool):
async def _send_pause_command(self, pause):
"""
Send a pause command to the Robot Interface via the RI Communication Agent.
Send a pause command to the other internal agents; for now just VAD agent.
@@ -154,7 +386,7 @@ class UserInterruptAgent(BaseAgent):
)
await self.send(message)
if pause:
if pause == "true":
# Send pause to VAD agent
vad_message = InternalMessage(
to=settings.agent_settings.vad_name,
@@ -172,18 +404,3 @@ class UserInterruptAgent(BaseAgent):
)
await self.send(vad_message)
self.logger.info("Sent resume command to VAD Agent and RI Communication Agent.")
async def setup(self):
"""
Initialize the agent.
Connects the internal ZMQ SUB socket and subscribes to the 'button_pressed' topic.
Starts the background behavior to receive the user interrupts.
"""
context = Context.instance()
self.sub_socket = context.socket(zmq.SUB)
self.sub_socket.connect(settings.zmq_settings.internal_sub_address)
self.sub_socket.subscribe("button_pressed")
self.add_behavior(self._receive_button_event())

View File

@@ -1,31 +0,0 @@
import logging
from fastapi import APIRouter, Request
from control_backend.schemas.events import ButtonPressedEvent
logger = logging.getLogger(__name__)
router = APIRouter()
@router.post("/button_pressed", status_code=202)
async def receive_button_event(event: ButtonPressedEvent, request: Request):
"""
Endpoint to handle external button press events.
Validates the event payload and publishes it to the internal 'button_pressed' topic.
Subscribers (in this case user_interrupt_agent) will pick this up to trigger
specific behaviors or state changes.
:param event: The parsed ButtonPressedEvent object.
:param request: The FastAPI request object.
"""
logger.debug("Received button event: %s | %s", event.type, event.context)
topic = b"button_pressed"
body = event.model_dump_json().encode()
pub_socket = request.app.state.endpoints_pub_socket
await pub_socket.send_multipart([topic, body])
return {"status": "Event received"}

View File

@@ -137,7 +137,6 @@ async def ping_stream(request: Request):
logger.info("Client disconnected from SSE")
break
logger.debug(f"Yielded new connection event in robot ping router: {str(connected)}")
connectedJson = json.dumps(connected)
yield (f"data: {connectedJson}\n\n")

View File

@@ -0,0 +1,94 @@
import asyncio
import logging
import zmq
import zmq.asyncio
from fastapi import APIRouter, Request
from fastapi.responses import StreamingResponse
from zmq.asyncio import Context
from control_backend.core.config import settings
from control_backend.schemas.events import ButtonPressedEvent
logger = logging.getLogger(__name__)
router = APIRouter()
@router.post("/button_pressed", status_code=202)
async def receive_button_event(event: ButtonPressedEvent, request: Request):
"""
Endpoint to handle external button press events.
Validates the event payload and publishes it to the internal 'button_pressed' topic.
Subscribers (in this case user_interrupt_agent) will pick this up to trigger
specific behaviors or state changes.
:param event: The parsed ButtonPressedEvent object.
:param request: The FastAPI request object.
"""
logger.debug("Received button event: %s | %s", event.type, event.context)
topic = b"button_pressed"
body = event.model_dump_json().encode()
pub_socket = request.app.state.endpoints_pub_socket
await pub_socket.send_multipart([topic, body])
return {"status": "Event received"}
@router.get("/experiment_stream")
async def experiment_stream(request: Request):
# Use the asyncio-compatible context
context = Context.instance()
socket = context.socket(zmq.SUB)
# Connect and subscribe
socket.connect(settings.zmq_settings.internal_sub_address)
socket.subscribe(b"experiment")
async def gen():
try:
while True:
# Check if client closed the tab
if await request.is_disconnected():
logger.error("Client disconnected from experiment stream.")
break
try:
parts = await asyncio.wait_for(socket.recv_multipart(), timeout=10.0)
_, message = parts
yield f"data: {message.decode().strip()}\n\n"
except TimeoutError:
continue
finally:
socket.close()
return StreamingResponse(gen(), media_type="text/event-stream")
@router.get("/status_stream")
async def status_stream(request: Request):
context = Context.instance()
socket = context.socket(zmq.SUB)
socket.connect(settings.zmq_settings.internal_sub_address)
socket.subscribe(b"status")
async def gen():
try:
while True:
if await request.is_disconnected():
break
try:
# Shorter timeout since this is frequent
parts = await asyncio.wait_for(socket.recv_multipart(), timeout=0.5)
_, message = parts
yield f"data: {message.decode().strip()}\n\n"
except TimeoutError:
yield ": ping\n\n" # Keep the connection alive
continue
finally:
socket.close()
return StreamingResponse(gen(), media_type="text/event-stream")

View File

@@ -1,6 +1,6 @@
from fastapi.routing import APIRouter
from control_backend.api.v1.endpoints import button_pressed, logs, message, program, robot, sse
from control_backend.api.v1.endpoints import logs, message, program, robot, sse, user_interact
api_router = APIRouter()
@@ -14,4 +14,4 @@ api_router.include_router(logs.router, tags=["Logs"])
api_router.include_router(program.router, tags=["Program"])
api_router.include_router(button_pressed.router, tags=["Button Pressed Events"])
api_router.include_router(user_interact.router, tags=["Button Pressed Events"])

View File

@@ -60,6 +60,9 @@ class BaseAgent(ABC):
self._tasks: set[asyncio.Task] = set()
self._running = False
self._internal_pub_socket: None | azmq.Socket = None
self._internal_sub_socket: None | azmq.Socket = None
# Register immediately
AgentDirectory.register(name, self)
@@ -117,7 +120,7 @@ class BaseAgent(ABC):
task.cancel()
self.logger.info(f"Agent {self.name} stopped")
async def send(self, message: InternalMessage):
async def send(self, message: InternalMessage, should_log: bool = True):
"""
Send a message to another agent.
@@ -130,15 +133,25 @@ class BaseAgent(ABC):
:param message: The message to send.
"""
target = AgentDirectory.get(message.to)
message.sender = self.name
to = message.to
receivers = [to] if isinstance(to, str) else to
for receiver in receivers:
target = AgentDirectory.get(receiver)
if target:
await target.inbox.put(message)
self.logger.debug(f"Sent message {message.body} to {message.to} via regular inbox.")
if should_log:
self.logger.debug(
f"Sent message {message.body} to {message.to} via regular inbox."
)
else:
# Apparently target agent is on a different process, send via ZMQ
topic = f"internal/{message.to}".encode()
topic = f"internal/{receiver}".encode()
body = message.model_dump_json().encode()
await self._internal_pub_socket.send_multipart([topic, body])
if should_log:
self.logger.debug(f"Sent message {message.body} to {message.to} via ZMQ.")
async def _process_inbox(self):
@@ -149,7 +162,6 @@ class BaseAgent(ABC):
"""
while self._running:
msg = await self.inbox.get()
self.logger.debug(f"Received message from {msg.sender}.")
await self.handle_message(msg)
async def _receive_internal_zmq_loop(self):
@@ -192,7 +204,16 @@ class BaseAgent(ABC):
:param coro: The coroutine to execute as a task.
"""
task = asyncio.create_task(coro)
async def try_coro(coro_: Coroutine):
try:
await coro_
except asyncio.CancelledError:
self.logger.debug("A behavior was canceled successfully: %s", coro_)
except Exception:
self.logger.warning("An exception occurred in a behavior.", exc_info=True)
task = asyncio.create_task(try_coro(coro))
self._tasks.add(task)
task.add_done_callback(self._tasks.discard)
return task

View File

@@ -1,3 +1,12 @@
"""
An exhaustive overview of configurable options. All of these can be set using environment variables
by nesting with double underscores (__). Start from the ``Settings`` class.
For example, ``settings.ri_host`` becomes ``RI_HOST``, and
``settings.zmq_settings.ri_communication_address`` becomes
``ZMQ_SETTINGS__RI_COMMUNICATION_ADDRESS``.
"""
from pydantic import BaseModel
from pydantic_settings import BaseSettings, SettingsConfigDict
@@ -8,16 +17,17 @@ class ZMQSettings(BaseModel):
:ivar internal_pub_address: Address for the internal PUB socket.
:ivar internal_sub_address: Address for the internal SUB socket.
:ivar ri_command_address: Address for sending commands to the Robot Interface.
:ivar ri_communication_address: Address for receiving communication from the Robot Interface.
:ivar vad_agent_address: Address for the Voice Activity Detection (VAD) agent.
:ivar ri_communication_address: Address for the endpoint that the Robot Interface connects to.
:ivar vad_pub_address: Address that the VAD agent binds to and publishes audio segments to.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
internal_pub_address: str = "tcp://localhost:5560"
internal_sub_address: str = "tcp://localhost:5561"
ri_command_address: str = "tcp://localhost:0000"
ri_communication_address: str = "tcp://*:5555"
internal_gesture_rep_adress: str = "tcp://localhost:7788"
vad_pub_address: str = "inproc://vad_stream"
class AgentSettings(BaseModel):
@@ -36,6 +46,8 @@ class AgentSettings(BaseModel):
:ivar robot_speech_name: Name of the Robot Speech Agent.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
# agent names
bdi_core_name: str = "bdi_core_agent"
bdi_belief_collector_name: str = "belief_collector_agent"
@@ -61,6 +73,7 @@ class BehaviourSettings(BaseModel):
:ivar vad_prob_threshold: Probability threshold for Voice Activity Detection.
:ivar vad_initial_since_speech: Initial value for 'since speech' counter in VAD.
:ivar vad_non_speech_patience_chunks: Number of non-speech chunks to wait before speech ended.
:ivar vad_begin_silence_chunks: The number of chunks of silence to prepend to speech chunks.
:ivar transcription_max_concurrent_tasks: Maximum number of concurrent transcription tasks.
:ivar transcription_words_per_minute: Estimated words per minute for transcription timing.
:ivar transcription_words_per_token: Estimated words per token for transcription timing.
@@ -68,6 +81,8 @@ class BehaviourSettings(BaseModel):
:ivar conversation_history_length_limit: The maximum amount of messages to extract beliefs from.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
sleep_s: float = 1.0
comm_setup_max_retries: int = 5
socket_poller_timeout_ms: int = 100
@@ -75,7 +90,8 @@ class BehaviourSettings(BaseModel):
# VAD settings
vad_prob_threshold: float = 0.5
vad_initial_since_speech: int = 100
vad_non_speech_patience_chunks: int = 3
vad_non_speech_patience_chunks: int = 15
vad_begin_silence_chunks: int = 6
# transcription behaviour
transcription_max_concurrent_tasks: int = 3
@@ -99,6 +115,8 @@ class LLMSettings(BaseModel):
:ivar n_parallel: The number of parallel calls allowed to be made to the LLM.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
local_llm_url: str = "http://localhost:1234/v1/chat/completions"
local_llm_model: str = "gpt-oss"
chat_temperature: float = 1.0
@@ -115,6 +133,8 @@ class VADSettings(BaseModel):
:ivar sample_rate_hz: Sample rate in Hz for the VAD model.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
repo_or_dir: str = "snakers4/silero-vad"
model_name: str = "silero_vad"
sample_rate_hz: int = 16000
@@ -128,6 +148,8 @@ class SpeechModelSettings(BaseModel):
:ivar openai_model_name: Model name for OpenAI-based speech recognition.
"""
# ATTENTION: When adding/removing settings, make sure to update the .env.example file
# model identifiers for speech recognition
mlx_model_name: str = "mlx-community/whisper-small.en-mlx"
openai_model_name: str = "small.en"
@@ -139,6 +161,7 @@ class Settings(BaseSettings):
:ivar app_title: Title of the application.
:ivar ui_url: URL of the frontend UI.
:ivar ri_host: The hostname of the Robot Interface.
:ivar zmq_settings: ZMQ configuration.
:ivar agent_settings: Agent name configuration.
:ivar behaviour_settings: Behavior configuration.
@@ -151,6 +174,8 @@ class Settings(BaseSettings):
ui_url: str = "http://localhost:5173"
ri_host: str = "localhost"
zmq_settings: ZMQSettings = ZMQSettings()
agent_settings: AgentSettings = AgentSettings()

View File

@@ -39,11 +39,10 @@ from control_backend.agents.communication import RICommunicationAgent
# LLM Agents
from control_backend.agents.llm import LLMAgent
# Other backend imports
from control_backend.agents.mock_agents.test_pause_ri import TestPauseAgent
# User Interrupt Agent
from control_backend.agents.user_interrupt.user_interrupt_agent import UserInterruptAgent
# Other backend imports
from control_backend.api.v1.router import api_router
from control_backend.core.config import settings
from control_backend.logging import setup_logging
@@ -121,7 +120,6 @@ async def lifespan(app: FastAPI):
BDICoreAgent,
{
"name": settings.agent_settings.bdi_core_name,
"asl": "src/control_backend/agents/bdi/rules.asl",
},
),
"BeliefCollectorAgent": (
@@ -142,12 +140,6 @@ async def lifespan(app: FastAPI):
"name": settings.agent_settings.bdi_program_manager_name,
},
),
"TestPauseAgent": (
TestPauseAgent,
{
"name": "pause_test_agent",
},
),
"UserInterruptAgent": (
UserInterruptAgent,
{

View File

@@ -0,0 +1,19 @@
from pydantic import BaseModel
from control_backend.schemas.program import BaseGoal
from control_backend.schemas.program import Belief as ProgramBelief
class BeliefList(BaseModel):
"""
Represents a list of beliefs, separated from a program. Useful in agents which need to
communicate beliefs.
:ivar: beliefs: The list of beliefs.
"""
beliefs: list[ProgramBelief]
class GoalList(BaseModel):
goals: list[BaseGoal]

View File

@@ -11,7 +11,10 @@ class Belief(BaseModel):
"""
name: str
arguments: list[str] | None
arguments: list[str] | None = None
# To make it hashable
model_config = {"frozen": True}
class BeliefMessage(BaseModel):

View File

@@ -1,3 +1,5 @@
from collections.abc import Iterable
from pydantic import BaseModel
@@ -11,7 +13,7 @@ class InternalMessage(BaseModel):
:ivar thread: An optional thread identifier/topic to categorize the message (e.g., 'beliefs').
"""
to: str
sender: str
to: str | Iterable[str]
sender: str | None = None
body: str
thread: str | None = None

View File

@@ -15,6 +15,9 @@ class ProgramElement(BaseModel):
name: str
id: UUID4
# To make program elements hashable
model_config = {"frozen": True}
class LogicalOperator(Enum):
AND = "AND"
@@ -43,7 +46,6 @@ class SemanticBelief(ProgramElement):
:ivar description: Description of how to form the belief, used by the LLM.
"""
name: str = ""
description: str
@@ -106,21 +108,33 @@ class Plan(ProgramElement):
steps: list[PlanElement]
class Goal(ProgramElement):
class BaseGoal(ProgramElement):
"""
Represents an objective to be achieved. To reach the goal, we should execute
the corresponding plan. If we can fail to achieve a goal after executing the plan,
for example when the achieving of the goal is dependent on the user's reply, this means
that the achieved status will be set from somewhere else in the program.
Represents an objective to be achieved. This base version does not include a plan to achieve
this goal, and is used in semantic belief extraction.
:ivar plan: The plan to execute.
:ivar description: A description of the goal, used to determine if it has been achieved.
:ivar can_fail: Whether we can fail to achieve the goal after executing the plan.
"""
plan: Plan
description: str = ""
can_fail: bool = True
class Goal(BaseGoal):
"""
Represents an objective to be achieved. To reach the goal, we should execute the corresponding
plan. It inherits from the BaseGoal a variable `can_fail`, which if true will cause the
completion to be determined based on the conversation.
Instances of this goal are not hashable because a plan is not hashable.
:ivar plan: The plan to execute.
"""
plan: Plan
type Action = SpeechAction | GestureAction | LLMAction
@@ -179,7 +193,6 @@ class Trigger(ProgramElement):
:ivar plan: The plan to execute.
"""
name: str = ""
condition: Belief
plan: Plan

View File

@@ -14,7 +14,7 @@ class RIEndpoint(str, Enum):
GESTURE_TAG = "actuate/gesture/tag"
PING = "ping"
NEGOTIATE_PORTS = "negotiate/ports"
PAUSE = "pause"
PAUSE = ""
class RIMessage(BaseModel):
@@ -66,6 +66,7 @@ class GestureCommand(RIMessage):
raise ValueError("endpoint must be GESTURE_SINGLE or GESTURE_TAG")
return self
class PauseCommand(RIMessage):
"""
A specific command to pause or unpause the robot's actions.

View File

@@ -91,7 +91,7 @@ def test_out_socket_creation(zmq_context):
assert per_vad_agent.audio_out_socket is not None
zmq_context.return_value.socket.assert_called_once_with(zmq.PUB)
zmq_context.return_value.socket.return_value.bind_to_random_port.assert_called_once()
zmq_context.return_value.socket.return_value.bind.assert_called_once_with("inproc://vad_stream")
@pytest.mark.asyncio

View File

@@ -73,7 +73,7 @@ async def test_setup_connect(zmq_context, mocker):
async def test_handle_message_sends_valid_gesture_command():
"""Internal message with valid gesture tag is forwarded to robot pub socket."""
pubsocket = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.pubsocket = pubsocket
payload = {
@@ -91,7 +91,7 @@ async def test_handle_message_sends_valid_gesture_command():
async def test_handle_message_sends_non_gesture_command():
"""Internal message with non-gesture endpoint is not forwarded by this agent."""
pubsocket = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.pubsocket = pubsocket
payload = {"endpoint": "some_other_endpoint", "data": "invalid_tag_not_in_list"}
@@ -107,7 +107,7 @@ async def test_handle_message_sends_non_gesture_command():
async def test_handle_message_rejects_invalid_gesture_tag():
"""Internal message with invalid gesture tag is not forwarded."""
pubsocket = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.pubsocket = pubsocket
# Use a tag that's not in gesture_data
@@ -123,7 +123,7 @@ async def test_handle_message_rejects_invalid_gesture_tag():
async def test_handle_message_invalid_payload():
"""Invalid payload is caught and does not send."""
pubsocket = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.pubsocket = pubsocket
msg = InternalMessage(to="robot", sender="tester", body=json.dumps({"bad": "data"}))
@@ -142,12 +142,12 @@ async def test_zmq_command_loop_valid_gesture_payload():
async def recv_once():
# stop after first iteration
agent._running = False
return (b"command", json.dumps(command).encode("utf-8"))
return b"command", json.dumps(command).encode("utf-8")
fake_socket.recv_multipart = recv_once
fake_socket.send_json = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.subsocket = fake_socket
agent.pubsocket = fake_socket
agent._running = True
@@ -165,12 +165,12 @@ async def test_zmq_command_loop_valid_non_gesture_payload():
async def recv_once():
agent._running = False
return (b"command", json.dumps(command).encode("utf-8"))
return b"command", json.dumps(command).encode("utf-8")
fake_socket.recv_multipart = recv_once
fake_socket.send_json = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.subsocket = fake_socket
agent.pubsocket = fake_socket
agent._running = True
@@ -188,12 +188,12 @@ async def test_zmq_command_loop_invalid_gesture_tag():
async def recv_once():
agent._running = False
return (b"command", json.dumps(command).encode("utf-8"))
return b"command", json.dumps(command).encode("utf-8")
fake_socket.recv_multipart = recv_once
fake_socket.send_json = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.subsocket = fake_socket
agent.pubsocket = fake_socket
agent._running = True
@@ -210,12 +210,12 @@ async def test_zmq_command_loop_invalid_json():
async def recv_once():
agent._running = False
return (b"command", b"{not_json}")
return b"command", b"{not_json}"
fake_socket.recv_multipart = recv_once
fake_socket.send_json = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.subsocket = fake_socket
agent.pubsocket = fake_socket
agent._running = True
@@ -232,12 +232,12 @@ async def test_zmq_command_loop_ignores_send_gestures_topic():
async def recv_once():
agent._running = False
return (b"send_gestures", b"{}")
return b"send_gestures", b"{}"
fake_socket.recv_multipart = recv_once
fake_socket.send_json = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.subsocket = fake_socket
agent.pubsocket = fake_socket
agent._running = True
@@ -259,7 +259,9 @@ async def test_fetch_gestures_loop_without_amount():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"])
agent = RobotGestureAgent(
"robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"], address=""
)
agent.repsocket = fake_repsocket
agent._running = True
@@ -287,7 +289,9 @@ async def test_fetch_gestures_loop_with_amount():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"])
agent = RobotGestureAgent(
"robot_gesture", gesture_data=["hello", "yes", "no", "wave", "point"], address=""
)
agent.repsocket = fake_repsocket
agent._running = True
@@ -315,7 +319,7 @@ async def test_fetch_gestures_loop_with_integer_request():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.repsocket = fake_repsocket
agent._running = True
@@ -340,7 +344,7 @@ async def test_fetch_gestures_loop_with_invalid_json():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.repsocket = fake_repsocket
agent._running = True
@@ -365,7 +369,7 @@ async def test_fetch_gestures_loop_with_non_integer_json():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.repsocket = fake_repsocket
agent._running = True
@@ -381,7 +385,7 @@ async def test_fetch_gestures_loop_with_non_integer_json():
def test_gesture_data_attribute():
"""Test that gesture_data returns the expected list."""
gesture_data = ["hello", "yes", "no", "wave"]
agent = RobotGestureAgent("robot_gesture", gesture_data=gesture_data)
agent = RobotGestureAgent("robot_gesture", gesture_data=gesture_data, address="")
assert agent.gesture_data == gesture_data
assert isinstance(agent.gesture_data, list)
@@ -398,7 +402,7 @@ async def test_stop_closes_sockets():
pubsocket = MagicMock()
subsocket = MagicMock()
repsocket = MagicMock()
agent = RobotGestureAgent("robot_gesture")
agent = RobotGestureAgent("robot_gesture", address="")
agent.pubsocket = pubsocket
agent.subsocket = subsocket
agent.repsocket = repsocket
@@ -415,7 +419,7 @@ async def test_stop_closes_sockets():
async def test_initialization_with_custom_gesture_data():
"""Agent can be initialized with custom gesture data."""
custom_gestures = ["custom1", "custom2", "custom3"]
agent = RobotGestureAgent("robot_gesture", gesture_data=custom_gestures)
agent = RobotGestureAgent("robot_gesture", gesture_data=custom_gestures, address="")
assert agent.gesture_data == custom_gestures
@@ -432,7 +436,7 @@ async def test_fetch_gestures_loop_handles_exception():
fake_repsocket.recv = recv_once
fake_repsocket.send = AsyncMock()
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"])
agent = RobotGestureAgent("robot_gesture", gesture_data=["hello", "yes", "no"], address="")
agent.repsocket = fake_repsocket
agent.logger = MagicMock()
agent._running = True

View File

@@ -20,7 +20,7 @@ def mock_agentspeak_env():
@pytest.fixture
def agent():
agent = BDICoreAgent("bdi_agent", "dummy.asl")
agent = BDICoreAgent("bdi_agent")
agent.send = AsyncMock()
agent.bdi_agent = MagicMock()
return agent
@@ -133,14 +133,14 @@ async def test_custom_actions(agent):
# Invoke action
mock_term = MagicMock()
mock_term.args = ["Hello", "Norm", "Goal"]
mock_term.args = ["Hello", "Norm"]
mock_intention = MagicMock()
# Run generator
gen = action_fn(agent, mock_term, mock_intention)
next(gen) # Execute
agent._send_to_llm.assert_called_with("Hello", "Norm", "Goal")
agent._send_to_llm.assert_called_with("Hello", "Norm", "")
def test_add_belief_sets_event(agent):

View File

@@ -32,6 +32,8 @@ def make_valid_program_json(norm="N1", goal="G1") -> str:
Goal(
id=uuid.uuid4(),
name=goal,
description="This description can be used to determine whether the goal "
"has been achieved.",
plan=Plan(
id=uuid.uuid4(),
name="Goal Plan",
@@ -53,7 +55,7 @@ async def test_send_to_bdi():
manager.send = AsyncMock()
program = Program.model_validate_json(make_valid_program_json())
await manager._send_to_bdi(program)
await manager._create_agentspeak_and_send_to_bdi(program)
assert manager.send.await_count == 1
msg: InternalMessage = manager.send.await_args[0][0]
@@ -75,8 +77,10 @@ async def test_receive_programs_valid_and_invalid():
]
manager = BDIProgramManager(name="program_manager_test")
manager._internal_pub_socket = AsyncMock()
manager.sub_socket = sub
manager._send_to_bdi = AsyncMock()
manager._create_agentspeak_and_send_to_bdi = AsyncMock()
manager._send_clear_llm_history = AsyncMock()
try:
# Will give StopAsyncIteration when the predefined `sub.recv_multipart` side-effects run out
@@ -85,7 +89,30 @@ async def test_receive_programs_valid_and_invalid():
pass
# Only valid Program should have triggered _send_to_bdi
assert manager._send_to_bdi.await_count == 1
forwarded: Program = manager._send_to_bdi.await_args[0][0]
assert manager._create_agentspeak_and_send_to_bdi.await_count == 1
forwarded: Program = manager._create_agentspeak_and_send_to_bdi.await_args[0][0]
assert forwarded.phases[0].norms[0].name == "N1"
assert forwarded.phases[0].goals[0].name == "G1"
# Verify history clear was triggered
assert (
manager._send_clear_llm_history.await_count == 2
) # first sends program to UserInterrupt, then clears LLM
@pytest.mark.asyncio
async def test_send_clear_llm_history(mock_settings):
# Ensure the mock returns a string for the agent name (just like in your LLM tests)
mock_settings.agent_settings.llm_agent_name = "llm_agent"
manager = BDIProgramManager(name="program_manager_test")
manager.send = AsyncMock()
await manager._send_clear_llm_history()
assert manager.send.await_count == 2
msg: InternalMessage = manager.send.await_args_list[0][0][0]
# Verify the content and recipient
assert msg.body == "clear_history"
assert msg.to == "llm_agent"

View File

@@ -6,11 +6,16 @@ import httpx
import pytest
from control_backend.agents.bdi import TextBeliefExtractorAgent
from control_backend.agents.bdi.text_belief_extractor_agent import BeliefState
from control_backend.core.agent_system import InternalMessage
from control_backend.core.config import settings
from control_backend.schemas.belief_list import BeliefList
from control_backend.schemas.belief_message import Belief as InternalBelief
from control_backend.schemas.belief_message import BeliefMessage
from control_backend.schemas.chat_history import ChatHistory, ChatMessage
from control_backend.schemas.program import (
ConditionalNorm,
KeywordBelief,
LLMAction,
Phase,
Plan,
@@ -21,10 +26,20 @@ from control_backend.schemas.program import (
@pytest.fixture
def agent():
def llm():
llm = TextBeliefExtractorAgent.LLM(MagicMock(), 4)
llm._query_llm = AsyncMock()
return llm
@pytest.fixture
def agent(llm):
with patch(
"control_backend.agents.bdi.text_belief_extractor_agent.TextBeliefExtractorAgent.LLM",
return_value=llm,
):
agent = TextBeliefExtractorAgent("text_belief_agent")
agent.send = AsyncMock()
agent._query_llm = AsyncMock()
return agent
@@ -100,24 +115,12 @@ async def test_handle_message_from_transcriber(agent, mock_settings):
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
sent: InternalMessage = agent.send.call_args.args[0] # noqa
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
assert sent.to == mock_settings.agent_settings.bdi_core_name
assert sent.thread == "beliefs"
parsed = json.loads(sent.body)
assert parsed == {"beliefs": {"user_said": [transcription]}, "type": "belief_extraction_text"}
@pytest.mark.asyncio
async def test_process_user_said(agent, mock_settings):
transcription = "this is a test"
await agent._user_said(transcription)
agent.send.assert_awaited_once() # noqa # `agent.send` has no such property, but we mock it.
sent: InternalMessage = agent.send.call_args.args[0] # noqa
assert sent.to == mock_settings.agent_settings.bdi_belief_collector_name
assert sent.thread == "beliefs"
parsed = json.loads(sent.body)
assert parsed["beliefs"]["user_said"] == [transcription]
parsed = BeliefMessage.model_validate_json(sent.body)
replaced_last = parsed.replace.pop()
assert replaced_last.name == "user_said"
assert replaced_last.arguments == [transcription]
@pytest.mark.asyncio
@@ -142,77 +145,97 @@ async def test_query_llm():
"control_backend.agents.bdi.text_belief_extractor_agent.httpx.AsyncClient",
return_value=mock_async_client,
):
agent = TextBeliefExtractorAgent("text_belief_agent")
llm = TextBeliefExtractorAgent.LLM(MagicMock(), 4)
res = await agent._query_llm("hello world", {"type": "null"})
res = await llm._query_llm("hello world", {"type": "null"})
# Response content was set as "null", so should be deserialized as None
assert res is None
@pytest.mark.asyncio
async def test_retry_query_llm_success(agent):
agent._query_llm.return_value = None
res = await agent._retry_query_llm("hello world", {"type": "null"})
async def test_retry_query_llm_success(llm):
llm._query_llm.return_value = None
res = await llm.query("hello world", {"type": "null"})
agent._query_llm.assert_called_once()
llm._query_llm.assert_called_once()
assert res is None
@pytest.mark.asyncio
async def test_retry_query_llm_success_after_failure(agent):
agent._query_llm.side_effect = [KeyError(), "real value"]
res = await agent._retry_query_llm("hello world", {"type": "string"})
async def test_retry_query_llm_success_after_failure(llm):
llm._query_llm.side_effect = [KeyError(), "real value"]
res = await llm.query("hello world", {"type": "string"})
assert agent._query_llm.call_count == 2
assert llm._query_llm.call_count == 2
assert res == "real value"
@pytest.mark.asyncio
async def test_retry_query_llm_failures(agent):
agent._query_llm.side_effect = [KeyError(), KeyError(), KeyError(), "real value"]
res = await agent._retry_query_llm("hello world", {"type": "string"})
async def test_retry_query_llm_failures(llm):
llm._query_llm.side_effect = [KeyError(), KeyError(), KeyError(), "real value"]
res = await llm.query("hello world", {"type": "string"})
assert agent._query_llm.call_count == 3
assert llm._query_llm.call_count == 3
assert res is None
@pytest.mark.asyncio
async def test_retry_query_llm_fail_immediately(agent):
agent._query_llm.side_effect = [KeyError(), "real value"]
res = await agent._retry_query_llm("hello world", {"type": "string"}, tries=1)
async def test_retry_query_llm_fail_immediately(llm):
llm._query_llm.side_effect = [KeyError(), "real value"]
res = await llm.query("hello world", {"type": "string"}, tries=1)
assert agent._query_llm.call_count == 1
assert llm._query_llm.call_count == 1
assert res is None
@pytest.mark.asyncio
async def test_extracting_beliefs_from_program(agent, sample_program):
assert len(agent.available_beliefs) == 0
async def test_extracting_semantic_beliefs(agent):
"""
The Program Manager sends beliefs to this agent. Test whether the agent handles them correctly.
"""
assert len(agent.belief_inferrer.available_beliefs) == 0
beliefs = BeliefList(
beliefs=[
KeywordBelief(
id=uuid.uuid4(),
name="keyword_hello",
keyword="hello",
),
SemanticBelief(
id=uuid.uuid4(), name="semantic_hello_1", description="Some semantic belief 1"
),
SemanticBelief(
id=uuid.uuid4(), name="semantic_hello_2", description="Some semantic belief 2"
),
]
)
await agent.handle_message(
InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
sender=settings.agent_settings.bdi_program_manager_name,
body=sample_program.model_dump_json(),
body=beliefs.model_dump_json(),
thread="beliefs",
),
)
assert len(agent.available_beliefs) == 2
assert len(agent.belief_inferrer.available_beliefs) == 2
@pytest.mark.asyncio
async def test_handle_invalid_program(agent, sample_program):
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
assert len(agent.available_beliefs) == 2
async def test_handle_invalid_beliefs(agent, sample_program):
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
assert len(agent.belief_inferrer.available_beliefs) == 2
await agent.handle_message(
InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
sender=settings.agent_settings.bdi_program_manager_name,
body=json.dumps({"phases": "Invalid"}),
thread="beliefs",
),
)
assert len(agent.available_beliefs) == 2
assert len(agent.belief_inferrer.available_beliefs) == 2
@pytest.mark.asyncio
@@ -234,13 +257,13 @@ async def test_handle_robot_response(agent):
@pytest.mark.asyncio
async def test_simulated_real_turn_with_beliefs(agent, sample_program):
async def test_simulated_real_turn_with_beliefs(agent, llm, sample_program):
"""Test sending user message to extract beliefs from."""
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
# Send a user message with the belief that there's no more booze
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": True}
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": True}
assert len(agent.conversation.messages) == 0
await agent.handle_message(
InternalMessage(
@@ -255,20 +278,20 @@ async def test_simulated_real_turn_with_beliefs(agent, sample_program):
assert agent.send.call_count == 2
# First should be the beliefs message
message: InternalMessage = agent.send.call_args_list[0].args[0]
message: InternalMessage = agent.send.call_args_list[1].args[0]
beliefs = BeliefMessage.model_validate_json(message.body)
assert len(beliefs.create) == 1
assert beliefs.create[0].name == "no_more_booze"
@pytest.mark.asyncio
async def test_simulated_real_turn_no_beliefs(agent, sample_program):
async def test_simulated_real_turn_no_beliefs(agent, llm, sample_program):
"""Test a user message to extract beliefs from, but no beliefs are formed."""
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
# Send a user message with no new beliefs
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": None}
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": None}
await agent.handle_message(
InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
@@ -282,17 +305,17 @@ async def test_simulated_real_turn_no_beliefs(agent, sample_program):
@pytest.mark.asyncio
async def test_simulated_real_turn_no_new_beliefs(agent, sample_program):
async def test_simulated_real_turn_no_new_beliefs(agent, llm, sample_program):
"""
Test a user message to extract beliefs from, but no new beliefs are formed because they already
existed.
"""
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent.beliefs["is_pirate"] = True
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent._current_beliefs = BeliefState(true={InternalBelief(name="is_pirate", arguments=None)})
# Send a user message with the belief the user is a pirate, still
agent._query_llm.return_value = {"is_pirate": True, "no_more_booze": None}
llm._query_llm.return_value = {"is_pirate": True, "no_more_booze": None}
await agent.handle_message(
InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
@@ -306,17 +329,19 @@ async def test_simulated_real_turn_no_new_beliefs(agent, sample_program):
@pytest.mark.asyncio
async def test_simulated_real_turn_remove_belief(agent, sample_program):
async def test_simulated_real_turn_remove_belief(agent, llm, sample_program):
"""
Test a user message to extract beliefs from, but an existing belief is determined no longer to
hold.
"""
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent.beliefs["no_more_booze"] = True
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
agent._current_beliefs = BeliefState(
true={InternalBelief(name="no_more_booze", arguments=None)},
)
# Send a user message with the belief the user is a pirate, still
agent._query_llm.return_value = {"is_pirate": None, "no_more_booze": False}
llm._query_llm.return_value = {"is_pirate": None, "no_more_booze": False}
await agent.handle_message(
InternalMessage(
to=settings.agent_settings.text_belief_extractor_name,
@@ -329,18 +354,23 @@ async def test_simulated_real_turn_remove_belief(agent, sample_program):
assert agent.send.call_count == 2
# Agent's current beliefs should've changed
assert not agent.beliefs["no_more_booze"]
assert any(b.name == "no_more_booze" for b in agent._current_beliefs.false)
@pytest.mark.asyncio
async def test_llm_failure_handling(agent, sample_program):
async def test_llm_failure_handling(agent, llm, sample_program):
"""
Check that the agent handles failures gracefully without crashing.
"""
agent._query_llm.side_effect = httpx.HTTPError("")
agent.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
llm._query_llm.side_effect = httpx.HTTPError("")
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].norms[0].condition)
agent.belief_inferrer.available_beliefs.append(sample_program.phases[0].triggers[0].condition)
belief_changes = await agent._infer_turn()
belief_changes = await agent.belief_inferrer.infer_from_conversation(
ChatHistory(
messages=[ChatMessage(role="user", content="Good day!")],
),
)
assert len(belief_changes) == 0
assert len(belief_changes.true) == 0
assert len(belief_changes.false) == 0

View File

@@ -265,3 +265,23 @@ async def test_stream_query_llm_skips_non_data_lines(mock_httpx_client, mock_set
# Only the valid 'data:' line should yield content
assert tokens == ["Hi"]
@pytest.mark.asyncio
async def test_clear_history_command(mock_settings):
"""Test that the 'clear_history' message clears the agent's memory."""
# setup LLM to have some history
mock_settings.agent_settings.bdi_program_manager_name = "bdi_program_manager_agent"
agent = LLMAgent("llm_agent")
agent.history = [
{"role": "user", "content": "Old conversation context"},
{"role": "assistant", "content": "Old response"},
]
assert len(agent.history) == 2
msg = InternalMessage(
to="llm_agent",
sender=mock_settings.agent_settings.bdi_program_manager_name,
body="clear_history",
)
await agent.handle_message(msg)
assert len(agent.history) == 0

View File

@@ -7,6 +7,15 @@ import zmq
from control_backend.agents.perception.vad_agent import VADAgent
# We don't want to use real ZMQ in unit tests, for example because it can give errors when sockets
# aren't closed properly.
@pytest.fixture(autouse=True)
def mock_zmq():
with patch("zmq.asyncio.Context") as mock:
mock.instance.return_value = MagicMock()
yield mock
@pytest.fixture
def audio_out_socket():
return AsyncMock()
@@ -140,12 +149,10 @@ async def test_vad_model_load_failure_stops_agent(vad_agent):
# Patch stop to an AsyncMock so we can check it was awaited
vad_agent.stop = AsyncMock()
result = await vad_agent.setup()
await vad_agent.setup()
# Assert stop was called
vad_agent.stop.assert_awaited_once()
# Assert setup returned None
assert result is None
@pytest.mark.asyncio
@@ -155,7 +162,7 @@ async def test_audio_out_bind_failure_sets_none_and_logs(vad_agent, caplog):
audio_out_socket is set to None, None is returned, and an error is logged.
"""
mock_socket = MagicMock()
mock_socket.bind_to_random_port.side_effect = zmq.ZMQBindError()
mock_socket.bind.side_effect = zmq.ZMQBindError()
with patch("control_backend.agents.perception.vad_agent.azmq.Context.instance") as mock_ctx:
mock_ctx.return_value.socket.return_value = mock_socket

View File

@@ -43,6 +43,8 @@ def make_valid_program_dict():
Goal(
id=uuid.uuid4(),
name="Some goal",
description="This description can be used to determine whether the goal "
"has been achieved.",
plan=Plan(
id=uuid.uuid4(),
name="Goal Plan",

View File

@@ -99,12 +99,75 @@ async def test_send_to_local_agent(monkeypatch):
# Patch inbox.put
target.inbox.put = AsyncMock()
message = InternalMessage(to="receiver", sender="sender", body="hello")
message = InternalMessage(to=target.name, sender=sender.name, body="hello")
await sender.send(message)
target.inbox.put.assert_awaited_once_with(message)
sender.logger.debug.assert_called_once()
@pytest.mark.asyncio
async def test_send_to_zmq_agent(monkeypatch):
sender = DummyAgent("sender")
target = "remote_receiver"
# Fake logger
sender.logger = MagicMock()
# Fake zmq
sender._internal_pub_socket = AsyncMock()
message = InternalMessage(to=target, sender=sender.name, body="hello")
await sender.send(message)
zmq_calls = sender._internal_pub_socket.send_multipart.call_args[0][0]
assert zmq_calls[0] == f"internal/{target}".encode()
@pytest.mark.asyncio
async def test_send_to_multiple_local_agents(monkeypatch):
sender = DummyAgent("sender")
target1 = DummyAgent("receiver1")
target2 = DummyAgent("receiver2")
# Fake logger
sender.logger = MagicMock()
# Patch inbox.put
target1.inbox.put = AsyncMock()
target2.inbox.put = AsyncMock()
message = InternalMessage(to=[target1.name, target2.name], sender=sender.name, body="hello")
await sender.send(message)
target1.inbox.put.assert_awaited_once_with(message)
target2.inbox.put.assert_awaited_once_with(message)
@pytest.mark.asyncio
async def test_send_to_multiple_agents(monkeypatch):
sender = DummyAgent("sender")
target1 = DummyAgent("receiver1")
target2 = "remote_receiver"
# Fake logger
sender.logger = MagicMock()
# Fake zmq
sender._internal_pub_socket = AsyncMock()
# Patch inbox.put
target1.inbox.put = AsyncMock()
message = InternalMessage(to=[target1.name, target2], sender=sender.name, body="hello")
await sender.send(message)
target1.inbox.put.assert_awaited_once_with(message)
zmq_calls = sender._internal_pub_socket.send_multipart.call_args[0][0]
assert zmq_calls[0] == f"internal/{target2}".encode()
@pytest.mark.asyncio

View File

@@ -31,6 +31,7 @@ def base_goal() -> Goal:
return Goal(
id=uuid.uuid4(),
name="testGoalName",
description="This description can be used to determine whether the goal has been achieved.",
plan=Plan(
id=uuid.uuid4(),
name="testGoalPlanName",